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Abstract

Heart failure with preserved ejection fraction (HFpEF) represents one of the greatest challenges 

facing cardiovascular medicine today. Despite being the most common form of HF worldwide, 

there has been limited success in developing therapeutics for this syndrome. This is largely 

due to our incomplete understanding of the biology driving its systemic pathophysiology and 

the heterogeneity of clinical phenotypes, which are increasingly being recognized as distinct 

HFpEF phenogroups. Development of efficacious therapeutics fundamentally relies on robust 

preclinical models that not only faithfully recapitulate key features of the clinical syndrome but 

also enable rigorous investigation of putative mechanisms of disease in the context of clinically 

relevant phenotypes. In this review, we propose a preclinical research strategy that is conceptually 

grounded in model diversification and aims to better align with our evolving understanding 

of the heterogeneity of clinical HFpEF. Although heterogeneity is often viewed as a major 

obstacle in preclinical HFpEF research, we challenge this notion and argue that embracing it 

may be the key to demystifying its pathobiology. Here we first provide an overarching guideline 

for developing HFpEF models through a stepwise approach of comprehensive cardiac and extra-

cardiac phenotyping. We then present an overview of currently available models, focused on 

the three leading phenogroups, which are primarily based on aging, cardiometabolic stress, 

and/or chronic hypertension. We discuss how well these models reflect their clinically relevant 

phenogroup and highlight some of the more recent mechanistic insights they are providing into the 

complex pathophysiology underlying HFpEF.
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Introduction

The global prevalence of heart failure (HF) is estimated at >30 million individuals. Rapidly 

increasing in incidence and prevalence, HF is thought to have contributed to 1 in 8 deaths 

in 20171,2. Two major phenotypes of HF are recognized: HF with reduced ejection fraction 

(HFrEF) and HF with preserved ejection fraction (HFpEF)3,4. HFpEF is a syndrome marked 

by substantial morbidity and mortality, including a 35% two-year rate of HF hospitalization 

and 14% two-year mortality5. Importantly, HFpEF has been rising over the past decade 

by 10% relative to HFrEF, and this gap is projected to increase owing to the aging of the 

population and the increasing prevalence of conditions that predispose to its development, 

particularly hypertension, obesity, metabolic syndrome, and diabetes5–8. Already, HFpEF is 

the most common form of HF.

Whereas HFrEF and HFpEF present similarly as HF (shortness of breath, edema, exercise 

intolerance), recent evidence, both preclinical and clinical, supports a model in which 

the two syndromes are mechanistically distinct pathophysiological entities. In addition to 

evidence emerging from analyses of gene expression patterns in both preclinical9–12 and 

human specimens13, the fact that neurohormonal therapies established to be effective in 

HFrEF have failed to improve clinical outcomes in HFpEF supports this concept. Also, 

transition from HFpEF to HFrEF in patients is rare5,14. In aggregate, these data lend 

considerable credence to the notion that HFrEF and HFpEF are mechanistically dissimilar.

Despite the increasing recognition of distinct pathophysiology, the biological mechanisms 

underlying HFpEF remain largely unclear. It is important to recognize that HFpEF is 

a complex clinical syndrome, not a single disease, one characterized by heterogeneous 

clinical manifestations, high comorbidity burden, and multiorgan systemic pathophysiology. 

Abnormalities in the heart (such as concentric left ventricular hypertrophy, left atrial 

remodeling, diastolic dysfunction, impaired cardiac reserves) are frequently present in 

HFpEF patients15. Similarly, non-cardiac features, such as systemic and pulmonary vascular 

dysfunction, skeletal muscle impairments, body composition changes, are also widespread 

in HFpEF and highly variable among patients16,17. Indeed, within the syndrome of HFpEF, 

distinct phenogroups can be identified stemming from different predisposing conditions 

and unique responses to treatment6,14,18,19. Also, different HFpEF phenogroups may have 

dissimilar geographic distributions. For example, hypertensive, stiff, hypertrophic hearts in 

lean HFpEF patients (“skinny HFpEF”) are encountered more commonly in Asia than in the 

West20.
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Our limited understanding of the molecular mechanisms responsible for the phenotypic 

heterogeneity in HFpEF has led not only to a lack of consensus on how to define this 

clinical entity but has also created a major obstacle to generating effective therapeutics. 

If drug discovery and development in HFpEF are to accelerate and treatment strategies 

improve, it is critical that we develop a better understanding of specific mechanisms driving 

the complexity and variability in HFpEF pathophysiology. This will inevitably require an 

integrated approach among basic, translational, clinical, and epidemiological scientists. In 

clinical research, the “one-size-fits-all” approach previously used in HFrEF has evolved 

into a more phenotype-specific research approach. This strategy focuses on classifying 

the heterogenous HFpEF population into sub-types that are more homogenous based 

on distinct characteristics observed clinically, largely driven by associated comorbidities, 

clinical features, myocardial phenotypes, or phenomapping21. Arguably the HFpEF field has 

been led astray numerous times owing to over-reliance on models that purport to reflect 

HFpEF but do not recapitulate the clinical realities of the syndrome or manifest major 

features rarely seen in clinical HFpEF. For example, models marked by transition to HFrEF 

and termed “temporary HFpEF”, or the presumption that diastolic dysfunction is tantamount 

to “diastolic heart failure” or HFpEF, are errors found too frequently in the published 

literature.

As elucidation of pathophysiological mechanisms of disease relies on the availability and 

veracity of animal and cellular models, the existence of multiple phenotypes of clinical 

HFpEF necessitates that preclinical researchers similarly adapt to the evolving field and 

fully embrace the heterogeneity of the syndrome. Instead of expecting a single animal model 

to reproduce all aspects of the diverse clinical manifestations of the HFpEF syndrome, we 

propose that model development should be multifold and focus on capturing the hallmark 

features of specific phenogroups in clinical HFpEF. This strategy would not only be more 

faithful to the heterogeneity of the clinical syndrome, but diversifying our preclinical models 

better aligns with emerging clinical strategies to personalize treatment approaches in HFpEF.

To that end, this review begins by presenting a generalized strategy for developing animal 

models of HFpEF that is fundamentally rooted in capturing clinically relevant phenotypes 

of this syndrome. The goal of this review is not to present every proposed model of 

HFpEF, which are not only rapidly increasing in number but have also been reviewed 

in depth in prior references22–25. Rather, we highlight the currently available models that 

we collectively feel best represent the three leading HFpEF phenogroups, those primarily 

based on the leading risk factors of advanced age, cardiometabolic stress, and chronic 

hypertension. We discuss how these models capture the key features of their respective 

phenogroup and HFpEF, in general. We then highlight some of the recent mechanistic 

insights they have provided, and comment on what we believe are some important next steps 

to better understanding the pathobiology underlying these major phenogroups.

Developing HFpEF Models: A Stepwise Phenotype-based Approach

Assessing whether an animal model accurately recapitulates the clinical syndrome of HFpEF 

is undeniably challenging. The inability of animals to express the cardinal symptoms 

of HF, breathlessness and fatigue, make modeling HF in animals inherently difficult. In 
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HFpEF, the varying degrees by which multiple cardiac and extra-cardiac factors contribute 

to the underlying pathophysiology further complicates our ability to model this complex 

syndrome. Moreover, unlike HFrEF, which can develop rapidly after an acute cardiac injury 

(e.g., myocardial infarction), HFpEF is a more chronic HF syndrome that generally develops 

after years of insidious myocardial and extra-cardiac tissue remodeling. The emphasis 

placed on developing “quick” models to shorten the experimental timeframe in preclinical 

research is thus at direct odds with the chronicity that underlies clinical HFpEF.

Despite these challenges, it is incumbent on basic and translational scientists to develop 

models that are not only faithful to the clinical syndrome but can also be easily reproduced 

and utilized by others in our collective quest to unveil molecular mechanisms driving HFpEF 

pathophysiology. Indeed, this has been recognized as a critical shortcoming in the field 

that needs to be addressed in order for meaningful advances in therapeutic development to 

emerge26,27.

In an attempt to provide some consensus to this rapidly evolving field, we propose the 

following stepwise phenotyping strategy in developing animal models of HFpEF. This 

recognizes that no single model will fully recapitulate the multitude of pathophysiological 

features associated with the notoriously heterogeneous syndrome of clinical HFpEF. Later in 

this review, we highlight animal models that we believe best represent the leading HFpEF 

phenogroups, and in which this generalized phenotyping approach can be tailored to capture 

the phenotypes most relevant to that specific phenogroup. Notably, the general algorithm 

presented here emphasizes small animal models, but much of this strategy can and should be 

translated to large animals. Figure 1: Flowchart for developing HFpEF models.

Step 1: Confirm the presence of hallmark HF phenotypes

Before even proposing a model of HFpEF (or HFrEF), it is critical that one is confident 

that the model exhibits key features of HF pathophysiology, which includes congestion 

and/or exercise intolerance. Clinically, HF is diagnosed by the development of symptomatic 

dyspnea or fatigue, which is then corroborated by signs of volume overload, elevated filling 

pressures, impaired exercise capacity, and/or altered tissue perfusion from reduced cardiac 

output. Of course, symptoms cannot be elicited from an animal, but pulmonary congestion 

and exercise capacity can be objectively measured and should be among the first phenotypes 

evaluated.

Congestion can be assessed directly via lung weights (either wet weight or wet:dry weight 

ratio) or invasive hemodynamics. As obesity and aging are increasingly incorporated into 

HFpEF models, we encourage investigators to report lung weights normalized not only 

to tibia length but also to body weight. These comorbid processes are associated with 

overall physiological increases in organ weights, and thus, increased lung weights may not 

necessarily indicate pathology or congestion when compared to leaner or younger controls. 

Notably, a major limitation of these methods is that they can only be performed either post-

mortem or during terminal procedures. To circumvent this shortcoming, recent advances in 

lung ultrasound herald promise in noninvasively assessing pulmonary edema in animals28, 

which could allow for serial assessments throughout a study. Additionally, circulating BNP, 

an established clinical HF biomarker that serves as an indicator of increased myocardial wall 
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stress, can be measured in serum or plasma and has been associated with pathologic cardiac 

remodeling and dysfunction in mice29.

Similarly, we recommend that exercise capacity be thoroughly assessed in every animal 

model of HFpEF. Exercise intolerance is a hallmark feature of HF, and exercise capacity 

is an objective metric than can be accurately assessed with thorough methodological 

training and rigorous compliance to established protocols. The details of animal exercise 

testing are beyond the scope of this review, but we point the interested reader to several 

references that provide detailed protocols30,31. Notably, there is currently no consensus 

in the field regarding standard exercise testing protocols in preclinical HFpEF studies. 

In an effort to mimic what is done clinically32, we suggest that investigators use graded 

treadmill protocols, which not only enable fairly controlled assessment of peak exercise 

capacity, but can be paired with other technologies to assess cardiac reserves33–35. These 

protocols usually run mice at 10–20° inclines with progressive increases in treadmill speed 

until animal exhaustion. Similar to advocating for normalization of lung weight to body 

weight, in addition to tibia length, we recommend that investigators report exercise capacity 

readouts that appropriately adjust for the animal’s body weight. Weight is a critical factor 

in determining the amount of work an animal can accomplish during an exercise test and is 

markedly influenced by both obesity and aging, which are increasingly being incorporated 

into HFpEF model development. Work achieved on a treadmill exercise test is essentially the 

product of the animal weight, acceleration due to gravity, and the vertical height traveled, the 

latter of which incorporates the treadmill grade, velocity profile, and total time run.

Step 2: Confirm preserved left ventricular ejection fraction

Once a HF phenotype is confirmed in the animal model, via congestion and/or exercise 

intolerance (preferably both), a thorough assessment of cardiac contractile performance 

should be performed. This can be done via echocardiography, cardiac MRI, and/or 

invasive hemodynamics. Detailed methodology for these techniques is beyond the scope 

of this review, but we refer the interested reader to the following references for more 

information36–38.

In generating HFpEF models, robust validation of preserved left ventricular ejection fraction 

(LVEF) is critical, as this is a defining feature of the syndrome. With its wide availability 

and relatively low cost, echocardiography has become the most common method for 

assessing cardiac function in animals and can be performed with or without sedation. If 

the former is used, careful attention to anesthesia selection and depth, and their potential 

confounding effects on myocardial function, should be addressed36,39. The recommended 

method for quantifying LVEF in clinical echocardiography is Simpson’s biplane method 

of discs, which integrates multiple apical views to measure LV volumes at end-diastole 

and end-systole. In small animals, apical views are generally not of sufficient quality 

to accurately measure LV volumes, and thus LVEF is usually calculated from volumes 

acquired from parasternal long axis views or extrapolated from linear dimensions from 

the parasternal short axis view. Both of these methods have limitations, including multiple 

assumptions regarding the symmetry and uniformity of LV geometry. Careful attention 

should be focused on ensuring that parasternal long axis views are not foreshortened, 
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and if using linear measurements, we recommend that investigators also report fractional 

shortening. If feasible, further validation of LVEF preservation with cardiac MRI or invasive 

hemodynamics is often useful and can provide additional confidence in this core feature of 

HFpEF.

Although LVEF is preserved in HFpEF, it is important to note that cardiac contractile 

performance is not perfectly normal. The ability of the heart to augment its output under 

physiologic or pathologic stress is markedly impaired in HFpEF due to deficiencies 

in cardiac reserves, which include inotropic, chronotropic, and lusitropic properties40,41. 

Whereas this hallmark cardiac phenotype of HFpEF is well established in the clinical 

community, it has been largely ignored in preclinical HFpEF research. Given the clinical 

relevance of impaired cardiac reserve in HFpEF pathophysiology, we recommend that this 

cardiac phenotype not only be incorporated in model development and validation, but also 

in the assessment of therapeutic efficacy of experimental interventions. Both implantable 

telemetry units33,34 and echocardiography35,41 have been paired with exercise-induced stress 

in rodents, and can be used reliably assess cardiac reserves in small animal models of 

HFpEF. Additionally, hemodynamic stress with dobutamine, isoproterenol, phenylephrine, 

or volume challenges can be paired with invasive hemodynamics42,43 or cardiac MRI44 to 

assess cardiac reserve, but this requires obligate anesthesia, which in itself, can alter the 

myocardial response to stress.

Step 3: Evaluate additional common cardiac phenotypes

In addition to impaired cardiac reserve, many HFpEF patients manifest evidence of 

subclinical systolic and diastolic dysfunction at rest, reflective of abnormal mechanical 

properties of the myocardium41,45,46. Subclinical systolic dysfunction, also referred 

to as impaired myocardial strain or deformation, and diastolic dysfunction, which is 

more reflective of the lusitropic properties of the heart, are most often assessed by 

echocardiography or invasive hemodynamics. Technical details for these methods are 

provided in the following references36,42,46. Whereas these cardiac functional phenotypes 

can provide additional credence to a given model, it is important to note that although 

impaired systolic strain and diastolic dysfunction are common in HFpEF, these metrics are 

also seen in many individuals without HFpEF (e.g., untreated hypertensive individuals or 

healthy older adults without HF), and thus have limited specificity and sensitivity in the 

diagnosis of the syndrome.

Histopathologic studies have afforded valuable insights into the adverse myocardial 

structural remodeling associated with HFpEF in humans. Manifestations of modest 

cardiomyocyte hypertrophy, myocardial fibrosis, and microvascular rarefaction are 

commonly observed in HFpEF patients47, and should be thoroughly evaluated in all 

HFpEF models with standard (immuno)histological techniques. Noninvasive approaches 

to assess cardiac remodeling and myocardial perfusion without sacrificing the animal 

can also be accomplished, but often require advanced imaging with cardiac MRI, 

contrast echocardiography, and/or PET36. In rodents, transcriptional profiles associated with 

pathologic cardiac hypertrophy, which include upregulation of the MYH7 isoform and 
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natriuretic peptides (NPPA and NPPB), can provide additional molecular support for a 

pathological, as opposed to physiological, growth process in the heart35,48.

Lastly, although it is not commonly included in HFpEF model characterization at this time, 

we suggest that investigators consider incorporating arrhythmogenic potential, specifically 

atrial fibrillation (AF) inducibility, in the initial cardiac phenotyping of their models. AF 

is highly prevalent in HFpEF, occurring in 30–50% of these patients49,50. Whether AF 

drives HFpEF or vice versa is unclear, but their coexistence strongly suggests that they 

share similar pathophysiology. Indeed, many of the interventions used to induce HFpEF in 

rodents, including obesity and increased afterload, also increase AF inducibility51, further 

highlighting that the mechanisms inducing HFpEF phenotypes in animals likely contribute 

to AF pathophysiology.

Step 4: Evaluate common extra-cardiac phenotypes

As highlighted throughout this review, multiple cardiac, but also noncardiac impairments, 

contribute to the systemic pathophysiology underlying HFpEF. Whereas rigorous cardiac 

phenotyping has been a mainstay in HFpEF model characterization to date, it is equally 

important to address the non-cardiac phenotypes. Details regarding the relevance of non-

cardiac phenotypes in specific HFpEF subgroup models will be highlighted in the following 

sections and should be prioritized accordingly. However, first we provide a more general 

overview of how one might approach extra-cardiac phenotyping in HFpEF models.

Systemic and pulmonary vascular remodeling are both major contributors to HFpEF 

pathophysiology. Systemic arterial hypertension is the most common risk factor in HFpEF41, 

and blood pressure (BP) should be reported in every model. BP can be measured via 

invasive hemodynamics but can also be assessed using non-terminal tail cuff systems or 

telemetry units52. It is important to note that it is not only the absolute difference in 

arterial blood pressure that matters, but ventricular-vascular mismatch that occurs with 

arterial stiffening also plays an important role in certain subgroups of HFpEF, especially 

older patients53. Similar to humans, arterial stiffness can be assessed in animals using 

noninvasive ultrasound techniques that measure aortic pulse wave velocity54. Pulmonary 

artery pressures, pulmonary vascular resistance, and right ventricular (RV) function are 

more challenging to assess in animals, and often require terminal invasive hemodynamic 

techniques55. However, noninvasive methods using echocardiography and cardiac MRI are 

available and can provide direct measurements of RV structure and function and pulmonary 

artery size, along with some indirect assessments of pulmonary hemodynamics56,57.

Impairments in peripheral oxygen extraction in skeletal muscle are increasingly recognized 

as major contributors to exercise intolerance in HFpEF41,58,59. Like the heart, skeletal 

muscle in HFpEF patients manifests changes in myocyte fiber type distribution and reduced 

capillary density60, which can be assessed with standard (immuno)histological methods. 

Contrast ultrasonography, MRI, and laser Doppler methods can also be used for functional 

assessment of skeletal muscle perfusion61–63.

Chronic kidney disease (CKD) is highly prevalent in HFpEF, present in nearly 50% of 

patients64. Similar to the striking co-existence of AF with HFpEF, the frequency with which 
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CKD is observed in HFpEF suggests that common pathobiology drives both processes and 

that the relationship between these two entities is not just associative but rather causal. 

Assessing kidney function in HFpEF models is rarely performed, but we propose that given 

its prominent role in HFpEF pathophysiology, it should be measured regularly. In addition 

to histopathologic assessments of structural remodeling in the kidney, renal function can be 

reliably evaluated in rodents by measuring serum creatinine (preferably via enzymatic or 

HPLC methods) or cystatin C levels65,66.

All the aforementioned non-cardiac processes may have direct influences on cardiac 

physiology and hemodynamics, but multiple other comorbidities, including diabetes, 

obesity, anemia, coronary artery disease, and chronic pulmonary disease are also highly 

prevalent in clinical HFpEF. Whereas hemodynamically significant coronary artery disease 

and chronic pulmonary disease are not commonly present in small animals, even with 

metabolic, hypertensive, or aging interventions, glucose intolerance and obesity are 

associated with some of these interventions, and should be assessed with standard laboratory 

and biomorphic measurements.

Current Models of the Major HFpEF Phenogroups:

AGE-ASSOCIATED HFpEF:

HFpEF is inextricably linked to aging. Even before its formal recognition as a distinct 

HF phenotype, some of the first case reports describing the syndrome suggested it 

might represent a hypertensive cardiomyopathy exclusive to the elderly67. Indeed, HFpEF 

constitutes the vast majority of incident HF in older adults68, and the rising prevalence of 

HFpEF is largely attributed to the aging of populations worldwide5. Although age-related 

HFpEF inevitably shares many features with other HFpEF phenogroups, this specific 

phenogroup is not only associated with more adverse myocardial and electrical remodeling, 

but also more diffuse extra-cardiac impairments in the vascular, renal, pulmonary, and 

skeletal muscle systems, suggesting a more systemic process may underlie HFpEF 

pathophysiology in older patients69–71.

Elegant studies in human cardiovascular physiology over the past 50+ years have 

provided important insights into how cardiovascular aging potentially contributes to HFpEF 

pathophysiology72–74. Normal aging, itself, leads to many of the hallmark phenotypes 

observed in HFpEF. Exercise capacity progressively declines by ~10% per decade in healthy 

ambulatory individuals, but accelerates after the seventh decade75. Similar to HFpEF, 

exercise intolerance in older adults derives largely from reductions in cardiac reserve, 

but impairments in peripheral oxygen extraction also contribute72–74,76. Additionally, 

progressive age-related arterial stiffening contributes to the development of cardiac 

hypertrophy, adverse myocardial remodeling, and the subclinical systolic and diastolic 

dysfunction observed in the elderly72,73.

It is important to note that despite the strikingly high prevalence of HFpEF in the elderly, 

the majority of older adults do not have HFpEF despite possessing many of its hallmark 

phenotypes. Although the culmination of structural and functional changes that occur with 

aging of the cardiovascular system does not necessarily equate to age-related HFpEF, 
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a longstanding hypothesis has been that acceleration or dysregulation of mechanisms 

associated with this aging process may be the trigger that transitions it to a more pathologic 

HF phenotype73,77; however, underlying mechanisms remain unclear. Yet, based on this 

hypothesis, a strategy of discovering causal mechanisms of cardiovascular aging in animals 

and then testing their therapeutic relevance in other HF models has become a common 

experimental approach to glean mechanistic insights into age-related HFpEF.

Models:

Aged C57BL/6 Mouse: Cardiovascular aging has been studied in multiple species, but 

our understanding of the molecular underpinnings driving this process have been derived 

largely from rodent models that display many of the features found in human cardiovascular 

aging78 (Table 1). The aged C57BL/6 mouse (generally >24 months old) is by far the most 

common rodent model used in cardiac aging studies. Extensive cardiovascular phenotyping 

of the aged C57BL/6 mouse has consistently shown that these animals display many of the 

hallmark features of HFpEF, including exercise intolerance, congestion, preserved LVEF, 

impaired systolic strain, diminished cardiac reserve, diastolic dysfunction, LV pathologic 

remodeling, and arterial stiffness35,79–81. Importantly, these HFpEF phenotypes develop 

in the absence of overt hypertension, pulmonary vascular disease, glucose intolerance, 

or obesity, making this model uniquely suited to study age-specific mechanisms that 

do not necessarily overlap with other HFpEF phenogroups. Interestingly, cardiac HFpEF 

phenotypes are more pronounced in aged males, compared to similarly aged females82, 

which is somewhat discordant with the female predominance in age-related HFpEF69.

There is some disagreement in the field regarding whether the aged C57BL/6 mouse 

truly represents a model of HFpEF as opposed to physiological cardiovascular aging. 

Nevertheless, the consistent observation that it recapitulates many of the hallmark HFpEF 

phenotypes has led investigators to use it as a platform to discover cardiac aging-

related mechanisms that can be targeted for HF therapeutics83. A detailed discussion 

of the rapidly growing number of putative cardiac aging mechanisms that have been 

discovered in the aged C57BL/6 mouse is beyond the scope of this review, but includes 

mitochondrial dysfunction79,84, alterations in autophagy80, cellular senescence85,86, TGFβ 
family signaling41,87, epigenetic modulation88–90, and inflammation91.

Aged Fisher 344 Rat: Like the aged C57BL/6 mouse, the aged Fisher 344 (F344) rat 

also recapitulates many of the phenotypes seen in human cardiac aging and HFpEF. 

These changes develop progressively with age and start to manifest around 24–30 months, 

becoming more prominent at 36 months. At these later timepoints, animals display evidence 

of exercise intolerance, pathologic cardiac hypertrophy, and diastolic dysfunction92–96. Early 

studies showed that both aged male and female F344 rats also manifest evidence of systolic 

dysfunction, which has diminished enthusiasm for using this cardiac aging model to study 

mechanisms of age-related HFpEF93–95. However, a more recent echocardiographic study of 

aged F344 rats has suggested that LVEF may be preserved in aged females (at 26 and 30 

months)96. These conflicting data will need to be reconciled if this model is to be utilized in 

age-related HFpEF research.
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SAMP8 Mouse: Although the shorter average lifespan of rodents (around 2–3 years) 

has made them a powerful tool for studying mechanisms of cardiovascular aging and 

age-related HFpEF, the substantial length of time needed to acquire clinically relevant 

phenotypes in these animals nevertheless presents a major challenge. The increasing 

availability of aged rodents through commercial and government-sponsored rodent colonies 

has alleviated some of this burden, but these resources are often limited by financial and 

access issues. To circumvent the longer aging period necessary in wild-type rodents, an 

accelerated model of cardiac aging that has been proposed as a reasonable alternative 

is the senescence accelerated-prone mouse (SAMP). SAMP mice were generated in the 

1970s from selective inbreeding of the AKR/J strain and display variable degrees of 

accelerated aging phenotypes97. Two studies have undertaken cardiovascular phenotyping 

in the SAMP8 strain and have reported a modest degree of diastolic dysfunction in these 

mice within 6 months in the absence of LV systolic dysfunction98,99. However, there is some 

discordance in cardiac functional phenotypes (e.g. diastolic dysfunction) and myocardial 

fibrosis. Moreover, neither study showed convincing evidence of cardiac hypertrophy or 

significant changes in blood pressure or vascular stiffness. Additionally, although six-month-

old SAMP8 mice ran slightly less during treadmill exercise testing compared with two 

month-old SAMP8 mice, this was not adjusted for the increased body weight in older 

animals, and the modest deficit in exercise capacity was even smaller than that observed in 

wild-type controls99. As with the aged F344 rat model, more definitive phenotyping of this 

model will need to be completed to determine whether it can be used to study age-related 

HFpEF.

Multiple-Hit Aging Models: Although our success in modeling age-related HFpEF in 

animals has lagged behind rigorous clinical phenotyping and recognition of this older 

HFpEF phenogroup, the field has begun to address some of the shortcomings and 

limitations of current models and strategies. More recent efforts are employing a strategy of 

incorporating prevalent comorbidities, including obesity and hypertension, in aged animals. 

The rationale behind this strategy is strongly grounded in clinical data that report high 

prevalence of both these comorbidities in older adults with HFpEF69–71. This strategy 

essentially proposes that comorbidities may be the necessary trigger that tips an already 

compromised and vulnerable, aged cardiovascular system into HF.

Three recent studies suggest that this may indeed be a promising approach to modeling age-

related HFpEF99–101. Exposure to a high-fat diet (HFD) and renin-angiotensin-aldosterone 

system (RAAS) stimulants, either angiotensin II (ANGII) or deoxycorticosterone pivalate 

(DOCP), amplified many of the cardiac and extra-cardiac HFpEF phenotypes observed in 

age-matched controls (Table 1)100,101. Moreover, exposure of SAMP8 mice to a high-salt 

and high-fat Western diet (WD) similarly elicited multiple HFpEF phenotypes, including 

exercise intolerance, pulmonary congestion, pathologic cardiac hypertrophy, and vascular 

dysfunction, that were not present in age-matched SAMP8 mice.

Recent Mechanistic Insights and Knowledge Gaps: These more recent studies 

not only highlight the current trend and rationale for multiple-hit approaches to model 

development in age-related HFpEF, but importantly are also providing new insights into 
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the pathobiology of this phenogroup. It is notable that both studies in which metabolic 

and hypertensive stress were incorporated in aged C57BL/6 mice similarly identified 

mechanisms of metabolic dysregulation and cardiac inflammation as potentially key 

mediators of HFpEF pathophysiology100,101.

In the aging+HFD+DOCP model101, aberrant ketone metabolism induced mitochondrial 

dysfunction and NLRP3 inflammasome activation, which interestingly was ameliorated 

by increasing circulating β-hydroxybutyrate levels. The authors found that increased 

circulating β-hydroxybutyrate rescued HFpEF phenotypes, not by increasing myocardial 

energy supplies (as has been proposed in HFrEF), but by inhibiting mitochondrial 

protein hyperacetylation and inflammation through suppression of fatty acid uptake and 

citrate synthase activation. These data further support the notion that HFpEF is likely 

mechanistically distinct from HFrEF and resonates with mechanisms emerging from 

cardiometabolic HFpEF models (see following section). The lack of HFpEF phenotypes 

in their age-matched control (16-month-old C57BL/6), however, raises the question of 

whether metabolic inflammation is specific to age-related HFpEF or more reflective of the 

underlying mechanisms driving cardiometabolic HFpEF.

The aging+HFD+ANGII model, which incorporates dietary/hypertensive interventions much 

later in life (starting at 18–22 months) and is likely more consistent with the clinical 

scenario leading up to age-related HFpEF, also suggests that metabolic inflammation 

is likely relevant to the pathobiology contributing to age-related HFpEF100. Metabolic, 

mitochondrial, inflammatory, and TGFβ family signaling pathways were all enriched in the 

cardiac transcriptomic profiles of these mice compared to age-matched controls. Although 

young controls were not included in this study for additional comparison to normal 

physiological aging, all of these biological processes have previously been implicated in 

cardiac aging83, suggesting that the introduction of HFD+ANGII in late life amplifies these 

processes beyond what occurs with normal aging.

Ultimately, how these added comorbidities alter intrinsic cardiovascular aging mechanisms 

that contribute to HFpEF in older adults and how this pathobiology potentially differs 

from other HFpEF phenogroups needs to be explored further. Exposure of SAMP8 mice 

to WD is one recent example of how we can start to address these questions99. Although 

the SAMP8 mouse only recapitulates some features of age-related HFpEF, it does display 

evidence of endothelial senescence and dysfunction that is thought to contribute to some 

of its HFpEF phenotypes. The introduction of WD further amplified the accelerated age-

related endothelial senescence, inflammation, and dysfunction seen in the SAMP8 HFpEF 

model. Whether specifically targeting endothelial senescence in these mice rescues HFpEF 

phenotypes is currently unknown.

Lastly, as alluded to earlier in this section, a key criticism of studying age-related HFpEF 

pathobiology in naturally aging rodents is the difficulty in discerning whether findings 

from these studies are reflective of normal cardiovascular aging as opposed to pathologic 

HFpEF. Validation of putative aging mechanisms in non-age-related HF models can provide 

support for its relevance in HF pathophysiology but does not necessarily confirm a 

causal role in age-related HFpEF. Although undoubtedly challenging, we propose that if 
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a cardiovascular aging mechanism is to be interpreted as a causal mediator in age-related 

HFpEF, gain- and loss-of-function experiments must also be performed in aged animals 

with emphasis on HFpEF phenotyping. Moreover, given the more systemic pathophysiology 

appreciated in this phenogroup69–71, additional attention should be paid to many of the 

extra-cardiac phenotypes, including atrial fibrillation susceptibility, frailty, and skeletal 

muscle impairments.

CARDIOMETABOLIC HFpEF:

The world is experiencing a global rise in obesity and associated metabolic stress. In 2016, 

more than 1.9 billion adults worldwide were overweight and, of these, over 650 million 

were obese (13% of the world’s adult population). In the US, the average body mass index 

of HFpEF patients is >35 kg/m2 102. Coupled with this is a worsening global epidemic of 

hypertension. Whereas HFpEF is a heterogenous syndrome presenting as diverse clinical 

phenotypes, arguably HFpEF elicited by metabolic alterations – i.e., cardiometabolic HFpEF 

– is emerging as the most prevalent form of HFpEF.

A preponderance of patients with HFpEF are obese with hypertension, and the worsening 

global spectrum of these two disorders very likely contributes to the increasing burden 

of HFpEF, now outstripping HFrEF in prevalence. Obese HFpEF subjects often present 

with metabolic syndrome or type 2 diabetes and hypertension. Furthermore, obese 

HFpEF patients, when compared with lean HFpEF patients, often manifest worse 

functional parameters and increased risk of poor outcomes103. Of note, amelioration of 

cardiometabolic parameters through behavioral or nutritional strategies (e.g., exercise and 

weight loss) favorably impact HFpEF clinical outcomes; nevertheless, a dearth of targeted 

pharmacological, weight loss therapies remains a major challenge, although two Phase 

3 clinical trials are underway to test reduction of fat mass in obesity-related HFpEF 

(NCT04847557 and NCT04916470).

Multiple lines of evidence, both clinical and epidemiological, support the role of 

cardiometabolic stress as a major driver of cardiac hypertrophy and dysfunction in HFpEF 

pathogenesis. However, it is important to recognize that cardiometabolic alterations in 

HFpEF subjects have effects beyond the heart, impacting a majority of organ systems 

including the vasculature and skeletal muscle104, which highlights the importance of 

comprehensive phenotyping in model development for this phenogroup.

Models: Here we point to a number of animals that have recently emerged as potential 

preclinical models of cardiometabolic HFpEF based on their ability to recapitulate many of 

the phenotypic and molecular features of this phenogroup (Table 2):

Goto Kakizaki rat: The non-obese Goto-Kakizaki rat has traditionally been used as a 

model of type 2 diabetes and was generated by selective breeding of Wistar rats based on 

glucose intolerance. However, in addition to spontaneous diabetes, these rats display modest 

hypertension, which is associated with vascular and renal dysfunction, along with cardiac 

hypertrophy105. Given these phenotypes, which are commonly observed in HFpEF, there 

has been interest in exploring whether this animal may represent a reasonable model for 

studying cardiometabolic HFpEF. More extensive phenotyping of these rats has shown that 
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by 48 weeks of age these animals exhibit concentric LV hypertrophy associated with adverse 

myocardial remodeling, pulmonary congestion, and diastolic dysfunction106. Whereas their 

LVEF at 48 weeks is within the normal range for rats in general, it is important to note that 

LVEF significantly declines from 24 to 48 weeks in these animals, which is not entirely 

consistent with clinical HFpEF.

Obese ZSF1 rat: Fairly consistent HFpEF phenotyping of the obese diabetic Zucker fatty 

spontaneously hypertensive F1 hybrid (ZSF1) rat has led the field to generally accept 

this animal as a faithful model of cardiometabolic HFpEF43,84,107–109. By 10–20 weeks, 

obese ZSF1 rats display multiple cardiac phenotypes consistent with HFpEF, including 

concentric LV hypertrophy, preserved LVEF, diastolic dysfunction, increased LV filling 

pressures with impaired lusitropic reserves, lung congestion, and exercise intolerance43,108. 

The myocardium of these animals also displays features of adverse remodeling commonly 

seen in HFpEF patients, including cardiomyocyte hypertrophy, interstitial fibrosis, and 

microvascular fibrotic changes, the latter of which is also observed in the kidneys110. 

Equally important is the remarkable recapitulation of extra-cardiac HFpEF phenotypes seen 

in this model. Consistent with cardiometabolic stress, there is insulin resistance and obesity, 

but also modest hypertension, increased vascular stiffness, renal dysfunction, and adverse 

skeletal muscle remodeling associated with impaired perfusion and function107,110–113. 

Importantly, many of the HFpEF phenotypes are observed in both male and female obese 

ZSF1 rats, suggesting that both sexes can and should be used in preclinical studies114.

High fat diet + L-NAME mouse: Similar to recent trends in age-related HFpEF model 

development, a multi-hit approach to cardiometabolic HFpEF has been pursued in mice, 

which has led to an impressive recapitulation of clinical HFpEF phenotypes9. In this model, 

animals are exposed to two hits: a HFD that triggers obesity and metabolic syndrome 

and L-NAME (L-NG-Nitro arginine methyl ester), an inhibitor of constitutive nitric oxide 

synthases that elicits a modest increase in blood pressure (≈40mmHg). The rationale for 

this model stems from convergence of the two major comorbidities seen in HFpEF patients: 

mechanical loading (hypertension) and metabolic/inflammatory stress (obesity, metabolic 

syndrome, diabetes). Either “hit” in isolation is insufficient to trigger HFpEF; rather, it 

is the convergence of the two that elicits a phenotype consistent with cardiometabolic 

HFpEF. These animals manifest diastolic dysfunction, preserved LVEF, impaired systolic 

strain, exercise intolerance, elevated LV filling pressures, microvascular dysfunction, modest 

cardiomyocyte hypertrophy, capillary rarefaction, predisposition to atrial fibrillation, and 

modest myocardial fibrosis9. Importantly, these animals do not develop HFrEF over time. 

However, it appears that female mice have an attenuated cardiac phenotype compared 

with their male counterparts, and this protective effect is not mediated by female sex 

hormones115.

Western diet + DOCA miniswine: Recently, a similar multi-hit approach in Göttingen 

miniswine has been pursued as a novel large animal model of HFpEF. Although the larger 

size and associated costs make mechanistic investigations challenging in the pig, it notably 

has more similar cardiovascular structure and physiology to humans, which has been a 

major impetus for using this animal in cardiovascular therapeutic testing116. In this model, 
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HFpEF phenotypes were induced in 14-month-old female Göttingen minipigs (17–20 kg) 

using a combination of DOCA and a customized WD high in fat, fructose, cholesterol, 

and salt.117 These minipigs develop hypertension, morbid obesity, glucose intolerance, and 

hyperlipidemia within 20 weeks consistent with a metabolic syndrome. Importantly, they 

demonstrate marked concentric LV hypertrophy associated with preserved LVEF, adverse 

left atrial remodeling, diastolic dysfunction, and increased LV filling pressures. Moreover, 

coronary endothelial dysfunction and increased renal fibrosis were also observed, suggesting 

systemic, multiorgan pathophysiology likely occurs in these animals, similar to clinical 

HFpEF. Exercise capacity has not yet been assessed in this model, thus more studies are 

warranted in order to verify its suitability.

Recent Mechanistic Insights and Knowledge Gaps: The relatively recent 

development of the obese ZSF1 rat and the two-hit (HFD/L-NAME) murine models 

of HFpEF are rapidly advancing our understanding of the molecular underpinnings of 

cardiometabolic HFpEF. The obese ZSF1 rat was essentially validated as a model of HFpEF 

less than a decade ago and has repeatedly proven to be faithful to the functional phenotypes 

of the clinical syndrome, as well as to the underlying biology observed in humans with 

HFpEF. The obese ZSF1 rat notably displays severe diastolic dysfunction and myocardial 

stiffness which has largely been attributed to titin hypophosphorylation108, a finding 

also observed in human HFpEF118. Moreover, it recapitulates much of the pathobiology 

underlying the coronary microvascular inflammation hypothesis introduced by Paulus and 

Tschope in 2013119,120. However, beyond validating reported molecular findings from 

human HFpEF specimens, more recent systems-based, -omics approaches in this model 

have begun to shed light on novel putative mechanisms driving cardiometabolic HFpEF. 

Cardiome-directed network analysis of bulk RNAseq datasets in these rats identified an 

overarching theme of dysregulated mitochondrial oxidative metabolism interconnected with 

endothelial dysfunction, inflammation, and alterations in apoptosis, autophagy, sarcomere/

cytoskeleton, and extracellular matrix121. Interestingly, although only hypothesis-generating, 

these findings in the obese ZSF1 rat largely resonate with the mechanistic work emerging 

from the two-hit murine model of cardiometabolic HFpEF.

Recent mechanistic studies in the HFD/L-NAME murine model have uncovered a causal 

link between the combination of obesity and hypertension in the pathophysiology of 

HFpEF9–12. In these animals, obesity and metabolic stress induce a systemic, low-grade 

pro-inflammatory state that has been termed metabolic inflammation or meta-inflammation. 

Downstream of the meta-inflammatory events, cardiomyocytes manifest a significant 

steatotic response, and consequent lipotoxicity, stemming from impaired myocardial 

utilization of lipids as an energy source10. These events occur in concert with alterations 

in mitochondrial fatty acid oxidation and impaired myocardial energetics12.

We and others have proposed that visceral adiposity, common in cardiometabolic HFpEF, 

is a core mediator of the meta-inflammation in this phenogroup and likely contributes 

to HFpEF pathophysiology via multiple mechanisms, including promotion of insulin 

resistance and hypertension, but also via direct influences on cardiac metabolism and 

immune activation11,122,123. Obesity is associated with polarization of macrophages toward 

a pro-inflammatory phenotype as well as release of chemokines that initiates recruitment 
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of immune cells. Lipids can also act as inflammatory molecules themselves and promote 

recruitment of immune cells to HFpEF myocardium and well as directly alter cardiomyocyte 

metabolism10. Moreover, epicardial adipose tissue with associated local secretion of 

cytokines has been proposed as a mechanism contributing to meta-inflammation in 

HFpEF124, although underlying mechanisms remain obscure.

Concomitant with accumulating evidence implicating metabolic stress in HFpEF 

pathogenesis, a pivotal and related role of immune mechanisms is unfolding123. Clinical 

data suggest that pro-inflammatory molecules play an important role in HFpEF development 

and progression125–127. Several adipokines promote endothelial dysfunction and reduce 

vascular compliance in obese HFpEF patients124. Myocardial infiltration by inflammatory 

cells, a phenomenon detected in endomyocardial biopsies from HFpEF patients128, promotes 

HFpEF pathogenesis9,10,116,123,129. T cells have been identified in human myocardium 

in diverse forms of HF130, and myeloid cells and innate macrophages have also been 

implicated in the development of diastolic dysfunction91. These data, and others, lend 

strong credence to a model in which inflammatory events, downstream of metabolic stress, 

contribute to the pathogenesis of cardiometabolic HFpEF.

Work in the HFD/L-NAME model is revealing how metabolic stress and inflammation 

are intertwined in HFpEF, and recently identified activation of the inflammatory molecule 

iNOS (inducible nitric oxide synthase) as a key mechanism triggering nitrosative 

stress in cardiometabolic HFpEF131. Similar biology has not only been observed in 

myocardial samples from HFpEF patients, but pharmacological inhibition or genetic 

silencing of iNOS ameliorates the HFpEF phenotype in HFD/L-NAME challenged mice. 

However, clinical trials targeting immune mechanisms, such as IL-6 or TNFα, have 

disappointed126,127,132,133. Therefore, immune modulation as a therapy for HF remains 

debated. Based on emerging data from the obese ZSF1 and HFD/L-NAME models, we 

propose that an approach involving a two-pronged attack combining strategies targeting both 

metabolism and inflammation, is of interest and should be further explored.

In aggregate, findings from preclinical models of cardiometabolic HFpEF, in parallel 

with clinical data, suggest that HF in this particular phenogroup stems from a 

chronic inflammatory syndrome that arises in the setting of multiple pro-inflammatory 

comorbidities. Accumulating evidence point to bidirectional crosstalk between metabolic 

stress and inflammation, in which adipose tissue, a metabolically active tissue, influences 

both cardiac metabolism and immune activation. However, the roles of specific immune 

cells and mediators remain to be elucidated and need to be further explored in these models 

and validated in patients.

HYPERTENSION-ASSOCIATED HFpEF:

Hypertension remains the most common comorbidity in patients with HFpEF27,134, 

presenting alone or associated with other comorbidities135. Overall, the pathophysiology of 

HFpEF in hypertensive patients is complex and multifactorial. The classic paradigm is that 

poorly controlled hypertension results in LV hypertrophy, left atrial remodeling, diastolic 

dysfunction and eventually HF136. Whereas LV hypertrophy and myocardial overload can 

lead to cardiac dysfunction137, it is important to note that some patients with isolated 
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hypertension do not manifest adverse myocardial remodeling, such as increased stiffness 

due to higher collagen deposition or titin hypophosphorylation, which are characteristically 

seen in the myocardium of patients with hypertension-induced HFpEF138,139. Despite the 

high prevalence of hypertension in HFpEF clinical trials, analysis from I-PRESERVE, 

CHARM-Preserved, and TOPCAT found that approximately 1/3 to 2/3rds of patients 

with HFpEF did not have LV hypertrophy140–143. Hypertension induces vascular changes, 

including increases in arterial stiffness that can also lead to ventricular-vascular uncoupling, 

afterload mismatch, and cardiac dysfunction, in the absence of LV hypertrophy144. The 

variable contribution of these pathophysiological processes such as the degree of diastolic 

dysfunction, type of cardiac remodeling, and extent of neurohormonal activation, may in 

turn also lead to different hypertension-associated HFpEF phenotypes, possibly requiring 

distinct therapeutic approaches135.

Models: The effects of increased afterload on cardiac remodeling and function have been 

thoroughly studied over the years, and several animal models of hypertension-associated 

HFpEF have been reported that range from malignant hypertension to mild-moderate 

hypertension. We propose that the latter is more clinically relevant as that is the phenotype 

more commonly seen in HFpEF patients. It is often accompanied by concentric LV 

hypertrophy and remodeling, along with diastolic dysfunction22, which should both be 

rigorously assessed in models of this phenogroup. Moreover, in attempt to be faithful to 

the clinical syndrome of HFpEF, LVEF must remain preserved without a later decrement 

in LVEF, which is a major reason why we generally favor the following models of the 

hypertension-associated HFpEF phenogroup. In addition to an elevated LV end-diastolic 

pressure (LVEDP), other signs of HF, such as congestion (e.g., lung and liver) and exercise 

intolerance, should also be evident to fulfill HFpEF criteria23. See Table 3 for details.

Angiotensin II model:  Chronic stimulation with angiotensin II (ANGII, in a dose-

dependent manner) in mice leads to cardiac hypertrophy and pathologic myocardial 

remodeling, both in the presence145–147 and absence148,149 of hypertension. This is 

accompanied by diastolic dysfunction, including worsening LV isovolumetric relaxation 

time and increased LVEDP146,147,149–151. However, both preserved148,149 and reduced151 

LVEF have been documented with chronic ANGII stimulation and as such is both a model 

of HFpEF and HFrEF depending on the dose and duration of ANGII. Notably, although 

C57BL/6J mice develop compensatory concentric hypertrophy and fibrosis in response to 

ANGII145,150, Balb/c mice manifest severe LV chamber dilatation152 which is infrequently 

seen in HFpEF. C57BL/6J mice exposed to ANGII manifest pulmonary congestion, as well 

as exercise intolerance145,150,152. In these mice, the impaired exercise capacity appears 

to be related to skeletal muscle abnormalities, including impaired mitochondrial function 

and skeletal muscle atrophy153. Thus, although special attention should be paid to the 

background strain of the animal used, as well as to the dosage and duration of angiotensin 

chosen, this may be a valid model of hypertension-associated HFpEF.

DOCA + UNX + SALT model:  Another model of hypertension-associated HFpEF in 

rats is the administration of deoxycortisone acetate (DOCA), accompanied by unilateral 

nephrectomy (UNX, one week before DOCA, at 6–10 weeks of age) and 1% NaCl drinking 
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water154,155. This typically results in moderate hypertension, cardiac hypertrophy and 

fibrosis156 accompanied by severe diastolic dysfunction, manifesting a restrictive pattern, 

while LVEF is preserved157,158. Although cardiac hypertrophy and diastolic dysfunction are 

consistent, blood pressure responses are variable and have been reported to be unchanged 

or mildly increased in DOCA mice157 159,160. Importantly, there is evidence of exercise 

intolerance, but not pulmonary congestion160,161.

SAUNA model:  More recent studies have used a combination of salted drinking water, 

unilateral nephrectomy, and chronic aldosterone (SAUNA162,163) to induce HFpEF in 

both rats and mice (Figure 3). Moderate hypertension in this model is accompanied by 

concentric LV hypertrophy and remodeling164–168, with evidence of diastolic dysfunction, 

including elevated LVEDP, reduced diastolic relaxation, and prolonged time constant of 

pressure decay162,169 while LVEF remains preserved. Importantly, lung congestion168,170,171 

and exercise intolerance163,172 are both present in this model. In addition to increased 

myocardial fibrosis, LV tissue from SAUNA mice display increased expression of the 

shorter stiffer N2B titin transcript isoform171, similar to the human HFpEF phenotype 

in which changes in diastolic stiffness due to titin modifications have also been 

described139,173. Inflammation is associated with the adverse cardiac remodeling and 

diastolic dysfunction seen in hypertension associated-HFpEF, and in SAUNA mice, 

increased macrophage density is observed in the myocardium, consistent with findings 

in HFpEF patients162. It has been proposed that cardiac macrophages activate fibroblasts 

stimulating cardiac remodeling and leading to impaired myocardial relaxation and increased 

stiffness.

Additional models:  Other proposed models of hypertension-associated HFpEF that are 

described in the literature include the Dahl salt-sensitive rat, the spontaneously hypertensive 

rat, the transverse aortic constriction-induced pressure overload murine model22,174, or 

transverse aortic constriction in cats175. In addition to the first two models demonstrating 

severely elevated or malignant hypertension, all four demonstrate progression to eccentric/

dilated LV hypertrophy and ultimately a reduction in LVEF176. Although characterized by 

an initial compensatory phase, with signs consistent with HFpEF, such as congestion or 

exercise intolerance, this phase is usually followed by a decompensated phase consistent 

with LV chamber enlargement, eccentric remodeling and further deterioration of systolic 

function and LVEF177–181. Such progression from HFpEF to HFrEF is rarely observed in 

patients with HFpEF182,183, which would suggest that these models differ from the clinical 

syndrome.

Recent Mechanistic Insights and Knowledge Gaps: The effects of increased 

afterload or chronic hypertension on LV hypertrophy, remodeling, and dysfunction are 

well established136. However, recent studies in the above models are deepening our 

understanding of the molecular mechanisms – e.g. titin isoform switches, increased 

macrophage content, epigenetic regulation91,171,184 – by which hypertension-associated 

myocardial remodeling transitions to the clinical syndrome of HFpEF. Similar to model 

development for age-associated and cardiometabolic HFpEF, more recent strategies for 
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generating models of this phenogroup are also incorporating multiple hits, but ones that are 

more focused on comorbidities that are highly prevalent in this phenogroup (e.g. CKD).

In particular, HFpEF associated with chronic hypertension is often accompanied by renal 

dysfunction (commonly referred to as cardiorenal HFpEF)6,21, which is characterized 

by greater LV hypertrophy and worse cardiac mechanics, that lead to RV dysfunction 

and poorer prognosis185,186. Conventional thinking supports a cardiocentric origin for 

cardiorenal syndrome, driven by hemodynamic dysfunction and poor forward flow or 

renal venous congestion leading to renal hypoperfusion, activation of the renin-angiotensin-

aldosterone system, and arginine and vasopressin hypersecretion187–189. However, renal 

dysfunction in HFpEF (including metabolic, electrolyte, and systemic impairments) 

contributes to a systemic pro-inflammatory state, diminished nitric oxide bioavailability and 

endothelial dysfunction, which can promote cardiomyocyte stiffening, cardiac hypertrophy, 

and interstitial fibrosis by crosstalk between the endothelium and cardiomyocyte 

compartments137,190.

The more recent models of hypertension-associated HFpEF, specifically those that include 

unilateral nephrectomy in addition to high salt loads and pharmacological neurohormonal 

activation, have not only captured this inextricable link between the heart and kidneys in 

HFpEF, but are also unveiling new insights into the pathophysiology of this phenogroup 

that are likely mediated through organ crosstalk and mechanisms that are interestingly 

independent of BP. Recent work in the SAUNA model has implicated a potentially 

causal role of endothelial-mesenchymal transition (endo-MT) in the renal fibrosis and 

cardiorenal syndrome of HFpEF191. The moderate hypertensive SAUNA HFpEF model 

notably demonstrates LV hypertrophy and fibrosis, but also features of renal dysfunction 

including kidney remodeling, characterized by glomerular hypertrophy and increased 

intraglomerular cells, accompanied by an elevation of serum creatinine and albuminuria192. 

Renal fibrosis in SAUNA HFpEF is strongly associated with an increase in the pool 

of myofibroblasts, consistent with the activation of endo-MT, suggesting that endo-MT 

is likely an important source of myofibroblasts that contribute to the renal fibrosis 

underlying cardiorenal HFpEF191. Interestingly, serum samples from HFpEF patients 

induced similar endo-MT readouts in cultured human aortic endothelial cells, suggesting 

that circulating factors in HFpEF can promote this pro-fibrotic process. Moreover, recent 

findings from the DOCA/UNX/Salt model of hypertension-associated HFpEF have also 

shown that myocardial fibrosis in this phenogroup is at least partially regulated by epigenetic 

mechanisms, independent of blood pressure184. Histone deacetylase (HDAC) inhibition was 

effective in reversing established diastolic dysfunction in this model, suggesting that it might 

be a promising targeted therapy in this phenogroup. Whether epigenetic modifications are 

also related endo-MT or whether they lead to increased fibrosis in other organs in HFpEF, 

are unclear, as is the source and identity of the circulating factors that trigger endo-MT in 

this phenogroup.

Lastly, similar to heart-kidney crosstalk, adipose tissue also communicates with the heart, a 

process that has interestingly been found in the SAUNA model, which does not incorporate 

overt metabolic stress. Metabolic, endocrine and humoral signaling between the heart and 

the adipose tissue has been proposed to be a critical player in HFpEF pathophysiology170. 
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Natriuretic peptides, which are increased in HFpEF, are known to modulate adipose tissue, 

altering energy expenditure and metabolism, and induce “browning” of white adipose tissue, 

which has been observed in the SAUNA model170,193,194. To date, whether browning of 

adipose tissue in HFpEF is deleterious or an adaptive stress response remains largely 

unknown.

Ultimately, further investigations into the molecular mechanisms driving cardiac and 

extra-cardiac fibrosis and dysfunction in hypertension-associated HFpEF is needed. The 

crosstalk between organs is undoubtedly important to the underlying pathophysiology of this 

phenogroup, and likely in HFpEF in general, and should be further explored.

CONCLUSION:

Recent progress in clinical phenotyping of HFpEF has led to a paradigm shift in the field, 

which now recognizes that HFpEF is not a single disease entity but rather a systemic 

syndrome marked by a multitude of different phenogroups with varying pathophysiology. 

As our knowledge of the extent and variability of cardiac and extra-cardiac phenotypes in 

clinical HFpEF continues to broaden, it is imperative that we incorporate the same rigor 

and completeness in preclinical model characterization to ensure that the most important and 

clinically relevant phenotypes of this syndrome are reliably captured. However, expanding 

our phenotyping requirements for these models is not enough. As our understanding of 

HFpEF rapidly evolves, it is paramount that preclinical investigators embrace these changes. 

At the center of this is the now widely recognized clinical concept of HFpEF heterogeneity, 

which will likely require that we similarly diversify our approach to model development. 

Preclinical models of HFpEF that are employing this strategy – by selectively incorporating 

metabolic stress, mineralocorticoid signaling/hypertension, and/or ageing to model HFpEF 

phenogroups – are not only unveiling biology unique to specific phenogroups, but also 

identifying mechanisms (such as inflammation) that could be universally causal in HFpEF. 

No animal model is perfect. Despite the complex nature of HFpEF, a reductionist approach 

focusing on the contribution of a dominant comorbidity (e.g., hypertension or obesity) to the 

HFpEF phenotype and pathogenesis remains as important as multiple comorbidity models 

(e.g., obesity and aging or hypertension and obesity). Equally important is incorporating 

both sexes in preclinical investigations, which is particularly relevant in HFpEF, given the 

sex differences observed in this clinical syndrome. Finally, preclinical models of HFpEF 

with other comorbidities such as HFpEF associated with sleep apnea, atrial fibrillation, 

pulmonary hypertension, chronic kidney disease, etc, alone or in combination, are necessary 

to further elucidate pathogenic mechanisms and inform drug discovery for this undertreated 

clinical syndrome.
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Non-standard Abbreviations and Acronyms:

HFpEF Heart Failure with Preserved Ejection Fraction

LVEF Left Ventricular Ejection Fraction

AF Atrial Fibrillation

BP Blood Pressure

CKD Chronic Kidney Disease

SAMP Senescence Accelerated Prone Mouse

HFD High Fat Diet

WD Western Diet

DOCP Deoxycorticosterone Pivalate

ZSF1 Zucker Fatty Spontaneously Hypertensive F1 Hybrid

L-NAME L-NG-Nitro Arginine Methyl Ester

DOCA Deoxycorticosterone Acetate

UNX Unilateral Nephrectomy

SAUNA Salty Drinking Water - Unilateral Nephrectomy - Aldosterone
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Figure 1: A stepwise phenotype-based approach to developing HFpEF models.
HFpEF is a clinical syndrome with complex systemic pathophysiology that includes 

functional impairments in both cardiac and extra-cardiac tissues. Developing reliable 

animal models of HFpEF requires that investigators rigorously assess and validate multiple 

clinically relevant phenotypes, starting with the hallmark features of HF, congestion 

and exercise intolerance (1st panel). Next, preserved left ventricular ejection fraction, a 

defining feature of HFpEF, should be confirmed (2nd panel). Additional cardiac and extra-

cardiac phenotyping should then be assessed, and tailored to the specific phenogroup, 

being modeled (3rd and 4th panels). The illustration was made using images from 

smart.servier.com. Illustration credit: Ben Smith
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Figure 2: Animal models of the aging, cardiometabolic, and hypertension-associated HFpEF 
phenogroups.
Advanced age, metabolic syndrome, and chronic hypertension represent the dominant 

comorbidities contributing to HFpEF pathogenesis. The Venn diagram displays animal 

models that are relatively unique to these primary HFpEF phenogroups, along with 

newer multi-hit strategies being used to integrate these primary comorbidities in model 

development. Recent mechanistic insights into the underlying pathobiology of these 

phenogroups, and HFpEF in general, that have been derived from these models are 

displayed. Blue = age-associated HFpEF. Green = cardiometabolic HFpEF. Gray = 

hypertension-associated HFpEF. Orange = multi-hit, integrated HFpEF. The illustration was 

made using images from smart.servier.com. Illustration credit: Ben Smith.
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Figure 3: SAUNA model of hypertension-associated HFpEF.
The SAUNA model using a combination of SAlty drinking water, Unilateral Nephrectomy, 

and chronic Aldosterone to induce a model of hypertension-associated HFpEF in rodents. 

The schematic displays some of the key cardiac and extra-cardiac (e.g. chronic kidney 

disease) observed in this model. Recent mechanistic work in this model has implicated 

inflammation, endo-MT, and titin modifications as underlying pathogenic processes in the 

pathophysiology of hypertension-associated HFpEF. The illustration was made using images 

from smart.servier.com.
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Table 1:

Phenotype-based characterization of proposed age-associated HFpEF models.

Aged C57BL/6 
Mouse

Aged F344 
Rat SAMP8 Mouse

C57BL/6 + HFD 
(3mo) +ANGII 

(1mo)

C57BL/6 +HFD 
(13mo) +DOCP 

(1mo)

SAMP8 +WD 
(4mo)

Age (months) 24–30 26–36 6–12 21–25 16 6

Exercise intolerance Y Y N N/A Y Y

Pulmonary congestion Y Y Y Y Y Y

Preserved LVEF Y/N Y/N Y Y Y Y

Diastolic dysfunction Y Y Y/N Y Y Y

Impaired systolic strain Y N/A NA N/A N/A Y

Impaired cardiac 
reserve Y N/A N N/A N/A NA

Cardiac hypertrophy Y Y Y/N Y Y Y

Hypertension N N N Y Y N

Vascular stiffness Y Y N Y N/A N

Sarcopenia Y Y N/A N N/A NA

Renal dysfunction Y Y Y N N/A N/A

AF inducibility Y Y N/A N/A N/A N/A

Y = yes. N = no. N/A = not available.
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Table 2:

Phenotype-based characterization of proposed cardiometabolic HFpEF models.

Obese ZSF1 Rat Goto Kakizaki Rat C57BL/6 + HFD + L-NAME Miniswine + WD + DOCA

Obesity Y N Y Y

Glucose intolerance Y Y Y Y

Hypertension Y Y Y Y

Exercise intolerance Y N/A Y N/A

Pulmonary congestion Y Y Y Y

Preserved LVEF Y Y Y Y

Diastolic dysfunction Y Y Y Y

Impaired systolic strain N/A NA Y N/A

Impaired cardiac reserve Y N/A N/A N/A

Pathologic cardiac hypertrophy Y Y Y Y

Vascular dysfunction Y Y Y Y

Sarcopenia Y N/A N/A N/A

Renal dysfunction Y Y N/A Y

Y = yes. N = no. N/A = not available.
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Table 3:

Phenotype-based characterization of proposed hypertension-associated HFpEF models.

Angiotensin II DOCA/UNX/Salt SAUNA

Systemic hypertension Y (dose dependent) Y (species dependent) Y

Exercise intolerance Y (strain dependent) N/A Y

Pulmonary congestion Y (strain dependent) N Y

Diastolic dysfunction Y Y Y

LV concentric hypertrophy Y (strain dependent) Y Y

Y = yes. N = no. N/A = not available.
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