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ABSTRACT

As part of the Multiple Myeloma Research Foundation (MMRF) im-
mune atlas pilot project, we compared immune cells of multiple myeloma
bone marrow samples from 18 patients assessed by single-cell RNA se-
quencing (scRNA-seq), mass cytometry (CyTOF), and cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq) to understand
the concordance of measurements among single-cell techniques. Cell type
abundances are relatively consistent across the three approaches, while vari-
ations are observed in T cells, macrophages, and monocytes. Concordance
and correlation analysis of cell type marker gene expression across differ-
ent modalities highlighted the importance of choosing cell type marker
genes best suited to particular modalities. By integrating data from these
three assays, we found International Staging System stage 3 patients ex-
hibited decreased CD4+ T/CD8+ T cells ratio. Moreover, we observed

upregulation of RAC and PSMB, in natural killer cells of fast progressors
compared with those of nonprogressors, as revealed by both scRNA-seq
and CITE-seq RNA measurement. This detailed examination of the im-
mune microenvironment in multiple myeloma using multiple single-cell
technologies revealedmarkers associatedwithmultiplemyeloma rapid pro-
gression which will be further characterized by the full-scale immune atlas
project.

Significance: scRNA-seq, CyTOF, and CITE-seq are increasingly used for
evaluating cellular heterogeneity. Understanding their concordances is of
great interest. To date, this study is the most comprehensive examination of
the measurement of the immune microenvironment in multiple myeloma
using the three techniques. Moreover, we identified markers predicted to
be significantly associated with multiple myeloma rapid progression.

Introduction
Single-cell sequencing technologies offer advantages over traditional bulk
methods in cancer genomics research for evaluating cellular heterogeneity
and investigating evolution of cellular subpopulations between the tumor and
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its microenvironment. For example, single-cell methods have been exten-
sively applied to multiple myeloma, a highly heterogeneous disease marked
by uncontrolled clonal expansion of plasma cells. Single-cell RNA sequencing
(scRNA-seq) has been used to examine tumor and immune cell populations (1,
2) and mass cytometry (CyTOF) to evaluate the impact of drugs on immune
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populations in multiple myeloma (3). The third technology, cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq), is a more recent,
multimodal approachwith simultaneous quantification of single-cell transcrip-
tomes and surface proteins. All three approaches enable identification of cell
types, cell states, and characterization of cellular heterogeneity at transcrip-
tomic and/or protein levels. Consequently, understanding their concordances
across technologies is of great practical interest.

In addition, the bone marrow microenvironment plays an important role
in the evolution of premalignant multiple myeloma, multiple myeloma pro-
gression, and treatment response. Single-cell transcriptomics analysis of the
tumor microenvironment (TME) revealed compositional alterations begin at
the monoclonal gammopathy of undetermined significance (MGUS) stage, in-
cluding enrichment of T cells, natural killer (NK) cells, and CD16+ monocytes
(2). Specifically, the percentage of CD4+ T cells was significantly reduced in
bone marrow of patients with multiple myeloma, leading to altered CD4+

T/CD8+ T ratio (4). When comparing the clinical status, the ratio decreased
in International Staging System (ISS) stage 3 patients compared with stage 1 pa-
tients (5). With respect to treatment, the proportion of CD3+ T cells was lower
in treated patients comparedwith patients with chemo-naïvemultiplemyeloma
(6). Further work is needed to expand initial findings using various assays and
reveal candidate markers for characterizing clinical features of patients with
multiple myeloma and optimizing treatment.

Combining the timeliness of the technology concordance question with fur-
therance of multiple myeloma research, we subjected bone marrow samples
from 18 patients with multiple myeloma to scRNA-seq, CyTOF, and CITE-seq,
examining the similarities across the aforementioned single-cell techniques.
We used the results to investigate the relationship between immune popula-
tion compositional alterations and disease stages and revealed a set of markers
associated with multiple myeloma rapid progression.

Materials and Methods
Ethics Approval and Consent to Participate
All procedures performed in studies involving human participants were in
accordance with the ethical standards of theMultipleMyeloma Research Foun-
dation (MMRF) research committee. These samples provided by MMRF were
all from the MMRF’s CoMMpass clinical trial (NCT NCT01454297). Written
informed patient consent was obtained from all patients for the collection and
analysis of their samples by the MMRF. The CoMMpass study was conducted
in accordance with recognized ethical guidelines in the United States and Eu-
ropean Union. The Institutional Review Board at each participating center
approved the study protocol.

Ammonium-chloride-potassium Lysis of Bone
Marrow Aspirates
Bone marrow aspirate (BMA) samples obtained from subjects enrolled in the
MMRF CoMMpass study (NCT01454297). Any blood clots were removed
from BMA samples via passage through 70 mmol/L cell strainer. BMA sam-
ples were aliquoted into 5 mL aliquots in 50 mL conical tubes and 45 mL of
22 mmol/L filtered ammonium-chloride-potassium (ACK) lysing buffer (155
mmol/L ammonium chloride/10 mmol/L potassium bicarbonate/0.1 mmol/L
Ethylenediaminetetraacetic Acid (EDTA)/pH7.4) was added to each 5 mL
aliquot and the tune gently inverted several times to mix. Tubes were then cen-
trifuged at 400 × g for 5 minutes. The supernatant was removed and the cell

pellet resuspended with 5 mL of RPMI1640 and transferred to a clean tube. All
aliquots of ACK-lysed BMA aliquots were combined into 1 × 50 mL tube, the
volume adjusted to 50 mL with RPMI1640. The cells were then mixed by gentle
inversion and the tube centrifuged at 400 × g for 5 minutes. The supernatant
was then removed by aspiration. Depending on the size of the BMA cell pellet,
the cell pellet resuspended in 1–10 mL of EasySep buffer [PBS containing 2%
FBS (v/v) and 1 mmol/L EDTA (PBS/FCS/EDTA buffer)]. A total of 25 mL of
cell suspension was removed for cell counting.

Isolation of CD138-positive and CD138-negative
Cells from BMA
CD138-negative (CD138−) immune cell mononuclear cells in BMAs from
subjects enrolled in the MMRF CoMMpass study (NCT NCT01454297)
were isolated via negative selection from CD138-positive (CD138+) myeloma
cells using the EasySep immunomagnetic bead technology (EasySep Human
CD138-Positive Selection Kit: Stem Cell Technologies) in accordance with the
manufacturers protocol. Briefly, 100 × 106 cell/mL bone marrow mononuclear
cell (BMMC) in a sterile 17 × 100 mm (14 mL) tube were gently mixed and
incubated with 100 mL/mL CD138 selection antibody cocktail for 15 minutes
at room temperature. A total of 50 mL/mL of EasySep magnetic nanoparti-
cles was then added to the cell suspension, gently mixed, and incubated for
a further 10 minutes at room temperature. The volume of the cell suspension
was then adjusted to 8 mL with PBS containing 2% FBS (v/v) and 1 mmol/L
EDTA (PBS/FCS/EDTA buffer) and the cell suspension mixed by gentle pipet-
ting (2–3×). The tube was then placed in the magnetic separator. After 5
minutes incubation at room temperature, the magnet and tube were carefully
inverted to pour off the supernatant into a sterile 50 mL conical tube. This
supernatant contains the heterogeneous CD138− immune cell mononuclear
population (MNC). The tube was then removed from the magnet and an ad-
ditional 8 mL of PBS/FCS/EDTA added, gently mixed, and returned to the
magnetic separator. Again, after 5 minutes incubation in the magnetic separa-
tor, the tube andmagnet were carefully inverted to pour of the supernatant into
the 50 mL collection tube. This PBS/FCS/EDTA “wash” step was repeated once
more resulting in approximately 24 mL suspension of CD138− bone marrow
MNCs. CD138− MNCs were then pelleted by centrifugation at 400 × g for 5
minutes and the supernatant removed by aspiration. The CD138− MNC pellet
was resuspended in freezing medium (90% FCS/10% DMSO) at a concentra-
tion of approximately 8–10 × 106 cells/mL prior to cryogenic storage in liquid
nitrogen.

Processing of BMMC and Library Prep From MMRF
CoMMpass Study for scRNA-seq at Washington
University in St. Louis
Washington University in St. Louis (WUSTL) Cell Thawing: Multiple myeloma
BMMC aliquots were thawed in 37°C water bath. Cells were then pelleted by
centrifugation at 300 × g for 5minutes and all supernatant was removed. To
prepare cells for the Miltenyi Dead Cell Removal Kit, cells were resuspended
in 100 μL of beads and incubated at room temperature for 15 minutes. Dead
cells were depleted using the autoMACSPro Separator. Live cells were pelleted
by centrifugation at 450 × g for 5 minutes. Cells were finally resuspended in
ice-cold PBS and 0.5% BSA and loaded onto the 10x Genomics Chromium
Controller and using the Chromium Next GEM Single-Cell 3′ GEM, Library
and Gel Bead Kit v3.3. Utilizing the 10x Genomics Chromium Single-Cell 3′v3
Library Kit and Chromium instrument, approximately 16,500 to 20,000 cells
were partitioned into nanoliter droplets to achieve single-cell resolution for
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a maximum of 10,000 individual cells per sample. The resulting cDNA was
tagged with a common 16nt cell barcode and 10nt Unique Molecular Identi-
fier (UMI) during the Reverse Transcription (RT) reaction. Full-length cDNA
from poly-A mRNA transcripts was enzymatically fragmented and size se-
lected to optimize the cDNA amplicon size (∼400 bp) for library construction
(10x Genomics). The concentration of the 10x single-cell library was accurately
determined through qPCR (Kapa Biosystems) to produce cluster counts appro-
priate for the HiSeq 4000 or NovaSeq 6000 platform (Illumina). A total of 26×
98 bp (3′v2 libraries) sequence data were generated targeting between 25K and
50K read pairs/cell, which provided digital gene expression profiles for each
individual cell.

Icahn School of Medicine at Mount Sinai BMMC
Processing Differences FromWUSTL
BMMC aliquots were partially thawed in 37°C water bath. A total of 1 mL of
warm thawing media (RPMI + 10% FBS) was added to the partially thawed
BMMC aliquot and the entire volume was transferred to a 15 mL conical tube
containing 10 mL of warm thawing media. The empty BMMC tube was rinsed
with another 1 mL of thawing media which was then also transferred to the
15 mL conical tube. Cells were processed using the EasySep Dead Cell Removal
(Annexin V) Kit (StemCell Technologies, catalog no. 17899).

scRNA-seq Data Quantification Preprocessing
For scRNA-seq analysis, the proprietary software tool Cell Ranger v3.0.0 from
10x Genomics was used for demultiplexing sequence data into FASTQ files,
aligning reads to the human genome (GRCh38), and generating gene-by-cell
UMI count matrix.

Seurat v3.0.0 (7, 8) was used for all subsequent analysis. First, a series of qual-
ity filters was applied to the data to remove those barcodes which fell into any
one of these categories recommended by Seurat: too few total transcript counts
(<300); possible debris with too few genes expressed (<200) and too fewUMIs
(<1,000); possiblemore than one cell with toomany genes expressed (>50,000)
and toomany UMIs (>10,000); possible dead cell or a sign of cellular stress and
apoptosis with too high proportion of mitochondrial gene expression over the
total transcript counts (>20%). Finally, predicted doublets were also removed
using scrublet V0.2.3.

We constructed a Seurat object using the unfiltered feature-barcode matrix for
each sample. Each sample was scaled and normalized using Seurat’s “SCTrans-
form” function to correct for batch effects (with parameters: vars.to.regress =
c("nCount_RNA", "percent.mito"), return.only.var.genes = F).

scRNA-seq Cell Type Annotation
Cell types were assigned to each cluster by manually reviewing the expres-
sion of marker genes. The marker genes for main cell types were CDA,
CDB,MSA (B cells);CDA,CDB,CD,CDE (CD8+ T cells);CD, ILR,
CD, CDE (CD4+ T cells); NKG, GNLY, KLRD, NCAM (NK cells);MZB,
SDC, IGHG (Plasma cells); CLECC, ILRA, IRF, GZMB (Dendritic cells);
FCGRA (Macrophages); CD, LYZ, SA, SA (Monocytes); AZU,
ELANE, MPO (Neutrophils); COLA, COLA, TNC, SA (Fibroblasts);
and AHSP, HBA, HBB (Erythrocytes). Detailed cell type markers are listed in
Supplementary Table S1A. All cells that were labeled as erythrocytes and plasma
cells were removed from subsequent analysis.

Processing of BMMC From MMRF CoMMpass Study for
CITE-seq
Samples were thawed in the water bath at 37°C for 2–3 minutes and the cell
concentration, viability were determined using a Bio-Rad T20 Cell Counter
(catalog no. 145-0102). Samples were blocked by incubation with TruStain fcX
(BioLegend, catalog no. 422301) in a 50 μL cell labeling buffer. Next, sam-
ples were labeled with Total-seq antibodies (BioLegend; Supplementary Table
S1B) for 30 minutes. Cells were washed and resuspended to obtain a cell con-
centration of 700–1,200 cells/μL and gently pipette mix using a regular-bore
pipette tip until a single-cell suspension is achieved. We then proceed immedi-
ately to Single-Cell Gene Expression Library (3′GEX) construction using 10X
Chromium Single-Cell 3′ Reagent Kits v3 (catalog no. 1000075) and Chromium
i7 Sample Index Plate with Barcoding technology for Cell Surface Protein. For
each sample, 5,000 cells were injected for CITE-seq. The libraries were se-
quenced on NovaSeq S4 platform in pair end sequencing and a single index
with at least 50,000 read pairs per cell.

CITE-seq Data Quantification Preprocessing
We used Cell Ranger to demultiplex, map to the human reference genome
(grch38), and count UMIs in the mRNA libraries, and CITE-seq-Count to
count UMIs in the antibody-derived tag (ADT) libraries. We filtered out cells
with more than 10% UMIs from mitochondrially encoded genes or less than
1,200 mRNA UMIs in total. We then constructed a Seurat object using the
feature-barcodematrix for each sample (Seurat v3.0.0). Each sample was scaled
and normalized using Seurat’s “SCTransform” function to correct for batch
effects (with parameters: vars.to.regress = c("nCount_RNA", "percent.mito"),
return.only.var.genes = F). Next, the protein expression levels were added to
the Seurat object, followed by normalization and scaling for ADT assay.

CITE-seq Data Multimodal Integration and Cell
Type Annotation
Using Citefuse v1.2.0, expression was normalized by function normaliseEx-
prs(sce, altExp_name = "ADT", transform = "log"). We then integrated RNA
and ADT matrix by an integration algorithm called similarity network fusion
(SNF) and clustered cells by Louvain clustering. Then, cell types were assigned
to each cluster by manually reviewing the expression of marker genes at RNA
levels (same as scRNA-seq; Supplementary Table S1A) and ADT levels (if avail-
able). All cells that were labeled as erythrocytes and plasma cells were removed
from subsequent analysis.

Processing of BMMC From MMRF CoMMpass Study for
CyTOF at Icahn School of Medicine at Mount Sinai
BMMC aliquots were thawed in a 37°C water bath and immediately transferred
into RPMI + 10% FBS. Cells were pelleted by centrifugation at 300 × g for
5 minutes and all supernatant was removed. Cells were then incubated for 20
minutes in a 37°C water bath with Cell-ID Rh103 Intercalator (Fluidigm, cat-
alog no. 201103A) to label nonviable cells. Samples were then blocked with Fc
receptor blocking solution (BioLegend, catalog no. 422302) and stained with a
cocktail of surface antibodies for 30 minutes on ice. All antibodies were either
conjugated in-house using Fluidigm’s × 8 polymer conjugation kits or pur-
chased commercially from Fluidigm. Next, samples were fixed and barcoded
using Fluidigm’s 20-Plex Pd barcoding kit (catalog no. 201060) and pooled into
a single tube. The pooled sample was then fixed and permeabilized using BD’s
Cytofix/Cytoperm Fixation/Permeabilization Kit (catalog no. 554714), blocked
with heparin at a concentration of 100 U/mL to prevent nonspecific staining
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of eosinophils and stained with a cocktail of intracellular antibodies. Finally,
the sample was refixed with freshly diluted 2.4% formaldehyde in PBS contain-
ing 0.02% saponin and Cell-ID Intercalator-Ir (Fluidigm, catalog no. 201192A)
to label nucleated cells. The sample was then stored as a pellet in PBS until
acquisition.

Immediately prior to acquisition, the pooled sample was washed with Cell
Staining Buffer (CSB) and Cell Acquisition Solution (Fluidigm, catalog no.
201240) and resuspended in Cell Acquisition Solution at a concentration of
1 million cells per mL containing a 1:20 dilution of EQ normalization beads
(Fluidigm, catalog no. 201078). The sample was acquired on the Fluidigm He-
liosmass cytometer using the wide bore injector configuration at an acquisition
speed of < 400 cells per second.

Processing of BMMC From MMRF CoMMpass Study
for CyTOF at Mayo
BMMC aliquots were thawed in a 37°C water bath and immediately transferred
into 15mL tubes and slowly diluted with 10 mL of prewarmed RPMI + 10%
FBS+25 U/mL Benzonase (Sigma-Aldrich; catalog no. E1014-5KU; 250 U/mL).
Cells were pelleted by centrifugation (all spins at 500× g for 5 minutes) and su-
pernatant was removed. Cells were then incubated for 1 hour in a 37°C water
bath in 10 mL of RPMI+10% FBS. Cells were counted and 3–4 million cells
were aliquoted into microfuge 2 mL conical tubes, pelleted and washed 2×
with 2 mL CSBMaxpar Cell Staining Buffer (Fluidigm; catalog no. 201068; 500
mL) and resuspended in 300 μL of Cell-ID Cisplatin (Fluidigm; catalog no.:
201064) 5 minutes/RT, to label dead cells. Immediately quenched with 1.5 mL
CSB, pelleted, and washed with CSB 2×.

For staining, the cell pellet was gently resuspended in 50 μL CSB and the addi-
tion of an equal volume of diluted surface antibody cocktail, for a final staining
volume of 100μL. The staining reaction was incubated on a rocker platform for
45 minutes at room temperature. A total of 1 mL of CSB was used to wash and
pellet the cells 2×. Cell pellet was resuspended in the residual volume and then
gently resuspended in 500 μL of 1× PBS. An equal volume of 4% PFA in PBS
was added to fix cells for a minimum of 20 minutes at a final concentration of
2% PFA in PBS. The sample was labeled overnight at 4°C on a rocker platform
with Cell-ID Intercalator-Ir (Fluidigm, catalog no. 201192A) inMaxpar Fix and
Perm Buffer (Fluidigm; catalog no. 201067; 100 mL) to label nucleated cells.

The following day the sample was washed 1× with CSB (all cell pelleting per-
formed at 800 × g for 5 minutes after fixation) and twice with Cell Acquisition
Solution (Fluidigm, catalog no. 201240). Final resuspension was in Cell Ac-
quisition Solution at a concentration of 0.7 million cells per mL containing a
1:10 dilution of EQ normalization beads (Fluidigm, catalog no. 201078). The
sample was acquired on the Fluidigm Helios mass cytometer using the wide
bore injector configuration at a targeted acquisition speed of 300 events per
second. A cryopreserved specimen of 3–4 million Ficoll-enriched peripheral
blood mononuclear cell (PBMC) derived from a pool of 4 anonymous platelet
donors was included with every batch of MMRF samples (9). This sample was
treated and analyzed in parallel throughout the entire experiment as a process
control.

Processing of BMMC From MMRF CoMMpass Study for
CyTOF at Emory
BMMC aliquots were thawed in a 37°C water bath and immediately trans-
ferred into RPMI+10% FBS. Cells were pelleted by centrifugation at 300 × g
for 5 minutes and all supernatant was removed. Cells were then incubated for

20 minutes in a 37°C incubator. Cells were pelleted by centrifugation at 300 ×
g for 5 minutes and all supernatant was removed. Cells were resuspended in
PBS and incubated with cisplatin for 1 minute (Fluidigm, catalog no. 201195)
to label nonviable cells. Samples were washed with Maxpar cell staining buffer
(Fluidigm, catalog no. 201068) and stained with a cocktail of surface antibod-
ies for 15 minutes at room temperature. All antibodies were either conjugated
in-house using Fluidigm’s X8 polymer conjugation kits or purchased commer-
cially fromFluidigm.Next, samples werewashed and fixed and permedwith TF
Fix/Perm and Perm/Wash Kit (BD Pharmigen, catalog nos. 51-9008100 and 51-
9008102) using manufacturer’s recommendations. Permeabilized samples were
incubated for 30 minutes in Perm/Wash with a cocktail of intracellular anti-
bodies. After washing and centrifugation at 800 × g for 5 minutes, the sample
was refixed with Maxpar Fix I buffer (Fluidigm, catalog no. 201065) and Cell-
ID Intercalator-Ir (Fluidigm, catalog no. 201192A) to label nucleated cells. The
sample was then stored as a pellet in PBS until acquisition. Immediately prior
to acquisition, the sample was washed with Cell Staining Buffer and Maxpar
Water (Fluidigm, catalog no. 201069) and resuspended in Maxpar Water at a
concentration of 1 million cells per mL containing a 1:10 dilution of EQ nor-
malization beads (Fluidigm, catalog no. 201078). The sample was acquired on
the Fluidigm Helios mass cytometer using the HT injector configuration at an
acquisition speed of <500 cells per second.

CyTOF Data Preprocessing
The resulting FCS files were normalized and concatenated using Fluidigm’s
CyTOF software and then demultiplexed using the Zunder lab single-cell de-
barocder (https://github.com/zunderlab/single-cell-debarcoder). The FCS files
were further cleaned onCytobank by removing EQ beads, lowDNAdebris, and
gaussianmultiplets. Barcodingmultiplets were also removed on the basis of the
Mahalanobis distance and barcode separation distance parameters provided by
the Zunder lab debarcoder.

CyTOF Cell Type Annotation and Expression
Normalization
Gating and data analysis were done using WUSTL Cytobank. Live, single cells
are selected by gating out cells/debris with outlier cisplatin and DNA interca-
lator staining. Cell populations were determined on the basis of gating of cell
type marker expression. Icahn School of Medicine at Mount Sinai (ISMMS):
CD3+CD19−CD56−CD33− (T cells); CD3−CD19−CD56−CD33−CD123+

HLA_DR+CD11c+ [plasmacytoid dendritic cells (pDC)]; CD3−CD19+

CD56−CD33− (B cells); CD56+CD3−CD19−CD33− (NK cells); CD33+

CD3−CD19−CD14+ (monocytes); CD33+CD3−CD19−CD14−CD16+

(macrophages). Mayo: CD3+CD19− (T cells); CD3− CD19+CD56− (B
cells); CD56+CD3−CD16+HLADR−/CD56+CD3−CD16−CD123−CD11c−

(NK cells); CD3−CD19−CD20−CD14+ (monocytes); CD3−CD19−CD20−

CD14−CD16+ (macrophages); CD3−CD19−CD20−CD123+ (pDC). Emory:
CD3+CD19− (T cells); CD3− CD19+ (B cells); CD3−CD19−CD14+ (mono-
cytes); CD3−CD19−CD14−CD16+ (macrophages). For T-cell subtypes,
ISMMS and Mayo used the same gating strategy: CD4+CD8− (CD4+ T
cells); CD8+CD4− (CD8+ T cells); CD4+CD8−CD25+CD127− [regulatory
T cell (Treg)]; CD45RA+CCR7+ (naïve T cells); CD45RA+CCR7− (EMRA
T cells); CD45RA−CCR7+ (central memory T cells), CD45RA−CCR7−

(effector memory T cells), Emory: CD4+CD8− (CD4+ T cells); CD8+CD4−

(CD8+ T cells); CD45RO−CCR7+ (naïve T cells). Next, we performed
t-SNE analysis for 18 samples from ISMMS. We used the scaled expression
of markers, including CD57, CD11c, Ki67, CD19, CD45RA, KLRG1, CD4,
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CD8, ICOS, CD16, CD127, CD1c, CD123, CD66b, TIGIT, TIM3, CD27, PD-L1,
CD33, CD14, CD56, NKG2A, CD5, CD45RO, NKG2D, CD25, CCR7, CD3,
Tbet, CD38, CD39, CD28, DNAM1, HLA-DR, PD-1, Granzyme B, CD11b.
For expression normalization in CyTOF analysis, we followed instructions
from Cytobank and used transformed ratios itself compared with its con-
trol, which is the table’s minimum of median of channel (described here
https://support.cytobank.org/hc/en-us/articles/206147637-How-to-create-
and-configure-a-Heatmap).

Bland-Altman Analysis
R package Blandr (v0.5.3) was used to calculate mean difference and 95%
confidence interval (CI) in Bland-Altman analyses (10). Parameter sig.level =
0.95.

Differential Expression Analysis
Differential expression analysis was performed using the default test (Wilcoxon
rank-sum test) of function FindMarkers (from the Seurat package) with the
specified parameters: min.pct= 0.25, logfc.threshold= 0.25, and only.pos= T.

Data Availability Statement
The sequence data generated in this study have been submitted to the
NCBI BioProject database PRJNA765009 (https://www.ncbi.nlm.nih.gov/
bioproject/).

Results
Patient Characteristics and Overview of CD45+ Immune
Cells Measured by scRNA-seq, CyTOF, and CITE-seq
We used 18 cryopreserved multiple myeloma samples of CD138− “im-
mune cell” fractions from patients enrolled in the MMRF CoMMpass study
(NCT01454297). Nine were fast progressors (FP, progressed within 6 months)
and nine were nonprogressors (NP, progressed >6 months but within 5 years)
with patient ages ranging from 37 to 83 years. Twelve patients were in the ISS
stage III, 8 underwent autologous stem cell transplantation (ASCT), 11 were fe-
males and 15 were Caucasians (Fig. 1A; Supplementary Table S1C). Each sample
was subjected to scRNA-seq, CyTOF, and CITE-seq at three different respective
academic research centers, namelyWUSTL, ISMMS, andBeth IsraelDeaconess
Medical Center (BIDMC). All sites received aliquots from the same sample and
technical replicates were conducted for two samples for each assay (Fig. 1A).

To assess immune cell composition of patients with multiple myeloma, bone
marrow (BM) baseline samples (collected at the initial diagnosis) from these
18 patients were subjected to scRNA-seq, with immune cells clustered on the
basis of their transcriptome profiles using the Louvain clustering algorithm im-
plemented by Seurat (refs. 7, 8; Fig. 1B). We then investigated immune cells of
these same samples by CyTOF using a 39-marker panel (Supplementary Table
S1D). Cell populations were characterized by expression of markers, clustered
by the flowsom algorithm (11), and visualized with vi-SNE in the Cytobank
(12) platform (Fig. 1C). Given the discordance between RNA expression and
protein expression that is known to exist (13), it is informative to character-
ize cell populations by measuring RNA and protein at the same time. Finally,
we utilized CITE-seq with antibody-oligonucleotide conjugates and 29 pro-
tein markers (Supplementary Table S1B) to simultaneously quantify single-cell
transcriptomes and surface proteins. Following standard scRNA-seq quality
filtering protocols, immune cells were clustered on the basis of integratedmulti-
omic profiles by the SNF integration algorithm in CiteFuse (ref. 14; Fig. 1D).

FromCD138− BMaliquots, we detected, on average, 1,051 immune cells/sample
using scRNA-seq, >64K CD45+ cells/sample using CyTOF, and 718 immune
cells/sample using CITE-seq.

Advantages of CITE-seq in Distinguishing T-cell
Subtypes in Multiple Myeloma
To assess the potential advantages of simultaneous quantification of RNA
and protein expression in CITE-seq as compared with standard scRNA-seq,
we labeled immune cell identities determined by integrated transcriptome
and protein expression, but clustered cells by transcriptional profiles alone
(Fig. 1E). Interestingly, most cell types, including B cells, monocytes,
macrophages, neutrophils, and pDCs, formeddistinct clusters, while T-cell sub-
types mixed together. To further understand the difference of cell type marker
expression between the RNA and protein levels, we visualized the expression of
some canonical markers in Uniform Manifold Approximation and Projection
(UMAP) and investigated the concordance of the sample-level average expres-
sion of the 29 CITE-seq protein markers between RNA level and ADT level
(Fig. 1F andG; Supplementary Fig. S1A). As expected, expression levels ofmark-
ers are generally concordant (R= 0.72, P< 10−4), with some exceptions where
protein-level expression is higher than RNA-level expression and vice versa.
One impressive example is CD4 (Fig. 1F and G), which is highly expressed at
ADTmeasurement, but minimally expressed at the RNA level, mainly because
mRNAs are produced at much lower rates and have much shorter half-lives
than proteins (15). This observation is consistent with previous studies showing
low CD4 mRNA expression compared with surface CD4 protein (16). Finally,
because naïve CD8+ T cells were clustered together with CD4+ T cells based
on transcriptome profiles (Fig. 1E), we investigated whether reclustering T cells
alone could help to distinguish subtypes at the RNA level. Because the high
similarities of transcriptional profiles among T cells (16) and different surface
protein markers could be encoded by the same gene (17), reclustering CD4+

and naïve CD8+ T cells did not provide additional resolution of T-cell subtypes
(Fig. 1H). Consistentwith a published study about renal T subtype identification
using CITE-seq (18), our observation emphasizes the advantage of integrat-
ing protein-level expression of cell type markers for multiple myeloma T-cell
subtype identification in CITE-seq as compared with standard scRNA-seq.

Data Reproducibility and Comparisons of Cell
Populations Measured by the Same Technologies
Across Different Centers
To examine data reproducibility, percentages of cell subsets in CD45+ popula-
tions were compared between technical replicates for two samples in each assay.
The technical replicate pairs are strongly correlated in all three assays (average
Pearson correlation coefficient r= 0.94 in scRNA-seq, 0.89 in CyTOF, and 0.92
in CITE-seq; Supplementary Fig. S1B–S1D). Next, to examine the consistency
of immune cell populations measured by the same techniques at different sites,
we evaluated the percentage of immune populations captured by three centers
using four samples. scRNA-seq data were generated in ISMMS, WUSTL, and
BIDMC using aliquots of the same samples and CyTOF data were generated in
ISMMS, Mayo Clinic, and Emory University (panels are shown in Supplemen-
tary Table S1D–S1F). BIDMC scRNA-seq data are fromCITE-seq data analyzed
with RNA signal alone (Supplementary Fig. S1E).We observed that the percent-
ages of B cells, pre-B cells, NK cells, pDCs, monocytes and macrophages are
generally consistent, while the T-cell subset varies across centers in scRNA-seq
measurement (Supplementary Fig. S1F). This suggests that T-cell composi-
tion could vary by aliquots and potential sample processing differences across
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FIGURE 1 Overview of cell populations of 18 multiple myeloma patient samples subject to scRNA-seq, CyTOF, and CITE-seq. A, Patient
characteristics and single-cell data collection. FP and NP denote fast progressors and nonprogressors, respectively. ISS = International Staging System.
ASCT = Autologous Stem Cell Transplantation. B, UMAP projection of integrated scRNA-seq data, with cells colored by immune cell types. C, t-SNE
projection of integrated CyTOF data, with cells colored by immune cell types. D, UMAP projection of integrated CITE-seq data, with cells clustered by
integrated RNA and ADT expression, colored by immune cell types. E, UMAP projection of integrated CITE-seq data, with cells clustered by
transcriptional level alone, colored by immune cell identities from D. F, Comparison of canonical cell type marker gene expressions between protein
level (ADT, top) and transcriptional level (RNA, bottom). Cells are colored by normalized expression. G, Concordance of sample-level average
expressions of CITE-seq protein markers measured at RNA level and ADT level. The gray shaded area represents the 95% confidence interval around
the line of best fit. R = Pearson correlation coefficient. H, UMAP projection of CD4+ T cells and naïve CD8+ T cells, which is the subset of integrated
data in E, with cells clustered by transcriptional level alone, colored by immune cell identities from D and E.
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centers while other cell types aremore similar in scRNA-seqmeasurement. The
cell type abundance measured by CyTOF is less variable than that measured by
scRNA-seq, with smaller differences observed in T-cell subsets across centers
(Supplementary Fig. S1G, mean difference calculated by Bland-Altman analy-
sis, shown in Supplementary Table S1G). Moreover, cell subset abundances of
ISMMS samples tend to have less variation likely due to the benefit of barcod-
ing samples (Materials and Methods). The cell type frequencies calculated by
one center (Emory) tend to be lower overall compared with other centers in
CyTOF, probably because wide bore injector assembly with cell acquisition so-
lution was not used to maintain cell integrity (Materials and Methods). It is
worthwhile noting that including reference samples in CyTOF is very helpful
for identifying potential artifacts. For example, we observed a big proportion
of CD66b/CD3+ cells in patient samples while these were absent in the ref-
erence sample from a healthy donor (data not shown). We hypothesized that
this CD66b staining artifact (CD66b is not expressed on CD3+ T cells) was
likely due to nonspecific staining from dead cells. Indeed, the percentage of
CD66b/CD3+ cells dropped dramatically after dead cell depletion. Finally, to
evaluate the similarity of expression profiles across different samples and cen-
ters, we calculated the Pearson correlation coefficient of expression of the B-cell
markers between populations detected from different centers using scRNA-seq
(Supplementary Fig. S1H). We observed that B cells clustered according to pa-
tients instead of centers, suggesting patient dependence of B-cell transcriptome
profiles, likely because B cells are potential reservoirs of plasma cells (19). Over-
all, we observed that cell type abundances are generally consistent across centers
for most cell types and that similarity of transcriptome profiles of immune pop-
ulations is center independent, suggesting absence of strong batch effects across
centers. These observations imply that our cross-technique comparisons should
be valid.

Comparisons of Cell Type Abundances and Correlations
of Cell Type Marker Expression Across the Three
Techniques
To evaluate the concordance of cell type composition determined by the three
methods, we calculated the cell subset frequency of each immune popula-
tion relative to the CD45+ populations (Fig. 2A). Overall, all three approaches
were concordant, though there is somewhat stronger concordance between
scRNA-seq and CITE-seq for all cell types except NK cells (mean differ-
ence calculated by Bland-Altman analysis, shown in Supplementary Table
S1H). Cell type abundance is especially consistent for B cells, pDC, and neu-
trophils. Interestingly, the cell frequency decreased and increased for T cells and
macrophages/monocytes, respectively, in CyTOF as compared with scRNA-
seq and CITE-seq. The mean differences between CyTOF and CITE-seq were
−13.6% (95%CI:−24.02 to−3.11) for T cells and 11.07% (95%CI: 3.19–18.95) for
macrophages/monocytes. This finding is consistentwith a previous studywhere
fewer T cells were detected in CyTOF compared with scRNA-seq in healthy
bone marrow samples (20). To further investigate which subpopulations were
discordant, the frequencies of T-cell subsets,monocytes, andmacrophageswere
evaluated (Fig. 2B, mean difference calculated by Bland-Altman analysis). In-
terestingly, CITE-seq detected far more CD4+ T cells compared with CyTOF
and scRNA-seq, while CyTOF detected far fewer CD8+ T cells compared with
the other two techniques. In terms of T-cell subtypes, Treg frequency increased
and memory CD8+ T cells reduced in scRNA-seq, as compared with CyTOF.
In addition, scRNA-seq detected far more macrophages than the other two
methods, while monocyte frequency was the lowest in CyTOF.

To further evaluate concordance between scRNA-seq and CITE-seq, we exam-
ined expression of cell type marker genes, including both the RNA and ADT
levels. Average expressions of eachmarker gene at the transcriptional level (blue
dots) between scRNA-seq and CITE-seq are generally concordant (Fig. 2C). In
contrast, we observed drastic differences of some marker genes between RNA
and ADT expression in CITE-seq, probably due to the RNA dropout (21) and
shorter half-lives of mRNAs versus proteins (15). For example, expression of
CD4_adt is higher than that of transcriptional CD4, whereas CD127/ILR tends
to be highly expressed at the transcriptional level. This dynamic explains why
ILR is often differentially expressed in CD4+ T-cell population, while CD4 is
weakly expressed in scRNA-seq. Taken together, these observations highlight
the importance of choosing cell type marker genes best suited to particular
modalities.

We also correlated expressions ofmarker genes among scRNA-seq, CyTOF, and
CITE-seq. The vast majority are positively correlated in protein–protein com-
parison (Fig. 2D) and RNA–RNA comparison (Fig. 2E). Next, we investigated
the correlations of expressions of marker genes between the transcriptome and
protein levels (Fig. 2F and G; Supplementary Fig. S2A and S2B). As expected,
the overall correlation between different modalities is lower than that of the
samemodalities.We observed significant correlation for somemarkers, includ-
ing CCR in CD4+ naïve T cells, ILR in CD4+ memory T cells, and FCGRA
in NK cells, between RNA and protein level of CITE-seq, while no markers
are significantly correlated between scRNA-seq and CyTOF (Fig. 2G). We also
found that FCGRA inmacrophages has a strong correlation, while somemark-
ers are significantly anticorrelated between CITE-seq transcriptional level and
CyTOF, such asCDD,CDG, ILR,CDA, etc. (Supplementary Fig. S2A–S2C;
Supplementary Table S1I).

Decreased Ratio of CD4+/CD8+ T Cells From ISS Stage 2
to ISS Stage 3 Patients and FP-related Gene Signatures
Furthermore, we sought to investigate the relationship between clinical features
and immune cell composition of patients with multiple myeloma by examining
the ratio of CD4+/CD8+ T cells of patients at different disease stages. A previ-
ous study used flow cytometry to reveal that this ratio was significantly lower
in PBMCs of patients with multiple myeloma as compared with that of normal
controls and the ratio decreased with the multiple myeloma progression (5). By
integrating three assays, we found the ratio tends to decrease from ISS stage 2
to ISS stage 3 patients (Fig. 3A). Furthermore, CITE-seq and CyTOF analyses
revealed significant downregulation of CD45RA in stage 3 patients, suggest-
ing that CD8+ T cells tend to be activated rather than naïve in stage 3 patients
(Fig. 3B). In addition, we then identified several differentially expressed genes
(DEG) of NK cells from FPs relative to NPs, including ARPC, XAF, RAC,
and PSMB, as revealed by both scRNA-seq and CITE-seq assays (Fig. 3C).
ARPC, actin-related protein 2/3 complex subunit 5, has been revealed to be
highly expressed in patients with poor overall survival and could be treated as
an independent biomarker for patients with multiple myeloma (22), consistent
with our observations. A previous microarray-based study found that RAC,
Rac family small GTPase 2, is significantly upregulated in multiple myeloma as
compared with MGUS (23). One subunit of the proteasome (PSMB9), was re-
markably highly expressed in cell groups with t(4;14) translocations versus cells
fromMGUS (24). In summary, previous studies indicatedRAC andPSMB are
associated with disease development fromMGUS tomultiplemyeloma and our
analysis suggested that theymight also be related tomultiple myeloma progres-
sion. Taken together, we observed the ratio of CD4+ T/CD8+ T cells decreased
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FIGURE 2 Comparison of cell subset frequencies and correlations of expression of canonical cell type markers across different modalities. A, Main
immune cell population (CD45+) frequencies observed by CITE-seq, CyTOF, and scRNA-seq. Each boxplot is colored by assay. CITE-seq populations
are determined on the basis of integrated RNA and ADT expressions. B, Immune cell subtype frequencies for CITE-seq, CyTOF, and scRNA-seq. Each
boxplot is colored by assay. CITE-seq populations are determined on the basis of integrated RNA and ADT (Continued on the following page.)
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(Continued) expressions. C, Concordance of sample-level average expressions of canonical cell type markers in main cell subsets between scRNA-seq
and CITE-seq. CITE-seq RNA and protein (ADT) level expressions are represented by blue and red dots, respectively. D, Spearman correlation
coefficients of protein level expressions of cell type markers between CyTOF and CITE-seq. Each dot represents a marker gene and the color of the dot
represents the P value of correlation. Markers are highlighted with an outer circle if the P value is less than 0.05. E, Spearman correlation coefficients of
transcriptional level expressions of cell type markers between scRNA-seq and CITE-seq. Each dot represents a marker gene and the color of the dot
represents the p value of correlation. Markers are highlighted with an outer circle if the P value is less than 0.05. F, Spearman correlation coefficients of
cell type markers between transcriptional level and protein level expressions in CITE-seq. Each dot represents a marker gene and the color of the dot
represents the P value of correlation. Markers are highlighted with an outer circle if the P value is less than 0.05. G, Spearman correlation coefficients of
cell type markers between transcriptional level expressions from scRNA-seq and protein level expressions from CyTOF. Each dot represents a marker
gene and the color of the dot represents the P value of correlation. Markers are highlighted with an outer circle if the P value is less than 0.05.

in stage 3 patients relative to stage 2 patients, suggesting an increased popula-
tion of CD8+ T cells in bone marrow microenvironment (BMME) of patients
in stage 3. We also found that RAC and PSMB are upregulated in NK cells
in FPs relative to NPs at transcriptional level, which could potentially serve as
multiple myeloma progression markers.

Discussion
Single-cell sequencing technologies have been widely used in studying tissue
heterogeneity, tumorigenesis, and metastasis given their advantages of being

able to depict genome, transcriptome, proteome, and othermutli-omics profiles
of single cells (25). However, the similarities of measurements across the vari-
ous single-cell techniques remain to be fully elucidated. Herein, we integrated
scRNA-seq, CyTOF, and CITE-seq to perform a detailed comparison of their
measurements for multiple myeloma BMME. From CD138− BM aliquots of 20
samples from 18 patients, we detected, on average, 1,051 immune cells/sample
using scRNA-seq, >64K CD45+ cells/sample using CyTOF, and 718 immune
cells/sample using CITE-seq. By clustering cells with or without protein pro-
files in CITE-seq, we showed the advantages of multimodal measurement over
transcriptional measurement alone of cell type markers when characterizing

FIGURE 3 Ratio of CD4+ T/CD8+ T of patients in different ISS stages and markers associated with ISS disease stages and multiple myeloma
progression. A, Violin plots showing the ratio of CD4+ T/CD8+ T of patients in ISS stage 2 and 3 in scRNA-seq, CyTOF, and CITE-seq. Horizontal lines
indicate the median of data points in each group. B, Violin plots showing single cell–level normalized expression of CD45RA in CITE-seq ADT
measurement and CyTOF. The difference is significant at P ≤ 0.0001 based on Wilcoxon rank-sum test. C, Heatmaps showing DEGs of NK cells of FP
versus NP patients in CITE-seq RNA measurement (left) and scRNA-seq measurement (right). The samples are ordered on the basis of hierarchical
clustering of expression profiles of these genes in CITE-seq RNA measurement. Expression values are scaled such that for each gene, the average of
the scaled expression is 0 and the SD is 1. Adjusted P values and log fold change in CITE-seq and scRNA-seq were shown on the left and right side of
DEGs, respectively. FC = fold change.
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T-cell subtypes in MM (Fig. 1E–H). This observation is in line with a study to
investigate renal T-cell subtypes by CITE-seq (18).

Next, to examine the consistency of cell populations measured by the same
techniques at different sites, we evaluated the cell subset abundances captured
by three centers using four samples. Cross-center comparisons (Supplemen-
tary Fig. S1F and S1G) suggested no strong batch effect across centers and there
are some important factors to consider to obtain reproducible and reliable re-
sults: (i) It is important to include reference samples in CyTOF to help identify
marker nonspecific staining artifacts; (ii) Barcoding samples, sample delivery
mechanism, and using lyophilized panels is important in CyTOF experiments.
Furthermore, cross-technique comparisons revealed that the percentages of
immune populations measured by scRNA-seq, CyTOF, and CITE-seq are
generally concordant, except some variations in T cells, macrophages, and
monocytes (Fig. 2A and B). Analysis revealed relatively high correlations of
most markers between the same modalities, though some markers are nega-
tively correlated. (Fig. 2C–G). This observation highlighted the importance of
choosing marker genes best suited to particular modalities.

Previous studies have found patients with multiple myeloma have lower CD4+

T/CD8+ T ratios relative to healthy donors and these ratios are further de-
creased in ISS stage 3 versus ISS stage 1 patients (5). Here, we confirmed this
trend using three single-cell technologies, finding that this ratio tends to de-
crease even in stage 3 versus stage 2 patients (Fig. 3A). We also observed the
decreased ratio in stage 2 compared with stage 1 patients based on CyTOF
and CITE-seq measurement but not in scRNA-seq, probably due to the lim-
ited number of patients in stage 1. Future study could further investigate how
immune cell composition changes along with ISS stages with expanded sam-
ple size. In addition, we observed upregulation of ARPC, XAF, RAC, and
PSMB in NK cells of FPs compared with those of NPs, as suggested by both
scRNA-seq and CITE-seq RNA measurements (Fig. 3C). RAC and PSMB
have been revealed to be associated with disease development from MGUS to
multiple myeloma (23, 24) and our analysis suggested that they might also be
related to multiple myeloma rapid progression, supported by both scRNA-seq
and CITE-seq. Because of the limited number of protein markers in CITE-
seq, we were unable to evaluate the protein-level expression of these multiple
myeloma progression-related genes identified from RNAmeasurement, which
requires further validation. It would also be interesting to investigate multiple
myeloma progression-related markers after controlling for treatments in future
studies.

This analysis is just a small sampling of the larger work being conducted by the
MMRF and their associated academic research centers to provide a sufficiently
broad, deep, and technologically diverse vast dataset for accurately character-
izing BMME and to help interrogate multiple myeloma TME using different
single-cell technologies. We hope this study will help researchers refine cell
population characterization strategies and provide insights to those considering
integrating multiple single-cell methods to comprehensively address biological
questions.
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