
Single-cell manifold-preserving feature selection for detecting 
rare cell populations

Shaoheng Liang1,2, Vakul Mohanty1, Jinzhuang Dou1, Qi Miao1,3, Yuefan Huang1,3, 
Muharrem Müftüoğlu4, Li Ding5, Weiyi Peng6, Ken Chen1,*

1Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson 
Cancer Center, Houston, Texas, 77030, USA

2Department of Computer Science, Rice University, Houston, Texas, 77005, USA

3Department of Biostatistics & Data Science, School of Public Health, The University of Texas 
Health Science Center at Houston (UTHealth), Houston, Texas, 77030, USA

4Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, 
77030, USA

5Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63108

6Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77024

Abstract

A key challenge in studying organisms and diseases is to detect rare molecular programs 

and rare cell populations (RCPs) that drive development, differentiation, and transformation. 

Molecular features such as genes and proteins defining RCPs are often unknown and difficult 

to detect from unenriched single-cell data, using conventional dimensionality reduction and 

clustering-based approaches. Here, we propose an unsupervised approach, SCMER (Single-Cell 

Manifold presERving feature selection), which selects a compact set of molecular features with 

definitive meanings that preserve the manifold of the data. We applied SCMER in the context 

of hematopoiesis, lymphogenesis, tumorigenesis, and drug resistance and response. We found 

that SCMER can identify non-redundant features that sensitively delineate both common cell 

lineages and rare cellular states. SCMER can be used for discovering molecular features in a 
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high dimensional dataset, designing targeted, cost-effective assays for clinical applications, and 

facilitating multi-modality integration.

2 INTRODUCTION

A tissue in a living organism often consists of millions to billions of cells. While the 

terminally differentiated cells with relatively distinct molecular profiles can be readily 

distinguished via single-cell RNA sequencing (scRNA-seq) at current sampling depth, 

many cells involved in development, differentiation, and transformation remain difficult to 

detect1,2. For example, a fraction of tumor cells in renal cell carcinomas can go through 

sarcomatoid transformation driven by epithelial to mesenchymal transformation (EMT)3,4; 

tumor cells in pancreatic ductal adenocarcinomas can transiently express stemness features 

(e.g., SOX2) at its invasion fronts5–7. These cells can be relatively rare in the sampled 

populations, transiently expressing certain molecular features and thereby may not form 

distinct clusters in high dimensional feature spaces8,9.

To detect characteristic features (e.g., genes, proteins) in a single-cell dataset, studies8,10–13 

often employ unsupervised clustering followed by one-cluster-vs-all differential expression 

(DE) analysis, the optimal way for two-group hypothesis testing. These approaches can 

detect major cell types governed by lineage features that dominate data variance, but are 

insensitive to rare but unique features that have relatively small variance and manifest 

as level gradients within cell-type clusters (a.k.a. cell states)14. They are also clumsy at 

detecting features affecting multiple clusters, e.g., transcription factors (TFs) regulating 

multiple cell types15, as that involves comparison of an exponentially growing number 

of cluster combinations. To detect features associated with continuous developmental 

processes, many studies perform trajectory inference16 followed by correlation/regression 

analysis to identify correlated features (e.g., Monocle 217). The selection of features depends 

on trajectories, which could be challenging to infer accurately for complex processes. 

A detailed comparison was performed by RankCorr12 across various methods such as 

statistical tests, logistic regression, MAST10, scVI11, and COMET13.

Most existing approaches regard features as independent variables without exploring their 

interactions18. As a result, they tend to identify redundant features (e.g., CD3D, CD3E, and 

CD3G for T cells). Some recent work such as scHOT18 and SCMarker19 started to exploit 

correlational patterns among co- or anti-expressing genes. However, they do not model 

complex interactions of more than two genes. SCMarker cannot characterize continuous cell 

states, and scHOT relies on the accuracy of trajectory inference.

To enhance sensitivity in detecting rare features and RCPs, many studies20,21 had to slice 

and dice data spaces in empirical, multifaceted ways8 or perform iterative gating22 and 

re-clustering at variable resolutions, which may lead to biased, irreproducible results. For 

example, GiniClust223 selects a set of features to decide the major clusters and another set of 

features to discover RCPs (Supplementary Note 1). EDGE24 slices feature space randomly 

to attempt to find RCPs. CellSIUS25 refines clustering by examining gene sets upregulated 

in RCPs.
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Increasing the number and variety of molecular features and improving the fidelity of the 

measurements can help discover RCPs26. However, they unavoidably increase the already 

high cost of experiments. To make assays cost-effective towards clinical applications, it is 

important to select a compact actionable set of molecular features that unbiasedly represent 

molecular diversity in high dimensional data. This ability is important for designing and 

manufacturing customized assays, e.g., 10x targeted gene expression, MissionBio Tapestri 

and NanoString GeoMx, which perform multi-omics measurements of hundreds of selected 

DNA, RNA, and proteins.

To address these fundamental challenges, we developed SCMER (Single-Cell Manifold 

presERving feature selection), which selects an optimal set of features such as genes or 

proteins from a single-cell dataset. Similar to t-Distributed Stochastic Neighbor Embedding 

(t-SNE)27 and Manifold Approximation and Projection (UMAP)28, we hypothesize that a 

manifold defined by pairwise cell similarity scores sufficiently represents the complexity of 

the data, encoding both global relationship between cell groups and local relationship within 

cell groups29. By preserving such a manifold while performing feature selection, the most 

salient features that unbiasedly represent the original molecular diversity will be selected.

SCMER does not require clusters or trajectories, and thereby circumvents the associated 

biases. It detects diverse features that delineate common and rare cell types, continuously 

changing cell states, and multicellular programs15 shared by multiple cell types. It reduces 

high dimensionality into a compact set of actionable features with definitive biological 

meanings. This distinguishes SCMER from PCA, t-SNE, UMAP, etc., which result in 

axes (meta-genes) with complex meanings. SCMER is efficiently implemented in Python 

using PyTorch30, multithreading and GPU acceleration supported, with a user- friendly 

single-command interface.

3 RESULTS

3.1 THE SCMER APPROACH

In a nutshell, SCMER (Fig. 1a, Methods) examines a data matrix X (n cells x D features) 

and calculates a pairwise cell similarity matrix P representing the manifold in X. It defines 

a weight vector w and let Y=Xw. It then calculates another pairwise cell similarity matrix 

Q from Y and quantifies the level of agreement between P and Q using Kullback-Leibler 

(KL) divergence. Finally, it uses elastic net to find a sparse and robust solution of w 

that minimizes the KL-divergence using the Orthant-Wise Limited Memory Quasi-Newton 

(OWL-QN) algorithm31. Features with nonzero weights in w are deemed chosen. Q can 

also be calculated from a different modality instead of X, which enables a “supervised” and 

multi-omics mode of SCMER.

A manifold encodes both clusters and continuums of cells. While clusters usually reflect 

distinct cell types, continuums reflect similar cell types and trajectories of transitioning/

differentiating cell states32. SCMER selects optimal features that preserve the manifold and 

retain inter- and intra-cluster diversity (Fig. 1b). It can be applied to discover rich molecular 

pathways, identify prognostic genes, and design customized DNA/RNA/antibody panels of 

restricted sizes for clinical applications.
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To elucidate the cell populations and features that SCMER identifies, we simulated a dataset 

containing a branching trajectory of 4,000 single cells from five major cell types, namely 

progenitor, precursors of A and B, and mature A and B (Fig. 1c). A total of 180 features 

are simulated from four categories (Supplementary Note 2), those (I) specific to one cell 

type/cluster, (II) shared by more than one cell type15, (III) gradually changing over cell 

states, and (IV) transiently activated (also known as checkpoints33). In addition to major cell 

type labeling, the cells transitioning from precursor to mature are identified as “RCP-A” and 

“RCP-B”, which overexpress type-IV features. In as few as 45 selected features, SCMER 

recalled all types of features. In contrast, the top 45 features determined by a DE analysis are 

all from type I, while a pseudo-time-based correlation analysis missed type-IV features. As 

a result, SCMER significantly increased the precision and recall of detecting RCPs, while 

being comparable to other methods on major cell types (Table 1).

To comprehensively assess SCMER, we ran it on eight datasets34–41 (Supplementary Table 

1) that involve a variety of biological and technological challenges, such as unresolved 

borderline cells that blur clustering, continuously changing cell states, multicellular and 

transient cellular programs. For comparison, we used supervised DE analysis and widely-

used unsupervised feature selection methods, including highly expressed genes (HXG), 

highly variable genes (HVG), SCMarker19, Monocle 217, RankCorr12, GiniClust223, 

EDGE24, and CellSIUS25. SCMER robustly demonstrated the best performance in all the 

experiments.

3.2 CHARACTERIZING CELL TYPE AND INTRATUMORAL HETEROGENEITY

Single-cell datasets derived from cancer samples are often highly complex, containing 

heterogeneous cell types and states in not only tumor cells but also stromal and immune 

cells. Supervised analysis of cancer data is challenging as cancer cells are highly 

plastic42 and can express novel unknown features, which can heavily confound clustering 

and trajectory-based analysis. We applied SCMER on a scRNA-seq melanoma dataset 

containing 4,645 cells from 19 human melanoma samples34. Most cells were annotated as 

malignant cells, B cells, T cells, macrophages, natural killer (NK) cells, endothelial cells, 

or cancer-associated fibroblasts (CAFs) by the authors based on clustering and DE analysis. 

However, there were unresolved borderline cells presenting between labeled clusters, which 

resemble multiple cell types and could be either doublets or RCPs (Fig. 2a). By selecting 

only 75 genes, SCMER clearly preserved the manifold: the resulting UMAP embedding is 

very similar to the original and the relations among cell types including the unresolved cells 

are preserved (Fig. 2b and Supplementary Figures 1–2).

To understand the biological meanings of the selected genes, we compared them with 

the 11 gene sets described in the original publication that represent important cell types 

and pathways in the study. The selected genes compactly covered all the 11 gene sets 

(Supplementary Table 2). Interestingly, genes belonging to the known drug resistance 

AXL program and MITF program were also selected by SCMER. These genes do not 

preferentially express in a specific cluster (e.g., PMEL, TOB1, etc. in Fig. 2d and 

Supplementary Figure 1). Some genes such as PMEL, PDCD1, and OAS2 appeared 

predictive of survival outcome in TCGA SKCM patients43 (Fig. 2g–i). The genes selected 
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by SCMER which are not reported by the original publication (i.e., the 11 gene sets), are 

found to be enriched in EMT, inflammatory abnormality of the skin, T cell exhaustion, and 

other immune pathways (Supplementary Note 3, Supplementary Data 1–2).

To comprehensively assess the performance of SCMER, we varied the number of 

selected features and recorded the number of recalled gene sets. SCMER consistently 

recalled more gene sets than other methods for any given number of features (Fig. 2c). 

SCMER also showed high performance in recalling genes regardless of which sets they 

belong (Supplementary Figures 3–5) and end-to-end clustering (Supplementary Note 4, 

Supplementary Table 3).

We also applied SCMER to a large-scale pan-cancer single-cell transcriptomic study 

consisting of 198 cell lines and patient samples from 22 cancer types35. SCMER 

showed high sensitivity in characterizing intra-cluster heterogeneity, identifying recurrent 

heterogeneous programs shared by most cell lines and by patient tumor samples 

(Supplementary Result 1, Supplementary Figure 6, Supplementary Data 3).

3.3 DEFINING CELL SUBTYPES AND STATES OF IMMUNOCYTES

We further examined SCMER in a complex setting involving many cell subtypes, subtle 

intra-cluster structure, and shared pathways. The dataset contains 39,563 gastrointestinal 

immune cells collected from inflamed tissues from ten Crohn’s disease patients36. As 

a cancer risk factor, chronic inflammation involves extensive interaction among various 

immune cell types such as helper T cells (TH) and innate lymphoid cells (ILCs), which 

are regulated by both shared and cell-type specific TFs and cytokines and are difficult to 

delineate in high dimensional embeddings. The dataset appeared to include 27 cell types 

and subtypes/states in the original report. Four major cell types, T cells, B cells, phagocytes, 

and stromal cells each appeared as a cloud in the original embedding (Fig. 3a) but can 

be further dissected into subtypes (RCPs). For example, T cells were dissected into eight 

subtypes/states through further clustering.

Circumventing clustering, SCMER selected 250 features from 3,573 highly variable genes 

(Supplementary Table 4) with the manifold well preserved. The separability among cell 

types was comparable with the original embedding, and the manifold of subtypes in each 

major cell type was maintained (Fig. 3b).

SCMER identified features delineating both clusters and sub-clusters. For example, the 

well-known lineage features such as CD79A (B cells) and CD7 (T cells) and immune 

subtype markers such as FCER2 (naïve B cells) and ANKRD28 (TRM) were identified 

(Fig. 3c–d, Supplementary Figures 7a and 8). Less reported features such as SEPP1 
for M2 macrophages were also among the list (Supplementary Figure 7b). The selected 

features also included genes that encode lysozyme (LYZ), complements (C1QA, C1QB, and 

C1QC), granulysin (GLNY), and granzymes (GZMA, GZMB, GZMK, and GZMH) (Fig. 

3c, Supplementary Figure 7c).

NK and ILC1 cells were mixed together in one cluster and can hardly be further dissected 

based on unsupervised clustering and DE analysis. However, based on the genes selected 
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by SCMER such as GNLY, CCL4, etc., which displayed dichotomizing levels within the 

cluster, we were able to further separate NK and ILC1 cells and estimate their abundances 

(Supplementary Figure 9).

SCMER also found TFs that regulate a wide range of cellular activities, including JUN and 

FOS (Fig. 3d), which are important for immune cell interactions. These features changed 

gradually among all the cell types, rather than expressing specifically in certain clusters. 

Other features such as CD69 (known T cell activation feature) and ODF2L (novel T 

cell subtype feature) also showed gradual change among subtypes instead of on-and-off 

patterns (Fig. 3f). Notably, among our selected features that were not reported in the 

original publication, DUSP1, DUSP2, and DUSP4 (Fig. 3g, Supplementary Figure 7d) 

were potential key regulators of both innate and adaptive immune responses that are highly 

relevant to Crohn’s disease (Supplementary Note 5).

SCMER again compared favorably to the other methods that selected various numbers of 

features (Fig. 3i, Supplementary Note 6). It was evident that the other methods tended to 

ignore features associated with intra-cluster heterogeneity and multicellular programs. The 

genes selected by SCMER which do not show in the original publication were also highly 

enriched in multiple immune pathways44 (humoral immune response, leukocyte migration, 

complement activation, etc.; Supplementary Data 4). Overall, SCMER sensitively preserved 

different types and levels of heterogeneity in the original data. Besides continuums 

of cell subtypes, SCMER also achieved top performance on continuous hematopoietic 

trajectories (Supplementary Result 2, Supplementary Figures 10–11, Supplementary Tables 

5–6, Supplementary Data 5–6).

3.4 IDENTIFYING MOLECULAR DRIVERS IN A CANCER TREATMENT

More and more studies using single-cell technologies to investigate heterogeneity of cells 

in response to a genetic or chemical perturbation45. In these experiments, cell state may 

transition under complex kinetics.

To investigate the utility of SCMER in studying cellular responses, we applied it on single-

cell data derived from dexamethasone (DEX) treated A549 lung adenocarcinoma cell line38. 

As reported in the original publication, the 1,429 cells sampled at 0, 1, and 3 hours after 

the DEX treatment formed a continuum in the transcriptomic space (Fig. 4a), indicating 

heterogeneous responses of the cell population. After running SCMER on the sci-RNA-seq 

data, 80 genes were selected, with the manifold and treatment states largely preserved (Fig. 

4b).

We inferred TF activities based on motif enrichment46 in the chromatin accessibility (sci-

ATAC-seq) data co-assayed on the same set of cells38 (Methods, Fig. 4c). Among the top 50 

highly variable TFs (Supplementary Figure 12), NR3C1, the primary target of DEX38, had 

the most prominently increasing activity level over treatment time. Other TFs such as FEV47 

and the ETS family48, also targets of DEX, had decreasing activity levels.

We then correlated the expression levels of the genes selected by SCMER with the activity 

levels of the top TFs. We found that FKBP5, GALNT18, NRCAM, etc. were positively 
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correlated with NR3C1, while CYP24A1, COL5A2, etc. were negatively correlated 

(Supplementary Table 7, Supplementary Figure 13). In particular, FKBP5, a factor in 

the negative feedback loop of glucocorticoid receptor response and regulator of immune 

processes49,50, had the highest positive correlation (r = 0.355) in the whole transcriptome; 

while CYP24A1, which regulates multiple metabolism processes51, was the most negative 

(r = —0.365). Cells of high FKBP5 expression levels came mostly from 1 and 3 hours 

(Fig. 4d), with matched polarized distributions in the RNA and the ATAC embeddings (Fig. 

4g). Similar patterns were observed between cells of high and those of low CYP24A1 
expression levels (Fig. 4f,i). Compared with other feature selection52 and DE analysis 

methods9, SCMER performed one of the best in recalling DEX target genes (Supplementary 

Note 7 and Supplementary Figure 14).

Interestingly, SCMER also selected a group of genes uncorrelated with prominent TF 

activities (Fig. 4j, Supplementary Figure 13). Among them were MKI67 (e.g., r = —0.005 

with NR3C1) (Fig. 4e,h), which encodes proliferation marker protein Ki-67, and other 

cell-cycle genes such as CENPF, TOP2A, RYBP, MLH3, etc. Pathway analysis confirmed 

that these genes are highly enriched in cell proliferation pathways (Supplementary Data 7), 

indicating that an appreciable fraction of cells continued proliferating despite the treatment. 

It is not surprising that the levels of these genes were uncorrelated with chromatin state 

changes, as it has been shown that cell cycling status has little direct effect on chromatin 

accessibility53. Also among uncorrelated ones were several cancer cell stemness marker 

genes44 such as ACTG1, TSC22D1, and FN1, which may indicate that a fraction of cancer 

cells maintained their stemness during the course of the treatment. These genes would have 

been missed by a DE analysis supervised by the treatment time.

Taken together, our results demonstrated the superior power of SCMER in discovering 

features associated with heterogeneous cellular state change in the context of perturbation 

experiments. It explores alternative explanations and reports the most salient features 

representing different facets of cells.

3.5 MAPPING FEATURES ACROSS MODALITIES

One challenge in applying scRNA-seq for cell-typing is that expression levels of mRNAs 

can differ substantially from those of homologous proteins, due to post-transcriptional 

modifications54. Although performing multi-omics assays may be the ultimate solution, 

they are currently associated with higher cost and lower throughput. Thus, rather than 

simply selecting the homologous mRNAs, it is beneficial to identify the set of genes whose 

expression levels maximally represent cellular diversity at the protein level. This capability 

can be important for designing targeted, cost-effective assays for preclinical and clinical 

applications. SCMER is ideally suited for such a purpose, as it allows selecting features in 

one modality while preserving manifold in another modality.

We ran SCMER on a CITE-seq dataset containing 14,468 bone marrow mononuclear cells 

(BMNC)39. The protein manifold based on 25 markers was utilized to “supervise” the 

selection of mRNAs (Methods). CITE-seq, which co-assays mRNA and protein markers 

from the same set of cells, is ideal for obtaining the optimal mapping between mRNAs and 

proteins (Fig. 5a,b, Supplementary Figure 15).
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As shown, the mRNA expression levels of genes that encode the protein markers, such as 

CD4 (CD4, a Th cell marker) and NCAM1 (CD56, an NK cell marker), offered low power in 

delineating the corresponding cell types (Fig. 5d,e). Some markers, e.g., CD45RA (B cells 

and naïve T cells) and CD45RO (memory T cells) are isoforms of the same gene, PTPRC. 
Consequently, T cell subtypes were less distinguishable in the RNA space than in the protein 

space (Fig. 5b). The differences among CD8 T cell subtypes were even bigger than the 

differences between CD4 and CD8 T cells.

SCMER selected a set of genes that best preserved the diversity at the protein-level, notably 

the continuum among naïve CD8 T cells, memory CD8 T cells, and effector CD8 T cells 

(Fig. 5c) (SCMER adjusted Rand index (ARI) 0.544; RNA ARI 0.438; Supplementary Table 

8). It identified genes that are non-homologous to the protein markers but better represent 

the protein level difference, for example, GPR183, KLRF1, CD79B, and S100A4 for CD4, 

CD56, CD45RA, and CD45RO, respectively (Fig. 5d,f). On the other hand, the SCMER 

result appeared to better delineate progenitor cells (ARI = 0.489) than the protein markers 

(ARI = 0.303), which demonstrates a strength of integrating complimentary modalities.

Similar conclusions were drawn when applying SCMER on another smaller PBMC CITE-

seq dataset40 with 10 protein markers (Supplementary Result 3, Supplementary Figures 16–

19, Supplementary Tables 9–11).

Importantly, the genes selected by SCMER from one donor (14,468 cells) appeared to 

preserve the cell diversity in another donor (16,204 cells) (Supplementary Figure 15), which 

validated the applicability of SCMER in designing targeted panels for populational level 

testing.

4 DISCUSSION

For datasets with multiple samples, SCMER stratifies the samples to find consensus 

features that prioritize biological but not technical variances (Methods). SCMER can also 

run in various supervised modes. For example, it can select features from a shortlist 

(Supplementary Result 2) and find the best “partner” features for preselected features 

(Supplementary Result 3). The framework appears effective on cell line and patient 

data generated by various technologies, including scRNA-seq and mass cytometry41 

(Supplementary Result 4, Supplementary Figure 20), and can potentially be extended to 

other modality combinations such as scRNA with scATAC, or mRNA with miRNA.

There are some possible limitations in this study. The evaluations were partly based on 

the gene sets provided in the publications, which may have some biases. In manifold 

transferring, SCMER does not provide an explicit mapping from one modality to the 

other, and thus requires additional analysis to clarify the interaction of features in the two 

modalities.

SCMER is efficiently implemented. On a dataset with 10,000 cells and 2,000 candidate 

features, it typically converges in 20 to 40 iterations, which takes 5 to 10 minutes using 

a 3.20GHz 6-core Intel Core i7–8700 CPU. The time consumption is halved with a middle-

end NVidia GTX 960M GPU.
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Because SCMER detects informative features that represent wider and more complex 

biological processes, we expect it to be of interest in projects producing large numbers 

of unsorted cells, such as the Human Cell Atlas55, the Human BioMolecular Atlas Program 

(HuBMAP)56, the Precancer Atlas57 and the Human Tumor Atlas Network58. It will be 

beneficial in various scenarios including biomarker discovery and clinical assay designing. 

As a feature selection method tailored for biomedical data with complex manifolds, it can 

potentially be applied to non- single-cell data, for example, bulk RNA expression29, copy 

number aberration, and genetic and drug screening data in large cohort studies such as 

TCGA and GTEx59.

5 METHODS

5.1 CELL-CELL SIMILARITY

SCMER is inspired by three methods: Stochastic Neighbor-Preserving Feature Selection 

(SNFS)60, t-distributed stochastic neighbor embedding (t-SNE)27 and Uniform Manifold 

Approximation and Projection (UMAP)28.

t-SNE is one of the most widely used method for data embedding. For a dataset X ∈ ℝn × D

with n cells and D features, the similarity of a cell i to another cell j is defined as

pij = exp − Xi − Xj
2/2σ2

∑k ≠ l exp − Xk − Xl
2/2σ2 ,

which comprises a cell-cell similarity matrix P ∈ ℝn × n. σ is a scaling factor. It creates an 

d-dimensional embedding Y ∈ ℝn × d. It calculates another cell-cell similarity matrix Q ∈ ℝn × n

for Y, whose entries are

qij = 1 + Yi − Yj
2 −1

∑k ≠ l 1 + Yk − Yl
2 −1 .

The cost function is defined as the Kullback-Leibler (KL) divergence of P and Q, formally

C = KL(P ∥ Q) = ∑
i

∑
j

pijlog pij
qij

.

SNFS uses t-SNE formulation directly. Because emerging evidences show that UMAP is 

more sensitivity to both global relationship between cell groups and local relationship within 

cell groups29, we borrowed a part of the UMAP formulation, i.e.,

pij = exp − Xi − Xj − ρi /σi
∑k ≠ l exp − Xk − Xl − ρi /σi

, qij = 1 + Yi − Yj − τi /σi
−1

∑k ≠ l 1 + Yk − Yl − τi
σi

−1 ,

where ρi = min Xi − Xj  and τi = min Yi − Yj . The scaling factor σi is chosen such that 

∑j exp − Xi − Xj − ρi /σi = log2k, which may be viewed as constructing a soft nearest 
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neighbor graph. We default it to 100 in our experiments. Similar to UMAP, setting it in 

the range 10 to 1,000 gives very similar results28.

5.2 MARKER SELECTION BY ELASTIC NET

Different from t-SNE and UMAP, instead of allowing Y to be an arbitrary matrix, we 

require each column of Y to be directly taken from a column of X, i.e., to select a feature. 

To formally model this procedure. We use a vector w ∈ ℝD (initialized as wi = 1, ∀i in 

optimization) to indicate the selection of the features, where 0 means unselected, and set

Y = Xw,

which set all unselected features to zero in Y. In terms of calculating the distances, zeroing 

out the columns is effectively discarding them. Thus, the calculation of Q using Y is 

unchanged. Ideally, to select d features, we optimize

min
w

C subject to  ∥ w ∥0 = d,

where ∥ w ∥0 is the l0-pseudo-norm, i.e., the number of nonzero entries. However, this 

question is known to be NP-hard, whose determination requires checking all the 
D
d

possibilities. Thus, we fall back to l1-norm, the convex approximation of l0-pseudo-norm, 

as in

min
w

C + λ ∥ w ∥1 ,

where l1-norm ∥ w ∥1 = ∑i wi  and λ is the strength of the regularization. We denote the 

loss function as L. Because the number of chosen features decreases when λ gets larger, 

for a given d, we use a binary search to find a λ. We used Orthant-wise limited memory 

quasi-Newton algorithm (OWL-QN, detailed below) to optimize w. Due to limitations of 

precision, the specific d may not always be achievable. In that case, we allow for a few 

more features to be selected, and discard those that are assigned with the lowest weights 

(Supplementary Note 8). In the result, the features who have nonzero weights in w are 

considered selected. The specific weight is not used in downstream analysis.

The cost, C = KL(P ∥ Q), is a robust indicator of whether the manifold is successfully 

retained. A typical range of C is 2.0 – 4.0 when the manifold is reasonably retained. More 

features (i.e., smaller l1-regularization) may be needed if the C is greater than 4.0.

Our model also allows an additional l2-regularization (ridge) to form an elastic net model. It 

may improve the robustness of the panel by slightly increase the redundancy, so that noise 

or drop-out in one feature has less effects (Supplementary Note 9 and Supplementary Figure 

21).
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5.3 BATCH EFFECT CORRECTION BY STRATIFICATION

Batch effect is a common problem in experiments including multiple samples. For SCMER, 

the samples are considered a stratum. In specific, a set of P and Q can be constructed 

for each sample, denoted as P(i) and Q(i), while w is shared by all samples. A cost C(i) can 

thus be calculated for each sample, and collectively form a new objective C = ∑i C(i). Thus, 

SCMER will ignore features that identify different samples and focuses on features that 

retain cell-cell similarities in all/most samples.

5.4 SUPERVISED MULTI-OMICS MODE

To transfer the manifold in one matrix (X) to another (X′), either between different 

modalities or subsets of features of the same modality, we simply modify the definition 

of Y to Y = X′w. With all other procedures unchanged, the algorithm is now searching for 

features in X′ that gives a manifold similar to that of X. This is also applicable to select 

features from a shortlist of the original ones.

5.5 USING PRESELECTED FEATURES

In the case that a researcher wants to specify a few features that are known to be useful, 

we slightly modify the regularization to λ ∥ Vw ∥1, where V = diag(v) is a diagonal matrix. 

If a feature is considered important a priori, the corresponding entry in v is set to 0 to 

avoid l1-regularization. In this “softly-supervised” way, SCMER is more likely to select 

these features, but may still discard some of them if they are contradicting with the 

manifold. Thus, in addition, we provide a “hard-supervised” way where a set of features 

are guaranteed to be kept. Other features are selected to supplement them.

5.6 ORTHANT-WISE LIMITED MEMORY QUASI-NEWTON ALGORITHM

Limited-memory BFGS (L-BFGS) is an widely-used optimization algorithm in the quasi-

Newton methods family61. It approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm with 0(mD) memory, where m can be chosen based on computing resources.

Although L-BFGS usually converge very fast (<20 iterations) for most l2-regularized 

regression problems, it will diverge for l1-regularization, whose partial derivative is 

undefined at w ∣ wi = 0∃i :

∂ ∥ w ∥1
∂wi

=
∂∑i wi

∂wi
= ∂ wi

∂wi
=

1 wi > 0
 undefined  wi = 0

−1 wi < 0
.

It should be noted that setting the undefined point to 0 (or any other value) at wi = 0
does not solve the problem as the discontinuity will also break L-BFGS. SNFS restricts 

wi ∈ [0, 1] to avoid the discontinuity, but we find it having problems enforcing the sparsity. 

Instead, a modified version of L-BFGS called orthant-wise limited memory quasi-Newton 

(OWL-QN) algorithm31 is more suitable for this problem. A modified version of L-BFGS 

called orthant-wise limited memory quasi-Newton (OWL-QN) algorithm31 solves this 
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problem by introducing pseudo-gradients and restrict the optimization to an orthant without 

discontinuities in the gradient.

In brief, we first derive the pseudo-gradient, where the pseudo-partial derivative at a 

discontinuity w0 of the loss function L = C(w) + λ ∥ w ∥1 is defined as

∂iL w0 =
∂i

−L w0 ∂i
−L w0 > 0 and ∂i

+L w0 > 0
∂i

+L w0 ∂i
−L w0 < 0 and ∂i

+L w0 < 0
0  otherwise 

,

where ∂iL w0  is the pseudo partial derivative and ∂i
−L w0  is the short hand of 

limwi w0 i − ∂L
∂wi wk = w0 k

, i.e, the left limit of the partial derivative. Similarly, ∂i
+L w0  is the 

right limit.

Note that the gradient of C w  is continuous, i.e., ∂i
−C w0 = ∂i

+C w0 = ∂iC w0 , and 

discontinuities of L are all at w ∣ wi = 0∃i . Thus, the pseudo-gradient can be simplified 

to

∂iL w0 =
∂iC w0 − λ ∂iC w0 − λ > 0
∂iC w0 + λ ∂iC w0 + λ < 0

0 −λ ≤ ∂iC w0 ≤ λ
.

Then, we confine the search area in each quasi-Newton optimization step so that it does not 

cross any discontinuity. Specifically, for our problem where all discontinuities are at 0, when 

updating wt to wt + 1. we reset the value of wi
t + 1 to 0 if sign wi

t + 1 ≠ sign wi
t . It constrains the 

optimization to be in the same “orthant” in each iteration.

L-BFGS optimizer is provided in PyTorch30, in which SCMER is implemented. Based on it, 

we implemented a special case of OWL-QN algorithm for optimization of the model. Two 

modifications we made are as follows.

5.7 DATA PREPROCESSING

For the melanoma data34, which is TPM based, after removing ERCC spike-ins, we 

processed the data using the standard workflow of SCANPY62, including quality control 

(filtering out genes that are detected in less than 3 cells), normalization (10,000 reads per 

cell), log transformation, highly variable genes detection (with a loose threshold to filter out 

noisy genes; not to be confused with the DXG we compared with), and scaling.

For the Ileum Lamina Propria Immunocytes data36, bone marrow data37, and A549 data38, 

which are UMI based, we used the standard workflow of SCANPY, including quality control 

(filtering out genes that are detected in less than 3 cells), normalization (10,000 reads per 

cell), log transformation, highly variable genes detection, and scaling. We used the stratified 

approach to suppress batch effect on the Ileum Lamina Propria Immunocytes data.

For protein data in CITE-Seq39,40, we followed the preprocessing of protein data described 

in the original publication. For mRNA data in CITE-seq, we follow the standard workflow 
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of SCANPY, as described above, except that we did not filter highly variable genes. We 

preprocessed protein data as mRNA data, without filtering highly variable genes.

5.8 INFERENCE OF TF ACTIVITIES

Because TFs tend to bind at sites with cognate motifs, accessibility at peaks with the motifs 

reflects their activity. To estimate transcription factor activity from sci-ATAC-seq data, we 

use chromVAR46 package with the default setting. It quantifies accessibility variation across 

single cells by aggregating accessible regions containing a specific TF motif. The observed 

accessibility of all peaks containing a TF motif is compared with a background set of peaks 

normalized for known technical confounders.

5.9 COMPARISON WITH OTHER METHODS

To identify the highly expressed genes (HXG), we used the standard SCANPY62 workflow. 

HXG is defined by the total reads of a gene across all cells. To identify the highly variable 

genes, we followed the standard scoring method in SCANPY62.

SCMarker19 provides a gene list without ranks. It has two parameters, n and k, which affect 

the number of resulting features. Based on our observation, n has a minor effect on the 

result. Thus, we fixed n = 50 and tested k from 10 to 1,200 to create feature gene lists of 

various sizes.

We ran Monocle 217 in unsupervised and supervised manners. For the supervised run, the 

labels were used directly. The trajectory was inferred using clusters/labels and pseudo-time 

is calculated. Genes were ranked by the degree they are explained by functions (which were 

fitted with cubic splines) of pseudo-time. For the unsupervised run, we clustered the cells 

and visually confirmed the clusters are concordance with the labels.

We ran RankCorr12 in both supervised and unsupervised manner. For the supervised 

run, we used the label from the data directly. For the unsupervised run, we used the 

Leiden algorithm63 for clustering which is the recommended method in SCANPY. Default 

parameters were used, and the clusters are visually checked that they are reasonable.

For random results, we randomly selected gene sets of given sizes. Reported are mean 

performance and the critical level of statistically significantly better (or worse) than random 

as defined by single-sample one-sided z-test at 5% significance level.

DATA AVAILABILITY

All original datasets are accessible through the original publications34–41, including the 

melanoma data (GSE72056), pan-cancer cell line data (https://singlecell.broadinstitute.org/

singlecell/study/SCP542 ), immune cell subtypes data (https://singlecell.broadinstitute.org/

singlecell/study/SCP359 ), hematopoiesis data (GSE116256), A549 data (GSE128639), 

CITE-seq data (GSE128639 and GSE100866), and CyTOF data (https://cytobank.org/

nolanlab/reports/Levine2015.html). Source Data for Figures 1–5 are available with this 

manuscript.
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Fig. 1: The SCMER approach.
(a) Workflow of SCMER. SCMER selects the features that preserve the manifold from a 

single-cell omics dataset X. Features can be selected from either X or another co-assayed 

omics X′. Vector w indicates the selection. Y is the dataset after feature selection. P and Q 
are cell-cell similarity matrices for X and Y, respectively.

(b) Applications of SCMER. SCMER selects features that preserve the manifold and 

retain inter- and intra-cluster diversity, and thus can be applied to discover rich molecular 
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pathways, integrate modalities, and design customized DNA/RNA/antibody panels of 

restricted sizes.

(c) Capabilities of SCMER compared with mainstream label/cluster-based differential 

expression (DE) analysis methods and correlation-based methods. The hypothetical 

branching trajectories contain common progenitors, precursors for A and B, and mature 

A and B.
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Fig. 2: Results of the data of melanoma patients.
(a) UMAP embedding of the dataset without feature selection. Each dot represents a cell and 

the cell types are color-coded (Macro: macrophages, Endo: endothelial cells, CAF: cancer-

associated fibroblasts, Unres: unresolved cells; labels and dots are colored synchronously by 

cell types).

(b) UMAP of the dataset using SCMER selected genes.

(c) Recall of gene sets for SCMER, SCMarker, Monocle 2, RankCorr, highly expressed 

genes (HXG), highly variable genes (HVG), principal component analysis (PCA), and 

differentially expressed genes (DEG, supervised). X-axis is the number of selected genes 

and Y-axis is the number of covered gene sets. A gene set is considered recalled when at 

least one gene in the set is selected. “Random” shows the expected number of gene sets for 
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randomly selected markers. The area corresponds to 1.645 x standard deviation on each side. 

Results above the area has p < 0.05 based on one-sided z-test.

(d-f) RNA expression levels of genes showing intra-cluster gradients. Cells are in the same 

locations as in

(a) and overlaid with RNA expression levels (color bar).

(g-i) Overall Kaplan-Meier survival curve for selected markers in TCGA SKCM. High and 

low include patients in above and under 33% percentile, respectively. Each group includes n 
= 151 patients.

Liang et al. Page 20

Nat Comput Sci. Author manuscript; available in PMC 2023 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: Results of the ileum lamina propria immunocytes data.
(a) UMAP embedding of the original dataset. Each dot represents a cell and the cell types 

are color coded (T (gd): gamma-delta T cell, Tregs: regulatory T cell, Endo: endothelial cell, 

TRM: tissue-resident memory T cell, DC: dendritic cell, ILC: innate lymphoid cell).

(b) UMAP embedding of the same dataset based on genes selected by SCMER.

(c-f) Examples of RNA expression levels of the genes selected by SCMER that (c) 

distinguish major cell types and (d) subtypes, (e) are transcription factors regulating different 
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cell types, and (f) show gradual changes among cell states. Cells are in the same locations as 

in (a) and overlaid with RNA expression levels (color bar).

(g) The RNA expression level of DUSP1. See Supplementary Figure 7 for DUSP2 and 

DUSP4.
(h) Distributions of the RNA expression levels in major cell types of the genes above.

(i) Recalls of the gene sets selected by SCMER, SCMarker, Monocle 2, HXG, HVG, PCA, 

and DEG, similar to Fig. 2c.
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Fig. 4: Results of the A549 lung cancer cell line data.
(a-c) UMAP embedding of (a) the original sci-RNA-seq dataset, (b) the sci-RNA-seq dataset 

on SCMER selected markers, and (c) the sci-ATAC-seq peak dataset. Each dot represents a 

cell. Treatment time points are color-coded.

(d-i) RNA expression levels of selected genes show in (d-f) RNA space and (g-i) ATAC 

space. ATAC space only includes co-assayed cells.

(j) Heatmap of RNA expression levels of selected genes and motif-based activity of highly 

variable transcription factors (TFs). (Uncor: uncorrelated, Pos: positively correlated, Neg: 
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negatively correlated, with regard to NR3C1 and NR3C2.) ETV3 and ETV4 are in the ETS 

transcription factor family.
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Fig. 5: Results of the CITE-seq bone marrow mononuclear cells data.
(a-c) UMAP embedding of the original dataset using (a) protein, (b) all genes, and (c) 

SCMER selected genes. CD4-like T cells (CD4 TMEM and CD4 Naïve T), CD8-like T 

cells [Effector CD8 T, CD4 TMEM, CD8 Naïve T, gamma-delta T (gdT) cells, and Mucosal-

associated invariant T (MAIT) cells] are framed by dotted circles, respectively, for better 

visual identification. Three circles are present in the result of RNA because of two separate 

clusters for CD8-like T cells. Also highlighted are progenitor cells [hematopoietic stem 

cells (HSCs), lymphoid-primed multipotent progenitors (LMPPs), granulocyte-monocyte 
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progenitor cells (GMPs), and Progenitor (Prog) of B cells, megakaryocytes (Mks), red 

blood cells (RBCs), and dendritic cell (DCs)]. Fully annotated cell types are shown in 

Supplementary Figure 10.

(d-f) Levels of (d) proteins, (e) genes encoding the proteins, and (f) genes selected by 

SCMER. Cells are in the same locations as in (a) and overlaid with RNA expression level 

(color bar).
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Table 1:

Precision and recall of detecting RCPs on simulated data.

RCPs Major cell types

Cell types RCP-A RCP-B Progenitor Precursor-A Precursor B Mature-A Mature-B

Abundance 2.55% 2.68% 21.23% 22.43% 19.83% 16.73% 15.30%

Precision/recall Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.

SCMER 0.82 0.68 0.87 0.67 0.97 0.96 0.95 0.96 0.94 0.94 0.95 0.96 0.94 0.93

DE analysis 0.61 0.34 0.73 0.40 0.94 0.95 0.94 0.93 0.95 0.94 0.94 0.95 0.95 0.96

Correlation 0.48 0.36 0.43 0.28 0.91 0.96 0.76 0.67 0.76 0.67 0.88 0.95 0.88 0.92

Listed are precision (pre.) and recall (rec.) using a K-NN classifier for one cell type at a time using feature selected by SCMER, DE analysis using 
known cell types, and correlation using pseudo-time (Supplementary Note 2). Higher is better for both metrics. Also shown are the abundances of 
the cell types.
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