
Vol:.(1234567890)

Journal of Neurology (2023) 270:3442–3450
https://doi.org/10.1007/s00415-023-11669-3

1 3

ORIGINAL COMMUNICATION

Transcranial direct current stimulation enhances motor learning 
in Parkinson’s disease: a randomized controlled trial

Sanne Broeder1   · Britt Vandendoorent1   · Pauline Hermans2 · Evelien Nackaerts1   · Geert Verheyden1   · 
Raf Meesen2,3   · Jean‑Jacques Orban de Xivry2,4   · Alice Nieuwboer1,4 

Received: 21 February 2023 / Revised: 13 March 2023 / Accepted: 14 March 2023 / Published online: 23 March 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2023

Abstract
Writing training has shown clinical benefits in Parkinson’s disease (PD), albeit with limited retention and insufficient transfer 
effects. It is still unknown whether anodal transcranial direct current stimulation (atDCS) can boost consolidation in PD 
and how this interacts with medication. To investigate the effects of training + atDCS versus training + sham stimulation on 
consolidation of writing skills when ON and OFF medication. Second, to examine the intervention effects on cortical excit-
ability. In this randomized sham-controlled double-blind study, patients underwent writing training (one session) with atDCS 
(N = 20) or sham (N = 19) over the primary motor cortex. Training was aimed at optimizing amplitude and assessed during 
online practice, pre- and post-training, after 24-h retention and after continued learning (second session) when ON and OFF 
medication (interspersed by 2 months). The primary outcome was writing amplitude at retention. Cortical excitability and 
inhibition were assessed pre- and post-training. Training + atDCS but not training + sham improved writing amplitudes at 
retention in the ON state (p = 0.017, g = 0.75). Transfer to other writing tasks was enhanced by atDCS in both medication 
states (g between 0.72 and 0.87). Also, training + atDCS improved continued learning. However, no online effects were found 
during practice and when writing with a dual task. A post-training increase in cortical inhibition was found in the train-
ing + atDCS group (p = 0.039) but not in the sham group, irrespective of medication. We showed that applying atDCS during 
writing training boosted most but not all consolidation outcomes in PD. We speculate that atDCS together with medication 
modulates motor learning consolidation via inhibitory processes (https://​osf.​io/​gk5q8/, 2018-07-17).

Keywords  Motor learning · Parkinson’s disease · Short interval intra-cortical inhibition · Transcranial direct current 
stimulation · Micrographia

Introduction

Parkinson’s disease (PD) is a progressive multisystem dis-
order characterized by the selective loss of dopaminergic 
neurons. Motor learning has been shown to exert some 

long-term training effects on micrographia and other dex-
terity problems in PD [1, 2]. However, the instability of 
these gains have also been demonstrated [3, 4]. A potentially 
effective tool for boosting motor learning in healthy people 
is anodal transcranial direct current stimulation (atDCS) [5]. 
A recent systematic review in PD on the effects of atDCS on 
upper limb motor performance revealed that the work to date 
suffers from low methodological quality [6]. As for learning, 
our own pilot work demonstrated that one session of writing 
training combined with atDCS improved retention and trans-
fer [7] but this was not confirmed by a recent study on motor 
sequence learning [8]. These conflicting results inspired the 
current investigation relying on a power-based sample size, 
a more challenging writing task and a parallel design.

Striatal and cerebellar loops modulate motor learning by 
promoting neural plasticity via the induction of long-term 
potentiation (LTP) [9]. A deficit in these circuits, such as 
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manifest in PD, alters motor learning processing [10, 11]. 
Motor learning involves different phases including skill 
acquisition and consolidation [12]. PD seems to particu-
larly affect consolidation, as evidenced by reduced transfer, 
automatization (e.g., dual-task interference) and retention of 
learning [10, 13]. The primary motor cortex (M1) has a key 
role in the motor network and is, therefore, a primary region 
of interest for atDCS montages [14, 15]. Indeed, a single ses-
sion of atDCS at M1 was found to induce LTP-like plasticity 
and repetitive stimulation resulted in more stable and longer 
lasting LTP in healthy subjects [16]. However, the influence 
of dopamine on motor learning [2, 17] and cortical excitabil-
ity [18] is also inconsistent in PD and, therefore, the effects 
of atDCS when applied in conjunction with motor practice 
may also vary with the dopaminergic state.

To answer these open questions, we primarily aimed to 
investigate the effects of atDCS applied to M1 concurrently 
with writing training in comparison to sham. We hypoth-
esized that training + atDCS would strengthen consolidation 
of writing skills as indicated by improved 24-h retention 
of the amplitude (primary outcome) compared to train-
ing + sham. As a secondary aim, we were interested in the 
assessment of three other outcomes of consolidation: (1) the 
ability to transfer learning to an untrained task; (2) the abil-
ity to withstand dual-task interference and (3) the ability to 
continue learning in a second session. We also investigated 
online-stimulation effects during actual practice. Finally, we 
examined the interactions between atDCS-augmented motor 
learning and dopaminergic medication by exploring motor 
cortex excitability outcomes using transcranial magnetic 
stimulation (TMS) pre- and post-learning while ON and 
OFF medication.

Experimental procedures

Participants

Inclusion criteria for PD patients were: (i) a diagnosis of 
PD, based on the UK brain bank criteria [19]; (ii) able 
to participate in testing during a stable ON-medication 
period; (iii) Hoehn & Yahr (H&Y) stage II–III and stage 
I if right-dominant symptoms; (iv) Mini-Mental State 
Examination (MMSE) score ≥ 24 [20]; (v) no other inter-
fering disorders or implants; (vi) absence of visuospatial 
deficits (Rey-Osterrieth Complex Figure Test score ≥ 32) 
[21]; and (vii) right-handedness determined by the Edin-
burgh Inventory [22]. For the TMS-protocol, the following 
additional inclusion criteria were applied to reduce vari-
ability: (i) Resting motor threshold (RMT) < 62% and (ii) 
short-interval intra-cortical inhibition (SICI) between 30 
and 70%. Therefore, cortical excitability was not meas-
ured in all participants, resulting in different group sizes 
for the behavioral and TMS outcomes (see Supplemental 
Matrial).

The study was approved by the local Ethics Commit-
tee Research UZ/KU Leuven (S60893) and pre-registered 
in the Open Science Framework (OSF) (https://​osf.​io/​
gk5q8/). Sample size calculation was based on previ-
ous pilot work and included a dropout rate of 10% (see 
Supplemental Matrial) [7]. The sample was estimated 
to include 40 subjects. Due to the COVID-19 pandemic, 
the final sample size was N = 39 (Fig. 1). We recruited 39 
healthy control subjects (HC) enabling comparison with 
PD at baseline (see Supplemental Matrial). All protocol 
deviations due to the pandemic are described in the Sup-
plemental Matrial.

Fig. 1   CONSORT flowchart. 
After the first retention session, 
one participant dropped out 
due to unexpected side effects 
of the intervention. Due to the 
COVID-19 pandemic, two par-
ticipants discontinued the TMS 
assessments (no 1.5 m distance 
possible)

https://osf.io/gk5q8/
https://osf.io/gk5q8/
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Experimental design

Figure 2A shows that a randomized double-blind design 
with parallel groups was applied in accordance with the 
CONSORT guidelines [23]. However, medication was 
manipulated within the atDCS and sham groups in a rand-
omized cross-over design with a 2-month washout. Partici-
pants underwent five testing sessions. During the first famil-
iarization session (T0) ON medication, the protocols were 
explained and clinical testing was conducted. At T0 hotspot 
localization was determined with TMS and standardized 
using a head mould [7]. After T0, an independent researcher 
carried out a concealed randomization procedure to assign 
subjects to either the active atDCS or sham stimulation 
(online tool: Sealed Envelope Ltd. 2017. Simple randomiza-
tion service, https://​www.​seale​denve​lope.​com/​simple-​rando​
miser/​v1/). Randomization was done in permuted blocks of 
four and H&Y stage (I–III) and age (< 65 or ≥ 65 years) 
were included as strata. There was one dropout (atDCS 
group) because of unexpected side effects after the inter-
vention (Fig. 1). At the first intervention session (T1), writing 

training was combined with 20 min of sham or atDCS. Pre- 
and post-tests of writing without tDCS were performed. 
Cortical excitability tests were also conducted pre-post and 
this before the writing tests. At T2, 24 h later, retention tests 
were performed without tDCS and TMS assessment. After 
a washout of 30 min, they received a second learning and 
tDCS stimulation protocol to examine the ability for contin-
ued learning. The same protocol was repeated (T3 and T4) in 
the alternate medication state (Fig. 2).

Online practice and tests

Online practice and testing was done on a custom-made 
writing tablet (sampling frequency = 200 Hz; spatial reso-
lution = 32.5 μm). Tasks consisted of writing sequences 
with increasing size (from 1.0 to 2.0 cm, reflecting usual 
writing sizes) over a trajectory of 13 cm with and without 
visual target zones, indicating the requested writing size 
(Fig. 2C). The task was sensitive to medication effects [24] 
and required producing a figure-8 pattern with increasing 
amplitudes [25]. Subjects were instructed to reproduce the 

Fig. 2   A Patients completed one baseline, two intervention and two 
retention sessions in ON and OFF (randomized). B Performance was 
assessed during training (online practice), offline (pre, post, retention) 

and continued learning. C Tablet tasks consisted of writing sequences 
with increasing size

https://www.sealedenvelope.com/simple-randomiser/v1/
https://www.sealedenvelope.com/simple-randomiser/v1/


3445Journal of Neurology (2023) 270:3442–3450	

1 3

targeted writing size at a comfortable speed for 45 s. A rest 
period (10 s) was applied in-between each trial. During 
online practice with atDCS or sham, patients performed 
three blocks of six trials per condition with decreasing 
feedback (i.e. visual targets) over time to optimize learning 
[26]. In the first block, 66% of the trials had target zones, 
followed by 50% and 33% during the second and the third 
block. The order of trials with and without targets was 
randomized per block. Trained and untrained tasks on the 
tablet were assessed without atDCS and consisted of 2 tri-
als per time point (pre-, post- and 24 h follow-up).

The primary outcome was the amplitude of the trained 
sequence without targets measured at 24-h retention com-
pared to pre- and post-performance. The amplitude of an 
untrained ‘O’-sequence, of equal difficulty, was used to 
test near-transfer. To examine far-transfer, daily life writ-
ing on paper was assessed with the Systematic Screening 
of Handwriting Difficulties (SOS) test [27] (Fig. 2B). To 
test the ability to withstand dual-task interference, sub-
jects had to count high and low tones when writing at the 
same time. Online acquisition was quantified by compar-
ing repeated measures of the trained task without targets. 
Other secondary measures included writing with targets, 
writing speed (cm/s), error (mm) and the writing perfor-
mance index (WPI) (see Supplemental Matrial).

Transcranial direct current stimulation

During online practice, atDCS or sham stimulation was 
applied for 20  min on the left M1, determined via a 
TMS procedure (see Supplemental Material), and with 
the cathodal electrode positioned over the contralateral 
supraorbital area (mean contact impedance of 5.5 ± 1.1 
kΩ for the atDCS and 8.6 ± 2.3 kΩ for the sham group). 
Stimulation intensity of 1 mA was applied, as this dose 
proved effective in previous work [7]. tDCS was admin-
istered via two saline-soaked sponge electrodes with a 
5 cm × 7 cm surface area (i.e. current density of 0.03 mA/
cm2). The participants and the experimenter were blinded 
to the type of stimulation (anodal or sham) through the 
‘study mode’ of the tDCS stimulator (DC-Stimulator, 
NeuroConn GmbH, Germany). In this mode, the blinded 
researcher used a file-digit number provided by an inde-
pendent researcher, which encoded the type of stimulation. 
Stimulation was administered by the same researcher in all 
sessions. The tDCS questionnaire [28] was used before and 
after each stimulation to monitor adverse effects. A visual 
analogue scale (VAS) was applied after each session to 
check blinding. After study completion, participants were 
asked to guess whether they underwent active tDCS or 
sham.

Cortical excitability assessment

The Supplemental Material provides a detailed description 
of TMS procedures, including hotspot identification and data 
processing. According to standard definitions, the resting 
motor threshold (RMT) was specified for each participant at 
the start of each TMS measurement [29]. Single-pulse TMS 
was used to determine motor evoked potentials (MEP) from 
peak-to-peak amplitudes. These measurements included 20 
pulses applied with a test stimulus of 130% of the RMT 
determined at T0. Changes in excitability were examined by 
calculating a ratio of the post-TMS/pre-TMS MEP sizes at 
130% of the pre-RMT values. Paired pulse TMS was used 
to measure pre-post SICI, applying 20 single-pulses and 20 
paired-pulses in a randomized order. The following param-
eters were used: (1) 130% of the RMT as the test stimulus; 
(2) the stimulator intensity that brought the inhibition level 
most closely to 50% based on the SICI curve measured at 
baseline as the conditioning stimulus; and (3) the inter-stim-
ulus interval at 2 ms.

Data processing and statistical analysis

For all tablet tasks, writing amplitude (cm) was extracted 
as described previously using Matlab R2020a (The 
MathWorks) [30]. The relative effect of the dual-task 
was estimated by calculating the dual-task interfer-
ence (DTI) for writing amplitude (DTIamplitude = ((Dual 
task performance − single task performance)/Single task 
performance) × 100).

Statistical analyses were conducted using SPSS software 
(version 28 SPSS, Inc., USA) or SAS software (OnDemand 
for Academics: User’s Guide. Cary, NC: SAS Institute Inc) 
with significance levels of p < 0.05. Parametric or non-para-
metric tests were performed after checking data distribution. 
Mann–Whitney U tests were used for investigating blinding 
of the participants as assessed by VAS scores. Cross-tabu-
lation was used to analyze whether the participants believed 
active tDCS or sham was administered. Group differences 
during pre-tests were checked with between-group statistics. 
Potential carry-over effects after the cross-over of medica-
tion state and medication effects on pre-writing performance 
per group were checked with within-group statistics (see 
Supplemental Matrial).

Side-effects, average writing performance and cortical 
excitability outcomes were analyzed with Linear Mixed 
Models with unstructured covariance matrices. Significant 
interactions were explored by Bonferroni multiple compari-
son post hoc tests. We controlled for within-subject differ-
ences by including participant as a random effect. Hedges g 
based on pooled standard deviations was used to calculate 
effect sizes. Scores for side effects were analyzed for each 
session separately (intervention or retention). Medication 
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effects were analyzed with GROUP (atDCS or sham) and 
TIME (pre or post) as fixed factors. Comparisons for reten-
tion, transfer and dual tasking included GROUP, TIME (pre, 
post or offline retention) and MEDICATION (OFF or ON) as 
fixed factors. For outcomes obtained during online practice 
and continued learning, the between-participant factor was 
GROUP and within-participant factors included BLOCK 
(block 1, 2 or 3) and MEDICATION. The post/pre-ratios of 
MEP sizes were analyzed with GROUP and MEDICATION 
as fixed factors. For other TMS outcomes, the fixed factors 
GROUP, TIME (pre or post) and MEDICATION were used. 
An explorative ANCOVA analysis between changes in writ-
ing performance and cortical excitability is provided in the 
Supplemental Matrial.

Results

Blinding and clinical outcomes

Side-effects did not differ across groups over time 
(no significant interactions for GROUP*TIME). 
Similarly, VAS scores of stimulation intensity after 
atDCS or sham showed no significant group dif-
ferences ( InterventionOFF U = 177.000, p = 0.728 ; 
R e t e n t i o n O F F  U = 152.500, p = 0.296   ; 
InterventionON U = 169.000, p = 0.751 ; RetentionON 
U = 163.500, p = 0.624 ) (Fig. S1). There were also no sig-
nificant differences in the assessments of blinding for both 

participants and researchers (Table S1). Table 1 shows that 
groups were similar for all clinical outcomes, except for dis-
ease duration which was significantly longer for the sham 
group ( U = 266.500, p = 0.030 ). Table 2 also illustrates that 
at baseline groups were similar for all writing and cortical 
excitability outcomes. Medication significantly improved the 
amplitude of the untrained task in the tDCS group, but no 
other medication effects were found (Fig. 3B).

Consolidation of writing

A significant GROUP*TIME*MEDICATION interac-
tion for amplitude of the trained task without targets 
was found (F(2, 36) = 4.389, p = 0.020 ). OFF medica-
tion, there was a significant GROUP*TIME interaction 
(F(2, 37) = 3.273, p = 0.049 ). Post hoc analysis showed that 
the training + atDCS group wrote significantly larger at the 
post-test compared to training + sham ( p = 0.004, g = 0.96 ). 
ON medication, there was a non-significant GROUP*TIME 
interaction (F(2, 36) = 2.827, p = 0.072 ). Because of 
its clinical significance, we explored this result post hoc, 
revealing that patients wrote significantly larger at reten-
tion after training + atDCS compared to training + sham 
( p = 0.017, g = 0.75) (Fig. 3A).

A similar but stronger pattern of results was found 
for near-transfer, expressed by the amplitude changes 
of the untrained ‘O’-task. A significant GROUP*TIME 
interaction ( F(2, 37) = 21.294, p < 0.0005 ) confirmed 
by post hoc testing showed that the training + atDCS 

Table 1   Subject characteristics

Results are presented as the mean (± standard deviation) for normally distributed variables and as the median (1st quartile, 3rd quartile) for non-
normally distributed variables. *atDCS and sham group significantly different at p < 0.05
DEXTQ Dexterity Questionnaire, H&Y stage Hoehn and Yahr stage, HADS Hospital anxiety and depression questionnaire, HC healthy control 
subjects, LEDD Levodopa Equivalent Daily Dose, MDS-UPDRS Movement Disorders Society Unified Parkinson’s disease rating scale, MoCA 
Montreal Cognitive Assessment

HC (N = 39) Sham group (N = 19) tDCS group (N = 20) Sham vs. 
tDCS (p 
value)

Age (years) 68.0 (± 8.2) 63.5 (± 8.5) 62.9 (± 8.3) 0.80
Gender (M/F) 18/21 14/5 17/3 0.45
Edinburgh handedness Inventory (%) 100 (95.0, 100) 100 (90.0, 100) 100 (88.3, 100) 0.51
Education (years) 15.0 (12.0, 17.0) 15.0 (14.0, 15.0) 16.0 (14.0, 16.8) 0.17
MoCA (0–30) 27.0 (25.5, 28.0) 28.0 (25.0, 29.0) 28.0 (25.3, 29.0) 0.95
HADS-Anxiety (0–21) 3.5 (± 2.7) 5.6 (± 4.1) 6.3 (± 3.4) 0.55
HADS-Depression (0–21) 2.4 (± 2.3) 5.6 (± 3.4) 5.7 (± 3.4) 0.99
DEXTQ-24 (24–96) 24.0 (24.0, 24.0) 35.0 (30.0, 48.0) 32.0 (25.5, 37.8) 0.08
Disease duration (years) – 6.0 (4.0, 9.0) 3.5 (2.0, 8.0) 0.03*
Disease dominance (R/L) – 11/8 15/5 0.32
MDS-UPDRS III (0–132) – 29.1 (± 12.1) 23.4 (± 12.1) 0.15
H&Y (0–5) – 2.0 (2.0, 3.0) 2.0 (2.0, 3.0) 0.48
LEDD (mg/24 h) – 748.8 (± 381.8) 588.4 (± 379.0) 0.20
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group wrote significantly larger compared to the train-
ing + sham group, which wrote significantly smaller 
with time at post and retention (resp. p = 0.006 and 
p = 0.005, g between 0.56 and 0.92 ). No interactions with 
medication were found, but subjects wrote with larger writ-
ing amplitudes when ON compared to OFF (main effect: 
F(1, 36) = 7.650, p = 0.008 ) (Fig. 3B).

Analyzing the results for far-transfer, as expressed by 
the SOS score for writing on paper, showed a significant 

GROUP*TIME interaction F(2, 37) = 15.097, p < 0.0005 ). 
Post hoc analysis revealed significantly better writing 
quality at retention in the training + atDCS compared to 
the training + sham group (p = 0.011 , OFF g = 0.78 and 
ON g = 0.76).

No significant interactions were found for dual-task 
writing. Overall, medication improved (lowered) the 
DTIamplitude (main effect: F(1, 36) = 6.199, p = 0.018 ) 
(Fig. 3C). Other secondary writing variables did not show 
important GROUP*TIME changes. (Table S2). Together, 
these results also showed that training + atDCS improved 
retention and transfer of writing with large effect sizes 
(g > 0.75) irrespective of medication.

Table 2   Means (standard deviations) of writing and cortical excitabil-
ity outcomes measured during pre-tests

DTI dual-task interference, MEP motor evoked potentials, RMT rest-
ing motor threshold, SICI short-interval intra-cortical inhibition, SOS-
test the ‘Systematic Screening of Handwriting Difficulties’-test, tDCS 
transcranial direct current stimulation

Sham group tDCS group Sham vs. 
tDCS, p 
value

Trained task (tablet)
 Amplitude (cm)
  OFF 1.38 (0.19) 1.40 (0.26) 0.86
  ON 1.45 (0.26) 1.47 (0.29) 0.83
  p value 0.29 0.17

Untrained task (tablet)
 Amplitude (cm)
  OFF 1.30 (0.10) 1.27 (0.14) 0.34
  ON 1.34 (0.10) 1.31 (0.11) 0.35
  p value 0.15 0.06

Dual task (tablet)
 DTIamplitude (%)
  OFF − 4.63 (5.65) − 4.67 (5.78) 0.98
  ON − 3.30 (5.45) − 1.98 (4.52) 0.43
  p value 0.48 0.13

SOS-test (paper)
 Writing quality score (0–10)
  OFF 4.53 (1.35) 4.60 (1.67) 0.88
  ON 3.89 (1.91) 4.42 (1.80) 0.39
  p value 0.18 0.58

Cortical excitability
 RMT (%)
  OFF 47.80 (7.80) 47.63 (6.06) 0.94
  ON 47.07 (7.03) 47.25 (5.96) 0.94
  p value 0.10 0.14

 MEP size (mV)
  OFF 1.79 (1.13) 2.07 (2.09) 0.66
  ON 2.29 (1.62) 1.89 (1.65) 0.52
  p value 0.33 0.62

 SICI (%)
  OFF 53.97 (26.62) 55.01 (35.12) 0.93
  ON 51.47 (27.17) 58.29 (38.35) 0.59
  p value 0.67 0.93

Fig. 3   A Trained task writing amplitude (cm) (primary outcome), B 
amplitude (cm) of the untrained tablet task and C dual-task interfer-
ence (%). *p value < 0.05, indicated for between group differences 
only
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Online practice and continued learning

ON medication, patients wrote with larger amplitudes 
during the first online-practice session compared to 
OFF, irrespective of stimulation mode (main effect: 
F(1, 36) = 13.272, p = 0.001 ). General improvements 
over time were found for all participants (main effect: 
F(2, 37) = 4.984, p = 0.012), whereby the writing size 
increased significantly during block 2 ( p = 0.010 ) and non-
significantly during block 3 (p = 0.062 ) compared to the first 
block. No significant GROUP effects were demonstrated 
(Fig. S2).

As for continued learning, evaluated after the 24-h reten-
tion test showed a significant GROUP*TIME interaction for 
the writing amplitude ( F(2, 36) = 4.933, p = 0.013 ). Post 
hoc tests revealed that the training + atDCS group wrote 
with larger sizes during block 2 and 3 compared to the train-
ing + sham group (resp. p = 0.009 and p = 0.035) (Fig. S2). 
Taken together, although no beneficial effects of atDCS were 
apparent for the initial online-practice session, continued 
learning was enhanced by tDCS.

Cortical excitability

For the RMT and single pulse MEP peak-to-peak ampli-
tudes, the statistical analysis did not reveal significant 
interactions (RMT: F(1, 30) = 1.544, p = 0.224 and MEP: 
F(1, 22) = 1.208, p = 0.284 ) (Fig. S3A, Table S2). How-
ever, analysis of the cortical excitability outcomes showed 
significant interaction effects for SICI (GROUP*TIME: 
F(1, 28) = 7.101, p = 0.013 ). Post hoc analysis showed 
increased inhibition (a decrease in SICI values) within 
the training + atDCS group at post- compared to pre-test 
(p = 0.039 ), while the sham group exhibited a non-signifi-
cant decrease (p = 0.120 ). In addition, the training + atDCS 
group tended to show more post-inhibition compared to 
training + sham (p = 0.060 ) (Fig. S3B). TMS parameters 
were not different in ON and OFF and interactions with med-
ication were in significant (Fig. S3). However, exploratory 
correlation analysis revealed a weak but significant negative 
association between lower SICI and greater amplitude gains 
(pre-retention) in the training + atDCS group (β = − 0.002, 
p = 0.022) ON medication only and not apparent in the sham 
group (see Supplemental Matrial).

Discussion

This is the first power-based randomized double-blind study 
that investigated the effects of writing training boosted by 
atDCS versus sham in PD. In line with our hypothesis, one 
session of training + atDCS resulted in better 24-h retention, 
transfer and continued learning compared to training + sham. 

Online practice remained unaffected and resilience to DT 
was not enhanced by tDCS-supplementation. Medication 
had an impact on writing performance but did not improve 
learning. The effects of stimulation were mostly similar 
in both medication states, except that training + atDCS 
improved retention only in the ON state. As for mechanisms, 
we found an increased inhibitory signal (decreased SICI) 
after training in the atDCS group, not present in the sham 
group.

The presents findings suggest that atDCS + training facili-
tated early plasticity at 24 h after training and facilitated 
‘near’ (untrained sequences) and ‘far’ transfer (spontane-
ous writing). Effect sizes were quite substantial and induced 
after-effects on continued learning. In healthy subjects, it 
was also shown that atDCS improved retention of a force 
control task [33]. Though, this effect was not replicated on a 
sequencing task [31]. Earlier, we demonstrated that a 6-week 
intensive rehabilitation program without tDCS improved 
amplitudes of traditional writing skills, but these benefits 
were not maintained for writing on paper [1]. This under-
scores the importance of finding patient-friendly methods to 
boost motor learning transfer in PD.

In the current study, we used a more challenging learn-
ing paradigm than previously, requiring writing amplitudes 
of an increasing size while progressively withdrawing tar-
get lines, to be able to gauge short-term learning effects. 
The tDCS-related changes did not affect online practice 
but mostly modified learning after the passage of time [32, 
33]. Since the sham group tended to worsen their writing 
at retention, the interpretation of our findings needs some 
further reflection. We have no explanation for the decrement 
in writing in the sham group, as baseline performance was 
comparable between groups. It may reflect that practising 
this rather difficult task without tDCS was quickly forgot-
ten. It is, therefore, plausible that tDCS reversed this trend 
by increasing the susceptibility for sustained learning. The 
consistency of the tDCS effects involving several markers of 
consolidation, i.e., retention, transfer and continued learn-
ing, also underlines learning specificity. However, we did 
not check whether the quality of sleep was the same in each 
group and, therefore, were unable to fully exclude a possible 
sleep-related effect, although these proved absent in a study 
on healthy controls [32].

Interestingly, the TMS analysis showed that the 
tDCS + training group demonstrated inhibitory changes 
not found in the sham group. Previously, tDCS protocols 
were proposed to optimize the balance between excita-
tory and inhibitory signal transmission in the brain (i.e., 
homeostatic plasticity) [34]. Whether the increased inhi-
bition levels found in this study were actually responsi-
ble for the gains in consolidation cannot be confirmed by 
our data. However, it has been increasingly demonstrated 
that the primary inhibitory neurotransmitter in the brain, 
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Gamma-aminobutyric acid (GABA), has an impact on 
motor performance and learning in healthy ageing [35, 
36]. In PD, it was revealed that alterations in inhibition 
were correlated with the severity of bradykinesia [37, 38] 
and associated with the long-term effects of gait train-
ing, primed with repetitive TMS [39]. All of these find-
ings suggest a pivotal role of inhibitory processes in cor-
tical LTP-like plasticity and could possibly explain the 
improved learning outcomes. Increased cortical plasticity 
and improved motor performance were also associated 
with normalized inhibition due to dopaminergic medica-
tion [11, 40]. Yet, transcranial alternating current stimu-
lation was found to improve finger tapping by enhancing 
inhibitory GABAergic interneuronal activity [41] irrespec-
tive of medication state. Partly in line with the latter study, 
we also did not find baseline differences in SICI-levels 
between OFF and ON medication, but we did show better 
retention in ON than in OFF. Further investigation is war-
ranted to determine whether there is a synergistic interplay 
between medication and tDCS.

To date, large variability has been reported in response to 
tDCS protocols [42] accredited to the participants’ clinical 
profiles and the cognitive decline in PD [43–45]. Using a 
stratified randomization procedure for age and disease stage, 
clinical assessments and writing performance were compa-
rable between groups in this study. Still, disease duration 
was lower in the tDCS group, which could have affected 
motor learning ability and response to tDCS. Of note, it 
was shown previously that patients with increased disease 
severity tended to show greater tDCS-related improvements 
[46]. Nevertheless, the fact that we recruited patients with 
mild disease limits the generalizability of our work. Due to 
the TMS-eligibility criteria, the cortical excitability results 
were based on a small sample size. Since this analysis was 
considered exploratory, separate power calculations were not 
performed but are warranted for future excitability studies. 
Despite these drawbacks, we are encouraged by the posi-
tive results of tDCS on transfer and continued learning. For 
future work, we propose to investigate repeated stimulation 
sessions, longer follow-up periods and different task sets 
before the clinical implementation of tDCS as an adjunct to 
motor learning can be recommended in PD.

Conclusion

This study provides evidence for tDCS-mediated retention, 
transfer and continued learning ability of writing skills in 
PD, likely modulated by inhibitory processes. The present 
findings justify further work into the synergistic action of 
atDCS, motor training and dopaminergic therapy to boost 
activity-dependent plasticity in PD.
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