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ABSTRACT Mycoplasma genitalium is an important sexually transmitted pathogen
affecting both men and women. Its extremely slow growth in vitro and very demanding
culture requirements necessitate the use of molecular-based diagnostic tests for its detec-
tion in clinical specimens. The recent availability of U.S. Food and Drug Administration
(FDA)-cleared commercial molecular-based assays has enabled diagnostic testing to
become more widely available in the United States and no longer limited to specialized
reference laboratories. Advances in the knowledge of the epidemiology and clinical signif-
icance of M. genitalium as a human pathogen made possible by the availability of molec-
ular-based testing have led to updated guidelines for diagnostic testing and treatment
that have been published in various countries. This review summarizes the importance of
M. genitalium as an agent of human disease, explains the necessity of obtaining a micro-
biological diagnosis, describes currently available diagnostic methods, and discusses how
the emergence of antimicrobial resistance has complicated treatment alternatives and
influenced the development of diagnostic tests for resistance detection, with an emphasis
on developments over the past few years.
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MYCOPLASMA GENITALIUM AS AN AGENT OF HUMAN DISEASE

he 2019 Centers for Disease Control and Prevention (CDC) report of the top antibi-

otic resistance threats in the United States named Mycoplasma genitalium as one
of three organisms included in the watch list (1). The heightened concern over M. geni-
talium is due to the rapidity with which it is moving toward becoming an untreatable
infection. Since the most recent review on M. genitalium diagnostics was published in
the Journal of Clinical Microbiology 5 years ago (2), three molecular-based assays that
detect M. genitalium have received U.S. Food and Drug Administration (FDA) clearance.
The more widespread availability of diagnostic testing and the introduction of assays
for the detection of antimicrobial resistance in some countries have increased the
knowledge of M. genitalium epidemiology and disease associations as well as the
extent of antimicrobial resistance worldwide.

Data on M. genitalium infections are limited in comparison to those for other Mycoplasma
species largely due to its more recent discovery, extremely slow growth (generation time of
about 16 h), and demanding cultivation requirements. By as early as the 1970s, there was
suspicion that a noncultivable microorganism could be responsible for nongonococcal ure-
thritis (NGU) that was not due to chlamydia or ureaplasma because of the clinical improve-
ment in men treated with tetracyclines. One possibility that was considered was that such
infections could be due to spiroplasma-like organisms. This consideration prompted Taylor-
Robinson and colleagues to collect urethral swabs from 13 men with urethritis and send
them to the National Institutes of Health Mycoplasma Laboratory in 1980, where the samples
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were incubated for several weeks in SP4 medium, originally developed for the cultivation of
spiroplasmas. Ultimately, two strains of a glucose-fermenting mycoplasma, designated G37
and M30, were grown in vitro. These strains were shown by serological methods to be dis-
tinct from all other known human Mycoplasma species, and the organism came to be known
as M. genitalium (3, 4).

Experimental urogenital inoculation of male and female nonhuman primates in the
mid-1980s demonstrated that M. genitalium could induce an inflammatory response,
result in bloodstream dissemination, and elicit a humoral immune response (5), further
supporting the potential role of M. genitalium as an important agent of human disease.
More recent studies using female pig-tailed macaques inoculated with M. genitalium
intracervically demonstrated that infection can persist for 16 to 18 weeks in the midst
of a mild to moderate inflammatory response, ascend into the upper reproductive
tract, and induce a humoral immune response directed against the MgpB and MgpC
adhesins (6).

PATHOGENESIS AND EPIDEMIOLOGY OF M. GENITALIUM INFECTIONS

Pathogenesis. While it is beyond the scope of this review to discuss the pathoge-
nesis and epidemiology of M. genitalium infections in depth, reviews of these topics
provide further information (7-10). M. genitalium has a terminal organelle comprised
of numerous cytoskeletal proteins, heat shock proteins, metabolic enzymes, and cytad-
herence-related proteins, one of which is adhesin P140, also known as the MgPa adhe-
sin. This adhesin is similar to the P1 adhesin of Mycoplasma pneumoniae, which facili-
tates its attachment to and invasion of host epithelial cells and stimulation of the
immune response (8). M. genitalium also attaches to spermatozoa and erythrocytes;
invades epithelial cells, with evidence of nuclear localization; and exhibits gliding mo-
tility (7, 11). A family of repetitive DNA elements with homology to the MgPa adhesin
gene provides a reservoir for sequence variation. Antigenic variation helps the orga-
nism avoid the host immune response, optimize adhesion, and adapt to diverse host
microenvironments, thus facilitating persistent infection (12). Other important patho-
genic mechanisms that may elicit a host inflammatory response, cause cell death, and/
or help the organism avoid host immunity include the secretion of nucleases, mem-
brane lipoproteins, and various other enzymes and biofilm formation (8, 13).

Epidemiology. Only after the introduction of nucleic acid amplification tests
(NAATS) in the early 1990s did the epidemiology of M. genitalium infections and dis-
ease associations become apparent. M. genitalium is often present as a coinfection,
especially with chlamydia and trichomoniasis (14). Due to the likelihood of coinfections
and the asymptomatic nature of many M. genitalium infections (15-17), these factors
must be considered when evaluating data for an association or causality between M.
genitalium and a particular clinical condition. M. genitalium is typically detected in the
lower urogenital tract of about 1% to 6.4% of men and women in the general popula-
tion (16, 18-22). However, it has a much higher prevalence (sometimes exceeding
20%) in persons with urogenital symptoms and in those who attend clinics providing
sexual health services (22-24). The prevalence of M. genitalium is similar to that of chla-
mydia and exceeds that of Neisseria gonorrhoeae (14).

M. GENITALIUM DISEASE ASSOCIATIONS

Infections in men. M. genitalium causes 20 to 35% of NGU cases (7, 25) and has
been detected in up to 40% of men with recurrent/persisting NGU after treatment
with doxycycline or azithromycin (7). Sparse evidence suggests that M. genitalium may
cause acute epididymitis, but there is insufficient evidence that it causes prostatitis or
male infertility (7, 10, 25). Data regarding the association of M. genitalium with proctitis
are inconsistent (26-28). One recent study and a meta-analysis concluded that there
was an association with rectal symptoms in men who have sex with men (MSM) (29,
30). M. genitalium is also significantly more common in MSM with rectal symptoms
who are HIV positive than in those who are HIV negative (31). Balanoposthitis has been
associated with M. genitalium in one study (32).
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Infections in women. Bacterial vaginosis (BV) has been linked to an increased risk
of sexually transmitted infections (STls) (33). The association of M. genitalium with BV is
controversial, as in some studies, an association has been shown (33, 34), while in
others, a relationship has not been demonstrated (35-37). However, BV has been asso-
ciated with cervicitis, endometritis, salpingitis, and tubal factor infertility (38), and M.
genitalium may play a role in each of these conditions (7, 16, 25). M. genitalium can be
detected in 10% to 30% of women with mucopurulent cervicitis (15). Many women
with M. genitalium infection have vaginal discharge and may also manifest with dysu-
ria; however, it is unclear to what extent M. genitalium is involved in the acute urethral
syndrome (7, 10, 16, 39). M. genitalium may cause pelvic inflammatory disease (PID)
based on (i) its ability to adhere to Fallopian tube epithelial cells and cause ciliary dam-
age in organ culture, (i) the production of endometritis and salpingitis after experi-
mental inoculation of nonhuman primates, (iii) its presence in endometrial biopsy
specimens in most women undergoing this procedure who harbor the organism in the
cervix, (iv) its detection in the Fallopian tube of a woman with laparoscopically diag-
nosed acute salpingitis, (v) the association of tubal factor infertility with a previous
infection with M. genitalium, and (vi) the demonstration of M. genitalium antibody
responses in women with acute PID (7, 40). The association of M. genitalium with PID is
also indicated by its significant associations with cervicitis (7, 25, 36, 41, 42) and endo-
metritis (43-45). The prevalence of M. genitalium among women with PID ranges from
4% to 22% (15, 46) but may be as high as 60% in women with postabortal PID (47).
Significant associations were also found between M. genitalium and cervicitis and PID
in a recent meta-analysis (48). However, some studies were unable to prove a signifi-
cant association between M. genitalium infection and progression to PID (49-52).
Serological and direct evidence showed an association of M. genitalium infection with
tubal infertility (48, 53-57), but some investigations have been unable to demonstrate
this association (58). Data on M. genitalium and the risk of ectopic pregnancy are scant,
and the results are mixed (59, 60).

Infections in pregnant women and neonates. Earlier studies on the prevalence of
M. genitalium in pregnant women found that it was low, around 1% (61), but more
recent studies have reported a higher prevalence of 12% to 18% (62-65). Two meta-
analyses reported that M. genitalium infection was associated with preterm birth (48, 66),
one of which also found an association with stillbirth (48). Other studies did not find an
association of M. genitalium with preterm birth or pregnancy loss (67-70). Infants born to
women with M. genitalium infection had lower birth weights according to one study, but
otherwise, there were no significant differences in pregnancy outcomes among infected
women and those who had no other STls (64).

Infections in persons living with HIV. A meta-analysis reported a consistent associa-
tion of M. genitalium with HIV infection (71). Women who had a high load of M. genitalium
were more likely to shed HIV than were M. genitalium-negative women and, thus, could
facilitate viral transmission (10, 72). In a study of HIV-positive pregnant women, 21.4% had
M. genitalium detected by PCR, and the infection was associated with a significantly higher
HIV RNA load in the plasma. However, no association between exposure to M. genitalium
and the perinatal transmission of HIV was detected (73).

Extragenital infections. M. genitalium has been detected in the rectum of 1% to
26% of MSM and 3% of women, mostly asymptomatic, and, less commonly, in the
pharynx (15, 29, 74). There have also been reports of its detection in the joint fluid of
patients with arthritis, but there is insufficient evidence to conclude that it is a signifi-
cant cause of septic arthritis or a postinfectious arthritic syndrome (75, 76). An adult
with urethritis and conjunctivitis tested positive for M. genitalium in the urine and con-
junctiva, but no formal studies have been performed to determine how often this
occurs (77).

WHEN TO PERFORM DIAGNOSTIC TESTING FOR M. GENITALIUM

Escalating antimicrobial resistance and the associated treatment failures contrib-
uted to the CDC adding diagnostic recommendations for M. genitalium in their 2015

March 2023 Volume 61 Issue 3

Journal of Clinical Microbiology

10.1128/jcm.00790-21

3


https://journals.asm.org/journal/jcm
https://doi.org/10.1128/jcm.00790-21

Minireview

TABLE 1 Comparison of current recommendations from three published guidelines for the performance of diagnostic tests for M. genitalium

Journal of Clinical Microbiology

Indication in guideline

NAAT testing recommendation United States® United Kingdom? Europe®

Asymptomatic persons No No Not specified

Test of cure following treatment of Only if resistance testing is not available  Yes, no earlier than 3 wks  Consider, no earlier than 3 wks
persons who test positive and moxifloxacin cannot be used

Sex partners of symptomatic persons  Yes Yes Yes
who test positive

Resistance testing on all persons who  Yes, if available? Yes (macrolide) Yes (macrolide)®

test positive

Men
NGU Yes, if persistent or recurrent after Yes
treatment
Epididymo-orchitis Not specified Consider
Sexually acquired proctitis Consider if symptoms persist after Consider
treatment
Women
Mucopurulent cervicitis Yes, if recurrent Consider
Symptoms of PID Consider Yes
Intermenstrual or postcoital Not specified Yes
bleeding
Dysuria with no other known Not specified Not specified
etiology
Sexually acquired proctitis Consider if symptoms persist after Consider
treatment
Termination of pregnancy Not specified Not specified

Yes

Yes, if aged <50 yrs
Yes, if C. trachomatis and N. gonorrhoeae

are excluded

Yes
Yes
Yes

Yes

Yes, if C. trachomatis and N. gonorrhoeae

are excluded

Consider

9ln 2023, there are no FDA-cleared NAATs that incorporate resistance testing that are commercially available in the United States. Resistance testing for macrolides and

fluoroquinolones is available through the UAB Diagnostic Mycoplasma Laboratory in Birmingham, AL, using validated laboratory-developed PCR assays.

bTesting for parC mutations is not indicated on a routine basis but is useful after moxifloxacin treatment failure.
See reference 15.
dSee reference 78.
See reference 17.

treatment guidelines for STls and updating them in 2021 (15). Men with recurrent NGU
and women with recurrent cervicitis should be tested for M. genitalium using an FDA-
cleared molecular-based test. However, these guidelines stop short of recommending
testing for primary cases of NGU in men or cervicitis in women. Testing should be con-
sidered for women with PID. If testing to detect rRNA gene mutations conferring mac-
rolide resistance (macrolide-resistance-associated mutations [MRMs]) is available, this
should also be done, and the results should be used to guide therapy. Resistance test-
ing for persons who test positive for M. genitalium was also recommended in current
European and British guidelines (17, 78). However, resistance testing in the United
States is rarely performed due to the lack of FDA-cleared commercial assays and the
very limited availability of laboratory-developed assays in reference facilities such as
the University of Alabama at Birmingham (UAB) Diagnostic Mycoplasma Laboratory.
Therefore, even if M. genitalium is confirmed by a molecular-based test in a symptomatic
person in the United States, treatment will likely still be empirical. A comparison of rec-
ommendations for M. genitalium testing and treatment from the United States, Europe,
and the United Kingdom is provided in Table 1. CDC guidelines do not recommend
M. genitalium testing for primary cases of NGU or cervicitis, which makes it challenging
to manage patients when they first return with recurrent NGU or cervicitis since M. geni-
talium results would not be available. Moreover, we believe that testing for M. genitalium
should also be considered for men with primary cases of NGU and women with cervicitis
in whom no other microbial etiology is identified during initial testing.

European and British guidelines recommend the testing of all men with urethritis and
to consider retesting following antimicrobial treatment to ensure microbiological cure after
at least 3 weeks have passed. In patients who clinically respond to treatment, test results
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could be negative after a week of treatment, but in some instances, a person who eventu-
ally fails treatment may appear negative on a transient basis due to a decreased bacterial
load (79), hence the need to wait at least 3 weeks before retesting. All of these guidelines
support the testing of sexual contacts of persons who are positive for M. genitalium. The
testing of pregnant women and neonates is not addressed in any of these guidelines.
None of these guidelines recommends the screening of asymptomatic persons for M. geni-
talium, in contrast to recommendations for Chlamydia trachomatis and N. gonorrhoeae (15).
Major arguments against screening for M. genitalium include (i) the lack of knowledge
about the consequences associated with asymptomatic M. genitalium infection, (i) the lack
of studies that have addressed whether the screening of women reduces the likelihood of
tubal infertility or PID, (iii) whether screening would be cost-effective, and (iv) limited treat-
ment options that can be associated with serious adverse effects (80, 81). Given that per-
sons who test positive for M. genitalium may be likely to acquire other STls, concomitant
testing for Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, syphilis,
and HIV is indicated (17).

DIAGNOSTIC APPROACHES TO LABORATORY DETECTION OF M. GENITALIUM

Culture. The method of direct specimen inoculation into SP4 medium used by Tully
and coworkers to obtain the first clinical isolates of M. genitalium from male urethral
swabs (3) proved to be insensitive, leading to the development of alternative methods.
Jensen et al. used a strategy in which Vero cell cultures were inoculated with speci-
mens and PCR was used to monitor bacterial multiplication (82, 83). When PCR showed
evidence of multiplication, the cell culture was subcultured onto mycoplasma medium.
The UAB Diagnostic Mycoplasma Laboratory has been successful in isolating M. genita-
lium from urine specimens by utilizing a modification of the direct method of Tully et
al., inoculating concentrated urine into SP4 broth, incubating the sample for several
weeks, and performing periodic blind subcultures in broth and on SP4 agar. Successful
cultures have been performed on urine specimens from persons who had a high load
of M. genitalium as determined by quantitative PCR (qPCR). However, given the diffi-
culty in direct culture, we adapted a Vero cell-PCR method (84) in order to obtain more
clinical isolates. This enhanced culture technique is still very time-consuming, requiring
several weeks to obtain colonies on agar, as shown in Fig. 1, and is quite expensive.
While culture is not useful for diagnostic purposes, it has a role in obtaining isolates for
antimicrobial resistance testing and research. Once clinical isolates have been grown
on agar, they can be preserved for prolonged periods by freezing them at —80°C in
suitable transport medium or SP4 culture medium. Storage at —20°C is not recom-
mended as it may result in a loss of viability.

Serology. Prior to the availability of NAAT technology, attempts were made to de-
velop serological tests as an indirect means of identifying M. genitalium infections, but
problems occurred because of cross-reactions of the reagents with M. pneumoniae. In
addition to enzyme immunoassays (85), a microimmunofluorescence assay (86) was
developed to detect antibody responses in men with NGU (87) and women with sal-
pingitis (88). This method was proven to be rapid, reproducible, sensitive, and specific,
with less cross-reactivity with M. pneumoniae than other methods. A serological assay
for M. genitalium using lipid-associated membrane proteins (LAMPs) as antigens was
used in combination with Western immunoblotting to assess the immunoreactivity of
women who were culture positive for M. genitalium (89). Immunoblotting using a
cloned fragment of the C-terminal part of the MgPa adhesin as the antigen has been
used to assess the serological response to M. genitalium in infertile women (90, 91).
However, with the development of NAATSs, serological testing for M. genitalium has
never gained widespread use, and no FDA-cleared assays are available.

MOLECULAR-BASED DETECTION
Early molecular-based assays. Nonamplified DNA probes for M. genitalium were
developed in the 1980s but were abandoned once the more sensitive NAAT

March 2023 Volume 61 Issue 3

Journal of Clinical Microbiology

10.1128/jcm.00790-21

5


https://journals.asm.org/journal/jcm
https://doi.org/10.1128/jcm.00790-21

Minireview

FIG 1 Spherical M. genitalium colonies (G37) growing on SP4 agar after 10 days of incubation at 37°C in 5% CO, in air. Magnification,
x100.

technology was introduced in the early 1990s. NAATs are now considered the recom-
mended methods for the detection of M. genitalium in clinical specimens (15).

Early NAATs amplified various fragments of the MgPa adhesin gene and enabled the
detection of as few as 10 organisms (92, 93). A variety of PCR assays using the 16S rRNA
gene target followed (94-96). Other molecular-based formats included RNA-based tran-
scription-mediated amplification (TMA) (97-99). Real-time PCR assays that allowed the
measurement of bacterial loads in clinical specimens using targets such as the MgPa gene,
16S rRNA, 23S rRNA, the 115-kDa-protein-encoding gene, and gap, encoding glyceralde-
hyde-3-phosphate dehydrogenase (96, 99-105), were also developed. The MgPa gene was
initially believed to be an ideal target since the operon contains repetitive elements.
However, there are valid concerns about the use of the MgPa target relating to the varia-
tions in the repetitive elements among M. genitalium strains and the 98% identity of the
16S rRNA genes of M. pneumoniae and M. genitalium.

Commercial molecular-based assays. As the use of laboratory-developed NAATSs
began to verify that M. genitalium is an important cause of STIs, commercial develop-
ment soon followed. NAATs for the detection of M. genitalium alone or multiplexed
with C. trachomatis, N. gonorrhoeae, T. vaginalis, Mycoplasma hominis, Ureaplasma par-
vum, and Ureaplasma urealyticum in various combinations have been developed using
several amplification and detection techniques, gene targets, and platforms. Some
products are designed to work only on instrumentation provided by the manufacturer
(e.g., Hologic Panther), while others can be used on various thermocycler platforms
from different manufacturers. Some are fully automated and incorporate nucleic acid
extraction with amplification, while others require a separate extraction step.

Table 2 summarizes several commercial NAATs for M. genitalium detection that
have received the CE-IVD mark (approved Communauté Européenne marking on in
vitro diagnostic medical devices) and the three assays that are FDA cleared. The CE-IVD
mark indicates the manufacturer’s declaration that the product complies with relevant
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European protective legislation and that it has been assessed to meet high safety,
health, and environmental protection requirements, and it ensures free movement
within the European Union. However, the CE-IVD mark does not require the validation
of clinical performance against a reference standard as is required by the FDA (106).
Several independent evaluations of commercial NAATs have been published, but
many NAATSs have not been extensively or rigorously compared with laboratory-devel-
oped reference methods using large sample sizes or with one another, so their true
performance characteristics are not well documented.

The FDA-cleared Aptima MG (Mycoplasma genitalium) (Hologic, Inc.), cobas TV (T. vagina-
lis)/MG (Roche Molecular Systems), and Alinity m STI (Abbott Molecular Diagnostics) assays are
fully automated, complete sample-to-result assays that provide qualitative results without the
need for a separate DNA or RNA isolation procedure. All three assays are classified as high-
complexity assays by the Clinical Laboratory Improvement Amendments (CLIA). The Aptima
MG assay, which targets the 16S rRNA gene, has been more extensively evaluated than any
other commercial NAAT. This assay involves target capture, a TMA step, and target detection
by hybridization with complementary probes linked to chemiluminescent labels. The TMA
step involves a target nucleic acid amplification method using RNA polymerase and reverse
transcription (RT) to produce an amplicon from the specific target. Clinical specimens are run
on the Panther instrument. According to the manufacturer’s specifications, the analytical sensi-
tivity is 0.01 CFU/mL. The Aptima MG assay was FDA cleared in 2019 following the perform-
ance of a multicenter clinical study involving 11,556 specimens obtained from 1,778 women
and 1,583 men across the United States (107). As the Aptima MG assay is based on the detec-
tion of 16S rRNA genes, for which there are many more copies than targets of DNA-based
assays, it has been proven to have higher clinical sensitivity than other laboratory-developed
PCRs or CE-marked commercially sold DNA-based tests in numerous studies (Table 2). In one
study, the Allplex STI Essential assay had a 41.7% clinical sensitivity compared with the Aptima
MG assay (108). No additional reference method was included to resolve discrepancies.
Another comparison of Aptima MG with the Allplex STI Essential, ResistancePlus MG (RPMG)
(SpeeDx), and Allplex MG & AziR (Seegene) assays reported that the Aptima MG assay
detected the most positive specimens, all of which were confirmed by a national reference
laboratory. Allplex STI Essential had a sensitivity of 85.7%, while SpeeDx and Allplex MG & AziR
had sensitivities of 71.4%. The number of positive samples (7) was very small (109). Another
study (110) reported 100% sensitivity for Aptima MG versus 83.3% for RPMG. The AmpliSens
N. gonorrhoeae/C. trachomatis/M. genitalium/T. vaginalis-Multiprime FRT assay (InterLabService)
had an overall sensitivity of 81.9% compared to the Aptima MG assay (111). Very few false-
positive results have been reported with any of the commercial NAATS, so specificities are not
a problem.

cobas TV/MG is a real-time PCR assay that detects M. genitalium and T. vaginalis.
The M. genitalium target is the 16S rRNA gene. This assay was FDA cleared in 2020.
Specimens are run on the cobas 6800 or 8800 instrument. The cobas TV/MG assay was
evaluated in comparison to the UAB laboratory-developed PCR targeting the 23S rRNA
gene (105), a second laboratory-developed assay targeting mgpA, and the Aptima MG
assay in a multicenter study of 2,150 asymptomatic and symptomatic men and women
(112). Patients were considered to be infected with M. genitalium if two or more tests
were positive. There were 59 women and 60 men who were positive for M. genitalium.
The sensitivity of cobas TV/MG for the detection of M. genitalium in vaginal swabs was
96.6%, whereas for female urine and endocervical specimens, the sensitivity ranged
from 83.1% to 86.4%. For male urine and meatal swab specimens, the sensitivities
were 100% and 85%, respectively. The specificities for all specimen types from men
and women ranged from 96% to 99.8%, respectively.

Another study that compared these two FDA-cleared assays directly with one
another used the Allplex STI Essential assay and/or Sanger sequencing to resolve dis-
crepancies. Both assays detected M. genitalium in 6 specimens (113). An evaluation of
the clinical performances of 4 multiplex PCR kits, STI Plus ELITe MGB (ELITech Group),
Allplex STI Essential, FTD Urethritis Plus (Fast-Track Diagnostics), and N. gonorrhoeae/C.
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trachomatis/M. genitalium/T. vaginalis Real-TM (Sarace Biotechnologies), compared the
results of the kits to those obtained with cobas TV/MG (114). All 4 PCRs had low per-
cent positive agreement (PPA) values for the detection of M. genitalium, ranging from
63.3% to 74.1%, in comparison to cobas TV/MG. A low negative percent agreement
(NPA) value was found for the Fast-Track kit, whereas the other PCRs had NPAs exceed-
ing 98.1%.

The Abbott Alinity m STl assay was FDA cleared in May 2022. It is a random-access multi-
plex reverse transcription-PCR (RT-PCR) assay that detects N. gonorrhoeae, C. trachomatis, M.
genitalium, and T. vaginadlis. The gene target for M. genitalium is rRNA. Specimens are proc-
essed on the Alinity m instrument. The M. genitalium limit of detection according to the
product specifications is 33 genome equivalents/assay. This assay was compared to a labo-
ratory-developed PCR assay with extraction on the Abbott 2000sp system. Alinity m
detected 22 positive samples, versus 18 with the laboratory-developed PCR assay. An addi-
tional 167 Alinity-positive samples were tested using the S-DiaMGRes kit (Diagenode), and
159 were positive by both assays, with an additional 8 positive samples being detected only
by Alinity m. This study showed the general comparability of the Alinity m, S-DiaMGRes, and
laboratory-developed PCR assays (115).

Several other CE-IVD-marked commercial PCRs have been compared to one another
or to laboratory-developed PCRs in mostly small studies (Table 2). A French study (116)
compared the Bio-Rad Dx CT/NG (N. gonorrhoeae)/MG assay to a laboratory-developed
PCR assay. The clinical sensitivity was 100%, and the specificity ranged from 99.5% to
100%, based on the specimen type. However, there were only 11 specimens that had
M. genitalium DNA detected, 1 of which was deemed a false-positive specimen. A com-
parison of Bio-Rad Dx CT/NG/MG PCR with a laboratory-developed PCR assay found
concordance for 7 positive samples (117). The clinical sensitivity of the S-DiaMGTV kit
(Diagenode) was 91.3%, and the specificity was 95.3%, compared to a laboratory-devel-
oped PCR assay (115). In an evaluation of the Hyplex ST mycoplasma test (Amplex
Biosystems) using laboratory-developed PCR as a reference, 11 urine specimens were
confirmed to be positive for M. genitalium by both tests (118).

SPECIMEN TYPES FOR MOLECULAR-BASED ASSAYS

Universal recommendations regarding the optimum specimen types and collection and
processing procedures for NAATs for M. genitalium are not possible because of variations
in nucleic acid extraction methods, some of which are incorporated into automated sam-
ple-to-result systems that do not require a separate extraction procedure. Additionally, the
use of specific transport medium required for the chosen test method, how specimens are
stored and transported, performance characteristics, types of specimens validated for indi-
vidual assays, and manufacturer instructions of individual commercial kits can vary (7).
Treatment guidelines for M. genitalium infections (15, 17, 78) provide practical guidance for
specimen choice based on clinical studies comparing various specimen types and the ones
that have been validated and approved for use with commercial FDA-cleared assays.

For men, first-catch urine is the diagnostic specimen of choice (15, 17, 78). It is easy
to collect and store and is more sensitive than urethral swabs, which can be quite
uncomfortable for the patient being swabbed (119). One study reported that self-col-
lected meatal swabs performed better than first-void urine (120), yet another study
reported that meatal swabs were inferior to urethral swabs (121). Rectal samples may
be obtained, especially in MSM, if there are symptoms of proctitis and no other micro-
bial etiology has been identified. Omitting rectal swabs in MSM may result in missing
as many as 70% of M. genitalium infections (27, 122). There are no recommendations
for obtaining and testing oropharyngeal samples since carriage is unusual and not
associated with symptoms (17).

For women, vaginal swabs have performed better than first-catch urine and are the
recommended specimens of choice (15, 17, 78). This recommendation reflects the rela-
tive median bacterial loads (genomes per milliliter) that have been reported for these
body sites (vaginal swabs, 6,950 genomes/mL; endocervical swabs, 3,970 genomes/mL;
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urine, 826 genomes/mL) (123). Vaginal swabs can be self-obtained, making specimen
collection even easier. Endocervical swabs are an alternate specimen type (98, 124,
125). Some studies suggested obtaining both vaginal and endocervical swabs for maxi-
mum sensitivity for detection (121). First-catch urine has been shown to have a lower
sensitivity in some but not all studies (111, 116, 126) and is not a preferred specimen
for women (15, 17, 78). Rectal swabs may also be obtained for M. genitalium testing in
women with proctitis if no other etiology is apparent.

The three FDA-cleared NAATSs are each approved for the testing of male or female
urine specimens and female vaginal and endocervical swabs. The Aptima MG package
insert also states that it can be used to test male urethral and self-collected penile mea-
tal swabs. The cobas assay can also be used to test self- or clinician-collected penile
meatal swabs. None of these NAATs are approved for the testing of rectal swabs for M.
genitalium. All three NAATs provide a swab and a urine collection kit with appropriate
transport media.

M. genitalium has been detected in epididymal fluid, prostatic biopsy specimens,
and Fallopian tube specimens (7). If clinical conditions warrant and appropriate speci-
mens are available, they can be processed, but there have been no systematic studies
performed to evaluate the performance of FDA-cleared NAATs on them. The process-
ing of specimens before freezing, particularly those from women, appears to be impor-
tant for maintaining a high sensitivity of detection (7).

REPORTING RESULTS, VALIDATION, VERIFICATION, AND PROFICIENCY TESTING

The UAB Diagnostic Mycoplasma Laboratory provides PCR results for the detection
of M. genitalium in clinical specimens with the simultaneous reporting of the presence
of MRMs using a laboratory-developed PCR assay. An example of a laboratory report
for a specimen in which M. genitalium and MRMs were detected is as follows:

DNA was extracted from the sample and amplified by real-time PCR. A 266-bp
fragment was defined by primers and probes targeting the 23S rRNA gene of M.
genitalium. Melting curve analysis of the amplicon revealed a macrolide-
resistance-associated mutation in this gene. This is a qualitative test for the
presence or absence of M. genitalium. A negative result does not rule out the
presence of M. genitalium DNA in concentrations below the level of detection by
the assay.

Federal regulations also require laboratories to append a disclaimer to laboratory-
developed test reports indicating that the test was developed and its performance
characteristics were determined by [laboratory name] and that is has not been cleared
or approved by the FDA (127). The UAB Diagnostic Mycoplasma Laboratory adds an
additional statement that our laboratory-developed M. genitalium PCR is used for clini-
cal purposes and should not be regarded as investigational or for research.

Laboratories in the United States using laboratory-developed assays or any commer-
cially developed assay components designated research use only (RUO), analyte-specific
reagents (ASRs), or other non-FDA-cleared products to detect M. genitalium alone or in
conjunction with other microorganisms and/or antimicrobial resistance markers must per-
form and document their internal validations to determine accuracy and precision for all
specimen types, transport media, nucleic acid isolation procedures, instrumentation, and
reportable and normal reference ranges (if applicable) and independently assess the ana-
lytical sensitivity (limit of detection) and specificity of their gene target and methods. This
documentation and maintaining copies of the data collected are CLIA requirements (127),
and the results of this performance evaluation must be compared to those of another
assay for the analyte or to results obtained by a different laboratory.

If using unmodified nonwaived (high-complexity) NAATSs that are FDA cleared for in
vitro diagnostic use, the process is less complex. It is necessary to verify that the test
performs as expected using characteristics described in the manufacturer's package
insert. These characteristics include accuracy, precision, and reportable and normal
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reference ranges (if applicable). For qualitative FDA-cleared NAATSs to detect M. genita-
lium, the reportable range is not applicable, and the normal reference range would be
“negative” or “not detected.” In order to utilize the test and report results to guide
patient management, the laboratory must also follow the manufacturer’s recommen-
dations for quality control, interpretation of results, and quality assessment as required
by the CLIA. Laboratories that subscribe to the College of American Pathologists (CAP)
proficiency testing program can procure three 1-mL liquid specimens (MGEN analyte)
to be tested by NAATSs for the presence of M. genitalium twice yearly. There is also an
independent international quality assessment program that is focused primarily on
molecular testing for infectious diseases (QCMD [Quality Control for Molecular
Diagnostics]) that provides analytes for M. genitalium proficiency testing.

EMERGING ANTIMICROBIAL RESISTANCE AND THE NEED FOR IN VITRO TESTING

The first clinical isolates of M. genitalium were susceptible to tetracyclines, macro-
lides, and quinolones. Other agents such as the streptogramin pristinamycin, which is
available in France and Australia, also show in vitro activity. Antimicrobial resistance,
accompanied by treatment failures, has become widespread in M. genitalium after the
first report of macrolide resistance in 2006 (128). Macrolide-resistance-associated muta-
tions (MRMs) (A2058G, A2059G, A2058C, A2059C, and A2058T [Escherichia coli number-
ing]) in domain V of the 23S rRNA gene that constitute the peptidyl transferase loop
region of the ribosome result in a substantial elevation of the MIC and treatment fail-
ure with azithromycin due to interference with binding in the 50S bacterial ribosome
(81, 129). The selection of MRMs in vivo following azithromycin treatment at 1 g may
occur approximately 10 to 12% of the time (130, 131).

MRMs can now be detected in 30 to 100% of M. genitalium specimens, increasing
from 10% before 2010 to 51% by 2016 to 2017 (17, 23, 24, 132, 133). Resistance rates
may vary geographically and for different patient populations. Macrolide resistance
rates are generally higher in the Western Pacific (68%) and the Americas (67%) than in
Europe (134). A prevalence of MRMs of 48% was reported for M. genitalium specimens
in a multicenter clinical study in the United States (14). Studies in Alabama found
MRMs in 74.1% of M. genitalium-positive specimens obtained from HIV-positive MSM
attending an STI clinic (24) and in 60.7% of heterosexual African American couples (23).
A 67.6% prevalence of M. genitalium macrolide resistance was reported in HIV-positive
MSM in France (135). An increased frequency of MRMs in MSM compared to heterosex-
ual men has also been described in Australia (89.7% versus 50%) (136). A recent study
(137) reported multiple phenotypic combinations of M. genitalium infecting women at
different anatomic sites, with vaginal swab sampling yielding the highest sensitivity for
the identification of women with infections by isolates harboring MRMs. A 2015 meta-
analysis found an azithromycin cure rate of only 67% after 2009 (138). Treatment fail-
ure with pristinamycin, likely caused by a 23S rRNA mutation at position 2062 (E. coli
numbering), was recently described in a French patient (139).

Resistance to the second-line treatment moxifloxacin has also increased substan-
tially over the past several years, often in association with treatment failures. While
moxifloxacin was able to achieve 100% cure in studies performed prior to 2010, this
rate dropped to 89% from 2010 onward (140). There are several possible mutations in
parC, parE, gyrA, and gyrB of the quinolone-resistance-determining regions (QRDRs) of
the bacterial chromosome that can confer resistance (141). Moxifloxacin treatment fail-
ures for M. genitalium infections are typically associated with mutations in the parC
gene, which encodes subunit 1 of topoisomerase IV (142). In particular, parC mutations
at position 83 (nucleotide G248) and position 87 (nucleotide G259) are involved. The
S831 amino acid substitution caused by the single nucleotide polymorphism (SNP)
G248T leads to moxifloxacin treatment failure in approximately two-thirds of cases
(143-145) and is also associated with phenotypic elevations of MICs (146). Other muta-
tions in parC are less common and appear to be less likely to cause moxifloxacin treat-
ment failure (17, 23, 145). Mutations in gyrA, which encodes subunit 1 of DNA gyrase,
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are not predictive of treatment failure unless they occur concomitantly with mutations
in parC (17). In a meta-analysis (134), the overall prevalence of mutations associated
with moxifloxacin resistance was 8% in patients from the Asia-Pacific region (17). Data
from Alabama also demonstrated the presence of parC mutations known to be associ-
ated with treatment failure in 29.6% of HIV-positive MSM who were PCR positive for M.
genitalium (24) but in only 11.1% of heterosexuals (23). Samples from 24% of MSM and
11.1% of heterosexual men and women had evidence of multidrug resistance involving
both macrolides and fluoroquinolones according to these two studies. According to a
Japanese study of 982 MSM, 89.6% of M. genitalium isolates had MRMs, and 68.3%
were fluoroquinolone resistant (147). The high rates of fluoroquinolone resistance
mutations in asymptomatic MSM in Australia (148) and Belgium (149) are particularly
concerning. In a Chinese study of more than 1,800 men with urethritis, almost 90% of
M. genitalium isolates were resistant to both macrolides and fluoroquinolones (150).

The clinical response to doxycycline in patients infected with M. genitalium can be
poor, about 30 to 40%, despite fairly low MICs (=2 wg/mL), and the microbiological
response may be even lower (29.6%) (17, 129). Tetracycline resistance (MIC = 32 ug/
mL) has been described in a clinical isolate of M. genitalium obtained from an immuno-
compromised patient who had failed treatment for urethritis with multiple different
regimens, including doxycycline (151). The tetM sequence was not detected in this iso-
late, and there were no polymorphisms in the 16S rRNA gene in the region known to
be responsible for tetracycline resistance (152). Preliminary findings indicate that the
mechanism may be related to active efflux (L. Xiao, unpublished data). The extent of
tetracycline resistance in M. genitalium is unknown since culture is rarely performed,
there are few opportunities to perform MIC testing on clinical isolates, and molecular-
based tests are rarely available.

The increasing occurrence of mutations that confer resistance to macrolides and/or
quinolones in M. genitalium underscores the need for accurate laboratory methods to
determine susceptibility and/or resistance in vitro for epidemiological purposes as well
as to guide antimicrobial selection aimed at improving patient outcomes as well as
curbing the spread of resistance (81). Such resistance-guided therapeutic approaches,
often utilizing a combination of and/or sequential antimicrobial agents, have been
implemented in Australia, where resistance testing is more readily available than in
some other countries (153-155). In addition to MIC determinations using broth micro-
dilution techniques, there are a number of molecular-based methods to measure the
inhibitory activity of antimicrobial agents as well as indirect methods aimed at identify-
ing whether mutations conferring resistance are present or absent.

PHENOTYPIC MIC METHODS

Broth microdilution. The extremely slow growth of M. genitalium makes it difficult
to perform traditional phenotypic MIC testing by broth microdilution on clinical iso-
lates according to guidelines for human mycoplasmas from the Clinical and Laboratory
Standards Institute (CLSI) (156). Therefore, methods for MIC determination have not been
validated and standardized for M. genitalium. However, once a strain has been passaged to
become laboratory adapted and can be grown on agar and in SP4 broth to a suitable con-
centration of 10* to 10° color change units (CCU)/mL, MIC measurement can be under-
taken in a 96-well microtiter plate with some modifications. For recent clinical isolates that
are not fully laboratory adapted, it is advisable to thaw a frozen stock culture and allow it
to preincubate in SP4 broth until it just begins to turn from red to orange before inocula-
tion into a microtiter plate containing 2-fold dilutions of antimicrobial agents. Plates are
incubated with 5% CO, in air at 37°C. Once the growth control changes from red to yellow,
indicative of bacterial growth and glucose utilization, the MICs can be read as the lowest
concentration of the antimicrobial that prevents the color change from occurring. The time
until the MIC can be read in approximately 7 to 14 days. There are no designated quality
control strains with defined MIC reference ranges for M. genitalium to use for MIC testing.
The UAB Diagnostic Mycoplasma Laboratory uses M. hominis ATCC 23114, for which MIC
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reference ranges for several drugs have been determined, as a surrogate. M. genitalium
strain G37 (ATCC 33530) is also tested with each MIC assay because it has predictable MICs
for tetracycline, azithromycin, and moxifloxacin. As there are no published MIC breakpoints,
the actual MICs can be reported. For drugs that have published breakpoints for other
Mycoplasma species, the results can be reported in comparison to those values. The avail-
ability of clinical isolates with known resistance to macrolides and quinolones enables
more critical evaluations of new agents with different mechanisms of action or altered
chemical structures that can overcome known resistance mechanisms that may not exhibit
cross-resistance (151). Broth microdilution can also be used to determine the minimum
bactericidal concentrations (MBCs) of antimicrobial agents for M. genitalium (157). MIC test-
ing for M. genitalium is performed primarily for the evaluation of new antimicrobial agents,
but this method has also been shown to be useful in some cases of multidrug-resistant M.
genitalium infections where there was treatment failure to search for potential alternative
treatments.

Vero cell-PCR technique. Hamasuna and coworkers described in vitro MIC determi-
nations for M. genitalium that could not be grown axenically using a Vero cell culture
monitored by quantitative PCR (qPCR) (84). This technique was modified by Jensen
et al. and was used to determine the MICs of a new investigational agent, gepotida-
cin, and comparator agents (158). An inoculum of M. genitalium at 5,000 genome
equivalents, as determined by gPCR, is placed into a Vero cell culture containing se-
rial 2-fold dilutions of the antimicrobial agent and incubated for 3 weeks. At this
time, the cells and supernatant are harvested for each antimicrobial concentration,
and the growth of M. genitalium is determined by gqPCR. The MIC is defined as the
minimum concentration of the antimicrobial agent causing 99% inhibition of growth
compared to the growth control without the antimicrobial. Jensen et al. also adapted
the technique for the determination of MBCs (158). The Vero cell culture-based MIC assay
is not internationally validated or approved for diagnostic use and may produce MICs
that are high for some antimicrobials compared to the broth microdilution assay (84).

GENOTYPIC RESISTANCE TESTING

An alternative approach that can be used to identify antimicrobial resistance quickly in
M. genitalium is to test directly for mutations in 23S rRNA that confer macrolide resistance
and mutations in the QRDRs that are associated with moxifloxacin resistance. This
approach has gained the most widespread use in testing for genetic markers of resistance
to macrolides and quinolones since the mutations involved are well known (105, 159-163).
Sanger sequencing, which is expensive, time-consuming, and laborious, can be used to
identify the presence of the various mutations involved, but other techniques can also be
used, such as real-time PCR and coupled techniques, including pyrosequencing, high-reso-
lution melting analysis (HRMA), different primers targeting the wild type (WT) and mutants,
labeled hydrolysis probes, and fluorescence resonance energy transfer (FRET) probes
coupled with melting curve analysis (14, 133, 161-166). The development of assays that
can detect M. genitalium in clinical specimens and simultaneously test for antimicrobial re-
sistance mutations is the most logical approach from both cost- and time-saving perspec-
tives (167).

The UAB Diagnostic Mycoplasma Laboratory currently utilizes a real-time PCR assay
(MGMR) that simultaneously detects M. genitalium and the MRMs A2059G, A2058C,
A2059C, and A2058T (E. coli numbering) based on a modification of the PCR assay
described by Touati et al. (161). This test has been internally validated and is available
for diagnostic testing, thus enabling the simultaneous reporting of the presence of M.
genitalium and MRMs. The procedure involves the amplification of a fragment from the
M. genitalium 23S rRNA gene and the hybridization of two FRET probes covering MRMs
coupled with melting curve analysis. This assay was shown to be superior to PCR tar-
geting gap (103) and enables the simultaneous detection of M. genitalium and MRMs
in urine and vaginal specimens in a single procedure (105). Considering the high rRNA
copy numbers (~1,000-fold higher than the genome copy numbers) in a living cell, the

March 2023 Volume 61 Issue 3

Journal of Clinical Microbiology

10.1128/jcm.00790-21

14


https://journals.asm.org/journal/jcm
https://doi.org/10.1128/jcm.00790-21

Minireview

adaptation of this method to a one-step reverse transcription-quantitative PCR
(RT-gPCR) method that uses RNA as the input template further improves the sensi-
tivity of this assay, which is comparable to those of the current commercial assays
(Xiao, unpublished).

A similar one-step RT-qPCR assay for detecting quinolone-resistance-associated mutations
(MGQR) was also developed and internally validated in the UAB Diagnostic Mycoplasma
Laboratory, targeting the parC gene and using two hybridization FRET probes covering the
mutations reported to be associated with quinolone resistance (Xiao, unpublished). This PCR
assay detects any point mutations occurring in the probe region but does not differentiate
them. Multiplexed with the MGMR assay, the combined MGMRQR assay enables the triple
tasks of the simultaneous detection of M. genitalium and the identification of macrolide and
quinolone resistance in one test and is available for clinical diagnostic testing through our
reference laboratory.

COMMERCIAL METHODS FOR MOLECULAR DETECTION OF MACROLIDE RESISTANCE

Since the presence of 23S rRNA mutations is an excellent proxy for macrolide resist-
ance and azithromycin treatment failure (166, 168), the detection of the presence of
these mutations at positions 2058 and 2059 (E. coli numbering) is sufficient for epide-
miological and diagnostic purposes. Several commercial NAATs that can detect M. gen-
italium and MRMs have been developed, CE marked, and sold in several countries
(Table 2). However, no assays capable of resistance detection in M. genitalium are FDA
cleared, and none of them are available in the United States. Commercial kits for the
detection of MRMs have been compared to other commercial assays as well as labora-
tory-developed assays, including real-time quantitative PCR, real-time PCR with HRMA,
FRET PCR, and 23S rRNA sequencing, to detect macrolide resistance-associated muta-
tions. Commercial products will generally produce results within 4 h, depending on
the assay and platform used (133, 160, 167, 169-174). Discussion is limited to those
commercial products that have obtained regulatory approval through CE-IVD.

The most extensively studied commercial assay for macrolide resistance is RPMG. It
is CE-IVD marked and also cleared for use in Australia and Canada. This PCR utilizes
PlexZyme/PlexPrime technology for the detection of M. genitalium (mgpA) and the five
predominant 23S rRNA macrolide-resistance-associated mutations. It is validated for
the testing of male and female urine, anal, rectal, cervical, endocervical, vaginal, and
urethral specimens as well as preextracted samples. RPMG PCR can be run on several
different platforms, including the Roche LightCycler 480 Il and the Applied Biosystems
ABI 7500 platforms. Its performance was generally satisfactory in published studies
(Table 2), but the clinical sensitivities for M. genitalium detection are usually lower than
those of other commercial assays such as Aptima MG (110). RPMG performed in a satis-
factory manner on specimens collected using Hologic Aptima MG collection kits com-
pared to standard specimen collection in phosphate-buffered saline, so it can be used
for reflexive testing to allow resistance-guided therapy (175). In a comparison of RPMG
with S-DiaMRes, the Real-Accurate TVMGres assay (Pathofinder), and amplification and
sequencing of the 23S rRNA gene in a collection of M. genitalium-positive specimens,
the PPA value for the detection of the organism for each of the three commercial kits
was between 94.8% and 96.4%. The sensitivities and specificities for the detection of
MRMs were also similar, ranging from 95% to 100% and 94.6% to 97.3%, respectively
(173). Additional evaluations of RPMG (133, 138, 169, 172, 176) reported generally simi-
lar results regarding assay sensitivity and specificity for the detection of MRMs com-
pared to reference methods, as did another study involving the S-DiaMRes assay (176).
A Canadian study found superior rates of detection of M. genitalium by RPMG in self-
collected vaginal swabs versus first-void urine samples (110).

RPMG has been adapted for use on the GeneXpert Dx platform (Cepheid), CE
marked, and sold as the RPMG FleXible assay. Incorporation into the GeneXpert plat-
form integrates sample purification, nucleic acid amplification, real-time PCR detection
of M. genitalium and MRMs, and reporting of results in a random-access format so that
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single specimens can be analyzed as needed in a point-of-care setting. This is a signifi-
cant advantage over other assays to detect MRMs, which are restricted to batch testing
of various numbers of specimens. The widespread availability of GeneXpert for the
detection of other pathogens, including N. gonorrhoeae and C. trachomatis, can greatly
facilitate testing for M. genitalium and MRMs on a widespread basis. Testing is quite
simple as the user only has to add the MG FleXible reaction mix, the internal control,
and the patient sample to the cartridge and then insert it into the GeneXpert system
where extraction, amplification, reporting, and interpretation of the results occur auto-
matically based on measurements of fluorescence signals and embedded calculation
algorithms. Multiple independent evaluations of the RPMG FleXible cartridge have
been reported (167, 177, 178), in which the assay’s performance characteristics were
assessed and collections of positive and negative clinical specimens were analyzed.
Compared to a reference PCR assay, RPMG FleXible had an overall sensitivity of 96.1%
for M. genitalium detection. The specificities were 100% for urine and 98.5% for swab
samples, with analytical sensitivities of detection of 157 genomes/mL for the WT and
387 genomes/mL for strains with MRMs. RPMG FleXible had 93% PPA with sequencing
for the detection of specimens with MRMs (167). In another study (177), RPMG FleXible
had a sensitivity of 96. 8% and a specificity of 100% compared to a laboratory-devel-
oped PCR assay. There was 98.9% agreement between RPMG FleXible and RPMG for
the detection of MRMs. A comparison of RPMG FleXible to the Allplex STI Essential
assay and Sanger sequencing found a PPA of 94.7% and an NPA of 100% for the detec-
tion of M. genitalium. For the detection of MRMs in 84 specimens, there was 94.1% sen-
sitivity and 96% specificity for RPMG FleXible (178). A prospective evaluation of RPMG
FleXible in comparison to RPMG using the LightCycler 480 Il platform found compara-
ble results, with a PPA of 94.1% and an NPA of 95.2% for the detection of M. genitalium.
For the detection of MRMs, the PPA was 97.1%, and the NPA was 78.6%, with 5 of 6 dis-
cordant samples determined to be WT specimens by RPMG being shown to be positive
for MRMs by RPMG FleXible and Sanger sequencing, indicating its improved perform-
ance for mutation detection (179). An evaluation of RPMG FleXible was performed in
comparison to Allplex MG & AziR (Seegene) and Macrolide-R/MG ELITe MGB (ELITech
Group), using a laboratory-developed real-time PCR assay and Sanger sequencing as
references (180). The 23S PCR Macrolide-R/MG ELITe MGB kit (ELITech) is a FRET-probe-
based CE-IVD-marked kit that can be run on the ELITe InGenius platform using fully
automated extraction, amplification, and result analysis processes. This gPCR assay
consists of a hydrolysis probe for the detection of M. genitalium and a melt probe for
the discrimination of mutants from the WT based on melting curve analysis. Allplex
MG & AziR is a CE-IVD-marked kit that detects M. genitalium and 6 MRMs in the 23S
rRNA gene. These investigators reported very similar performances, with an overall
agreement of 94.6% to 97.6% for the three assays for the detection of M. genitalium.
The sensitivities for MRM detection were 74.5% for Allplex MG & AziR, 96.2% for
Macrolide-R/MG ELITe MGB, and 92.8% for RPMG FleXible. The specificities for the
three kits were very similar, 97.4% to 97.6%. For the detection of MRMs, the overall
agreements with Sanger sequencing were 84.5% to 96.7%. The clinical sensitivities for
MRM detection were 76.5% for Allplex MG & AziR, 96.2% for Macrolide-R/MG ELITe
MGB, and 92.8% for RPMG FleXible. Allplex MG & AziR missed the detection of MRMs in
14.4% of M. genitalium-positive specimens, which is a major concern. The RPMG
FleXible assay had a high percentage (12.1%) of invalid, internal control, or system
errors, consistent with other reports (167, 179), indicating that additional modifications
and improvements to the analysis software are needed, although this has not been a
universal problem with this assay (177, 178).

Another study evaluated the performance characteristics of 23S PCR Macrolide-R/
MG ELITe MGB PCR by testing a collection of specimens for M. genitalium by a labora-
tory-developed PCR assay and Sanger sequencing to detect MRMs (160). 23S PCR
Macrolide-R/MG ELITe MGB detected 6 more positive specimens. The detection of
MRMs was achieved in 99.5% of specimens in comparison to sequencing.
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RPMG, S-DiaMGRes, Real-Accurate TVMGres, and Allplex MG & AziR do not include a
23S rRNA amplification control, which could lead to false-susceptible results in the
event of a failure to amplify the 23S rRNA gene, suggesting that the addition of a 23S
rRNA amplification control would be beneficial (173). Alternatively, it has been recom-
mended that in cases where a specimen is positive for M. genitalium but no MRMs are
detected and the assay quantification cycle (C,) values for mgpA are high, laboratories
should consider reporting the MRM result as indeterminate (167). One explanation for
the discrepancies that sometimes occur between organism and MRM detection when
the organism load is low is differences in amplification efficacies between the mgpA
target and the 23S rRNA gene where only probes for MRMs are present (167).
Moreover, none of the current versions of commercial NAATs that detect MRMs include
the A2062G mutation, which has been associated with treatment failures with both
pristinamycin and josamycin and has been detected in between 2.3% and 7.7% of M.
genitalium strains (180). Thus, sequence analysis of specimens from persons with mac-
rolide treatment failure would be required to identify this mutation.

COMMERCIAL METHODS FOR MOLECULAR DETECTION OF QUINOLONE RESISTANCE

Over the past decade, there have been several descriptions of PCR assays used to
detect mutations that may confer quinolone resistance in order to determine the preva-
lence of this resistance in various geographic regions (24, 141, 181-183). Data from some
of these assays were validated by comparison to results obtained by Sanger sequencing.
The performance of these assays has varied. Some detected mutations in both parC and
gyrA, while others detected only parC mutations. In an Australian study (141), investigators
developed two PCRs using molecular beacon and dual-hybridization assays that detected
SNPs responsible for amino acid substitution S83I at nucleotide G248 using differences in
melting peak temperatures from codons with WT sequences and compared their results
with those of Sanger sequencing. They reported 100% agreement with sequencing and
readily distinguished specimens containing parC mutations of potential clinical signifi-
cance, but the sensitivity was reduced in specimens with low organism loads, resulting in
only 70% of specimens yielding useful data.

The SpeeDx MG parC (beta) PCR assay detects M. genitalium and 6 common muta-
tions associated with quinolone resistance: SNPs coding for S83R/I (combined), S83N,
and D87 (D87Y, D87N, and D87H [combined]) (184). This assay was evaluated using
171 M. genitalium-positive specimens, and the results were compared to those of parC
Sanger sequencing (185). There was 94.7% agreement with the results of Sanger
sequencing, and 21 M. genitalium isolates with S83 or D87 mutations were detected.
However, 9 were shown to have S83 or D87 mutations by the SpeeDx assay but were
negative by sequencing. This yielded an overall PPA of 100% and an overall NPA of
93.6%. Because the SpeeDx MG parC (beta) assay detects only groups of parC muta-
tions, it is not possible to distinguish among several of them, and not all mutations
may play a role in treatment failure. It also does not assess mutations in gyrA.

A study from Russia (186) evaluated the AmpliSens Mycoplasma genitalium ML/FQ-
Resist-FL assay (Central Research Institute of Epidemiology), using Sanger sequencing
for validation. This product includes one PCR that detects M. genitalium using the gyrB
gene target and the WT 23S rRNA gene. Another PCR detects an internal control and
WT parC. This PCR detected potential mutations for macrolide and fluoroquinolone re-
sistance with 100% and 92.3% sensitivities and 99.2% and 100% specificities, respec-
tively. They found macrolide resistance in 13.8%, quinolone resistance in 9%, and dual
resistance in 5.5% of the specimens. However, this assay does not identify any specific
mutations associated with macrolide or quinolone resistance, which may be problem-
atic since not all mutations, particularly with regard to fluoroquinolones, may be asso-
ciated with treatment failures. Organism loads of <1,000 genome equivalents/mL may
not be sufficient to yield a positive signal, and a quarter of specimens may have such
lower loads. Another Russian study reported similar findings with M. genitalium-ML/
FQ-Resist-FL, with a specificity of 100% and a sensitivity of 90.7% (176). Other
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companies have also developed assays to detect M. genitalium and quinolone resist-
ance. These include the Allplex MG and MoxiR assay (Seegene), which detects 6 com-
mon mutations associated with quinolone resistance; MGMO qPCR, which detects 4
parC mutations using a TagMan-based PCR kit (NYtor Research Institute, Nijmegen,
Netherlands); and the LightMix modular parC kit (TibMolBiol, Berlin, Germany).

Currently, there are no specific recommendations for attempting to determine the
presence of quinolone resistance in urogenital specimens that test positive for M. geni-
talium to guide therapy except in cases of moxifloxacin treatment failures (17). This
position is logical because of the relatively low frequencies of quinolone resistance
and treatment failures in many populations and the fact that no commercially pro-
duced assays have been thoroughly validated externally or received the CE-IVD mark
or FDA clearance, and they are of very limited availability. There is also uncertainty that
remains regarding which specific QRDRs are associated most closely with treatment
failures and the fact that when amino acid substitutions such as S83I that are most
strongly associated with moxifloxacin treatment failures are identified, there are no
other treatment options available in some countries. A final concern is the cost, which
can be considerable when sequencing multiple gene regions (187). Despite these hin-
drances, some investigators have advocated that NAATs capable of detecting the S83I
mutation and the absence of mutations (WT sequences) should be used to guide ther-
apy, help maintain antimicrobial stewardship, and individualize the need for a test of
cure, depending on the results of such testing and patient outcomes (188). The ab-
sence of parC mutations at positions 83 and 87 in the QRDRs is known to be highly pre-
dictive of moxifloxacin cure (145). All of the above-described assays for detecting mac-
rolide and fluoroquinolone resistance-associated mutations use DNA as the template.
During treatment, DNA from dead organisms could be collected, which may lead to
false-positive results. RNA templates isolated from live bacteria would help to solve
this problem.

STRAIN TYPING FOR EPIDEMIOLOGICAL PURPOSES

Strain typing of human mycoplasmas is generally available only in specialized
research or reference laboratories. Even though it is not used for routine clinical pur-
poses, strain typing can be valuable to understand M. genitalium transmission within
populations and between individuals, to characterize antimicrobial-resistant strains,
and to distinguish relapsing versus persistent infections in persons who experience
treatment failures (189, 190). A high rate of concordance of M. genitalium genotypes
has been noted for sexual partners, and strain typing data support the concordance of
M. genitalium genotypes in infected couples (17).

The first description of M. genitalium strain typing was reported in 1999 based on
whole-genome fingerprinting involving the selective amplification of restriction frag-
ments obtained from purified DNA of cultured strains (191). However, the dearth of
clinical isolates necessitated the development of molecular-based typing methods that
can be performed directly on a clinical specimen without the need for culture.
Molecular typing methods used for M. genitalium are based on PCR amplification of a
specific genomic locus followed by sequencing or restriction fragment length polymor-
phism (RFLP) analysis. Specific methods have included short-tandem-repeat (STR) anal-
ysis of a surface-localized lipoprotein gene, MG309 (192); analysis of single nucleotide
polymorphisms (SNPs) in the rRNA operon (192); analysis of the mgpB gene (101, 193);
and RFLP analysis of the mgpC gene (193). A PCR assay based on the mgpB gene identi-
fied 29 different sequences from 52 unrelated patients and also demonstrated that 79
M. genitalium-positive specimens from 19 couples had concordant sequence types, in-
dicative of sexual transmission. Those researchers were also able to demonstrate the
acquisition of new strains concordantly in sexually active couples. The occurrence of a
few large clusters indicated either the spread of certain strains or the presence of par-
ticularly common sequence types that were detected in specimens from different
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countries. These findings confirmed the heterogeneity of M. genitalium isolates from
clinical specimens.

Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) based on the
variation in the copy number of tandemly repeated sequences (VNTRs) located in dif-
ferent genetic loci was used to identify 18 loci in the M. genitalium G37 reference strain
containing STRs and determined that mgpB SNPs and MG309 STRs complement one
another, thereby providing greater typing efficiency, and may be more accurate for the
determination of defined genetic relationships. The addition of MG307 STRs and
MG338 STRs may be potentially useful for studies of the sexual transmission of M. geni-
talium (194). However, the use of the mgpC gene for RFLP analysis may be unsuitable
for genotyping since this region of the genome is undergoing rapid sequence shifts
due to homologous recombination with MgPar repeats (194). A French study (195)
compared MLVA with mgpB SNP analysis and the combination analysis of VNTR 309
and mgpB. This study also confirmed the heterogeneity of M. genitalium strains and
concluded that MLVA was too discriminatory to be used in studies of sexual networks,
recommending that mgpB analysis should be used for general epidemiological studies
and that the combination of MG309 STR and mgpB SNP methods should be used for
sexual-network studies of M. genitalium infection. A study from Australia used mgpB
and MG309 PCR and Sanger sequencing to determine that antimicrobial resistance
mutations occurred both within and across genotypes from samples that were geo-
graphically and temporally diverse, suggesting that while there may be some ongoing
transmission of some strains, the spread of resistance is more likely occurring de novo
rather than by clonal spread (189). Similar findings were reported in Spain (190). A
study from Germany concluded that while there is considerable diversity in the M. gen-
italium types circulating, there was no correlation between specific types and either
macrolide or quinolone resistance and that when resistance occurred, it arose de novo
during treatment (196). Plummer et al. (187) described a custom amplicon next-gener-
ation sequencing (NGS) approach suitable for NGS platforms such as lllumina MiSeq to
detect resistance mutations and sequence types in M. genitalium associated with the
23S rRNA, parC, gyrA, and mgpB genes. They used this novel technique to characterize
clinical specimens positive for M. genitalium and compared the results to those of
Sanger sequencing. They concluded that their assay could provide cost-effective
means of monitoring resistance mutations and genotyping for epidemiological pur-
poses, which can be scaled according to the desired target types and numbers of
specimens. More than 20 studies applying various molecular typing methods to evalu-
ate M. genitalium in different patient populations have been published, and their
results have been summarized in a recent review (197).

MANAGEMENT OF M. GENITALIUM INFECTIONS

Current CDC STI guidelines for the treatment of M. genitalium describe various regi-
mens of doxycycline, azithromycin, and moxifloxacin, depending on whether resist-
ance has been documented and the clinical syndrome being treated (15). The occur-
rence of macrolide- and fluoroquinolone-resistant infections presents a significant
challenge for both laboratory diagnosis and management. To combat resistant infec-
tions, other treatment guidelines also describe various sequences and combinations of
these and other antimicrobials that may differ somewhat from those in the CDC guide-
lines (17, 78). Some agents with limited availability, such as pristinamycin, spectinomy-
cin, and sitafloxacin, have shown some success, and newer ones, such as omadacycline,
lefamulin, gepotidacin, solithromycin, and zoliflodacin, may be potential alternatives
based on in vitro activities, but there are no clinical trial data available to date to sup-
port their use (198, 199). There are also different recommendations regarding the need
for a test of cure following treatment, relating to whether or not resistance mutations
have been documented and the appropriate time frame to do so. Current CDC treat-
ment guidelines provide thorough discussions of M. genitalium treatment options, so it
is not necessary to delve further into treatment here.
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FUTURE DIRECTIONS FOR LABORATORY DIAGNOSIS OF M. GENITALIUM INFECTIONS
AND UNMET NEEDS

The much less stringent regulatory requirements for diagnostic testing for countries
outside the United States have led to the proliferation of many NAATs for M. genitalium
detection and testing for mutations associated with antimicrobial resistance. Although
there have been several publications describing their performance in comparison to
reference methods and one another, most studies have yielded fairly small numbers of
specimens positive for M. genitalium. Additional studies are needed to determine
which commercial NAATSs are of the most value and can be recommended for use with
the greatest confidence. Whether the companies developing commercial tests will
decide to conduct the rigorous studies necessary to achieve FDA clearance is uncer-
tain. However, the recent availability of three FDA-cleared automated sample-to-an-
swer NAATSs is expected to drive the more widespread utilization of molecular testing
in the United States and also influence future recommendations for testing and man-
aging such infections. Testing should be employed in research settings for studies
designed to provide evidence-based indications for diagnostic testing and to improve
the understanding of sequelae of symptomatic and asymptomatic infections in
women, such as PID, to justify screening programs. Additional studies are also needed
to improve our understanding of the contribution of M. genitalium to adverse out-
comes for pregnant women and neonates. Even though culture will never be used as a
diagnostic method of choice, it is important for more research and reference laborato-
ries to attempt culture in order to acquire more clinical isolates. The availability of cur-
rent isolates from different parts of the world is important so that they can be used for
studies of the epidemiology, cell biology, and pathogenesis of M. genitalium infections
and to assess the in vitro activities of new antimicrobial agents. There is a particular
need to obtain clinical isolates that exhibit multidrug resistance in order to improve
our understanding of resistance mechanisms and the clinical implications of various
mutations in the QRDRs. The development of new antimicrobial agents that do not ex-
hibit cross-resistance with existing drugs is extremely important as more infections
may become untreatable should dual quinolone and macrolide resistance continue to
increase in prevalence. A limited number of M. genitalium isolates have now been
shown to exhibit tetracycline resistance, apparently mediated by active efflux. The
extent to which such isolates occur in various patient populations is unknown but mer-
its further investigation. The clinical significance of the 23S rRNA mutation A2062G (E.
coli numbering) also needs to be investigated in order to determine whether this
mutation needs to be included in macrolide resistance assays. Even though we now
have the ability to detect infections within a few hours by NAATs, there are still no
FDA-cleared commercially available tests in the United States that can detect macro-
lide or quinolone resistance, and this is a major shortcoming as it prevents the ability
to perform resistance-guided therapy unless specimens are submitted to a reference
laboratory and tested by a validated laboratory-developed test. The benefit of resist-
ance-guided therapy to reduce treatment failure and help control the spread of antimi-
crobial resistance is extremely important. A sample-to-answer test that combines a
sensitive and specific technique such as TMA with the rapid detection of macrolide
and fluoroquinolone resistance in a single assay is certainly needed for diagnostic use
as well as epidemiological studies. A true point-of-care test available at a reasonable
cost would be especially beneficial. Finally, global surveillance to monitor changes in
the prevalence of macrolide and quinolone resistance over time and investigate
whether such resistance is arising de novo during treatment or as a result of clonal
spread through strain genotyping will be essential.
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