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Abstract

Imaging both the positions and orientations of single fluorophores, termed single-molecule 

orientation-localisation microscopy, is a powerful tool to study biochemical processes. However, 

the limited photon budget associated with single-molecule fluorescence makes high-dimensional 

imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here, we realise a 

radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of 

the 3D positions and 3D orientations of single molecules, with precision of 10.9 nm and 2.0° 

over a 1.5 μm depth range. The raMVR microscope achieves 6D super-resolution imaging of 

Nile red (NR) molecules transiently bound to lipid-coated spheres, accurately resolving their 

spherical morphology despite refractive-index mismatch. By observing the rotational dynamics of 

NR, raMVR images also resolve the infiltration of lipid membranes by amyloid-beta oligomers 

without covalent labelling. Finally, we demonstrate 6D imaging of cell membranes, where the 

orientations of specific fluorophores reveal heterogeneity in membrane fluidity. With its nearly 

isotropic 3D spatial resolution and orientation measurement precision, we expect the raMVR 

microscope to enable 6D imaging of molecular dynamics within biological and chemical systems 

with exceptional detail.

A hallmark of biological systems is their careful control and regulation of biomolecular 

interactions at the nanoscale, via mechanical forces [1], lipid membranes [2], and 

biomolecular condensates [3, 4], to name a few examples. Owing to their sensitivity 

and versatility [5, 6], single fluorescent molecules and their translational and rotational 

dynamics have been used to study a variety of biochemical processes, including the 
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motions of molecular motors [7, 8], conformations of supercoiled DNA [9-11], and the 

structure and organization of actin filaments [12, 13], amyloid aggregates [14, 15], and 

lipid membranes [16, 17]. Simultaneously resolving the 3D position, 3D orientation, and 

rotational diffusion of single fluorophores, termed single-molecule orientation-localization 

microscopy (SMOLM), requires careful manipulation of the phase and polarization of 

only hundreds or thousands of photons. Limited by challenging signal-to-background ratios 

(SBRs) in typical single-molecule (SM) experiments, microscopists have developed various 

SMOLM techniques to improve measurement performance [18], approaching the theoretical 

limits under ideal conditions [19-21]. To use precious fluorescence photons more efficiently 

and maximize signal-to-noise ratios (SNRs), most recently developed techniques create 

dipole-spread functions (DSFs), or images of dipole emitters, with compact footprints [11, 

12, 15, 17, 22] and thusly achieve higher precision and accuracy. One key challenge 

with these designs is that orientation estimation requires fitting subtle features within 

noisy images. Therefore, optical aberrations must be carefully calibrated, often requiring 

online measurement of specific sample-induced aberrations [23, 24]. In contrast, orientation-

sensitive DSFs based on pupil splitting [25-27] are generally more robust against aberrations 

because their orientation information is encoded in the relative brightness of well-separated 

“spots.” However, this robustness comes at the cost of typically lower SBRs and worse 

estimation performance [28].

Here, we present a combined polarization modulation and pupil-splitting technique, termed 

the radially and azimuthally polarized multi-view reflector (raMVR) microscope, that 

achieves isotropic imaging resolution and ~1.5 × better precision for measuring 6D SM 

positions and orientations compared to state-of-the-art techniques while showing excellent 

robustness against aberrations. We use the raMVR microscope to study model lipid 

membranes and how amyloid-beta aggregates intercalate within and perturb their structures. 

We also visualize SM rotational dynamics to reveal heterogeneities in the fluidity of cellular 

membranes. These data establish the power of raMVR for resolving both the structure and 

organization of biological targets accurately and precisely with nanoscale resolution.

Results

Operating principle and theoretical performance

Fluorescent molecules are well-approximated as oscillating dipole emitters [29] (Figure 

1b), and we model their rotational diffusion as uniform within a hard-edged cone using an 

orientation vector μ = [μx, μy, μz] = [sin θ cos ϕ, sin θ sin ϕ, cos θ] and solid angle Ω 
∈ [0, 2π]. To measure molecular orientation, our raMVR approach takes inspiration from 

both polarization modulation [12, 17, 30, 31] and pupil-splitting [25, 26] innovations in 

SM orientation-localization microscopy (SMOLM). First, the polarized radiation pattern of 

a dipole emitter may be manipulated to measure its orientation [32-34]; here, we use a 

vortex half waveplate and polarizing beamsplitter (PBS) (Figure 1a) to separate light from 

emitters oriented parallel to versus perpendicular to the optical axis [17, 30, 35]. Secondly, 

we wish to maximize orientation-measurement sensitivity while simultaneously maintaining 

superior SBRs in SM imaging. We therefore split fluorescence photons at the back focal 

plane (BFP) or pupil of the microscope using a square pyramidal mirror (Figure 1c), called 
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the glass pyramid. The resulting four reflected “beams” are directed toward a mirror with 

four reflective surfaces whose shape is a pyramid hollowed out of a square prism, termed 

the air pyramid. The apex angle of the air pyramid is slightly smaller compared to that of 

the glass pyramid (by 1 degree in our system, see Supplementary Section 1) and reflects 

the fluorescence back in its original direction to create four imaging channels on a camera 

(Figure 1d). Critically, both signal and background photons are separated across the four 

channels, thereby maintaining an effective SBR that is similar to a standard unpolarized 

epifluorescence microscope. While the mirror configuration is similar to that of a Cassegrain 

reflector (Figure 1c), here we mount our piecewise-planar pyramid mirror from the diagonal 

directions to avoid blocking any fluorescence (see Extended Data Figures 1-3), achieving a 

photon efficiency close to 100% and superior to that of metasurfaces [30] and spatial light 

modulators [15, 25-27].

Figure 1e shows raMVR images captured from SMs with various orientations. Each SM 

orientation and degree of rotational diffusion is clearly distinguishable by the varying 

brightnesses of the focused DSF in each channel. Moreover, because each imaging channel 

now samples one fourth of the objective’s total aperture, the DSF in each channel 

shifts laterally as the SM’s axial position changes [Figure 1e(iv,v) and Movie S1]. This 

unique method of encoding both position and orientation information enables the raMVR 

microscope to achieve estimation precisions [calculated via Cramér-Rao bound (CRB) [36], 

see Supplementary Section 2.3] far superior to that of state-of-the-art methods across a 

1.5-μm depth range (Figure 2). With a typical SM SBR of 5000 signal photons (for an 

in-plane SM at the water-glass interface, z = 0) and 40 background photons per 66.8 × 

66.8 nm2 pixel collected across all imaging channels of the raMVR microscope, the average 

precision for estimating the average orientation μ, wobble Ω, lateral x, and axial z positions 

are 2.04°, 0.23 sr, 10.8 nm, and 12.2 nm, respectively; these numbers are 47.9%, 43.8%, 

25.9%, and 55.2% smaller compared to those of CHIDO [12] and 66.4%, 65.6%, 42.8%, 

and 62.0% smaller than those of the vortex DSF [11]. Importantly, raMVR’s precision is 

superior to those of all other orientation-localization methods (see Figure S8 and Tables 

S1,S2 for other comparisons), over its entire depth range, regardless of the SM’s position 

and orientation. Due to the reduced effective numerical aperture (NA) with each imaging 

channel, raMVR exhibits somewhat reduced lateral localization precision; its localization 

precision is 3.0 nm and 1.2 nm worse than those of coordinate and height super-resolution 

imaging with dithering and orientation (CHIDO) and the vortex DSF, respectively. However, 

because of its compact DSF (Extended Data Figure 4), dim defocused SMs and even certain 

in-focus SMs are easier to detect using the raMVR microscope than when using CHIDO 

and the vortex DSF (Supplementary Section 2.2). Notably, our detection and estimation 

algorithm (Supplementary Section 3) maintains these performance advantages on simulated 

images, attaining an average localization precision of 24% and orientational precision of 5% 

greater than the CRB (Table S3).

Experimental validation of 6D precision and accuracy

Silica spheres coated with supported lipid bilayers (SLBs) composed of DPPC (1,2-

Dipalmitoyl-sn-glycero-3-phosphocholine) and 40% cholesterol (Figure 3a) have been 

previously shown [22] to be excellent calibration targets for SMOLM since we are able 
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to systematically control both the morphology and ordering of the lipids within the SLB. 

By imaging Nile red (NR, Figure S20) molecules transiently bound within the SLBs (using 

the PAINT blinking mechanism [37]), we resolve spherical structures with radii as small 

as 150 nm and as large as 1 μm without scanning the sample (Figure 3b,c). Moreover, we 

observe NR to be perpendicular to the spheres’ surfaces, regardless of the spheres’ radii 

(Figure 3d), thereby matching previous observations [15, 16]; the angles θ⊥ between NR’s 

average orientation μ and the sphere’s surface normal vector r are 12.0°±15.0°, 13.5°±17.6°, 

and 19.0°±20.4° (median ± std. dev.) for 1000-nm, 350-nm, and 150-nm radius spheres, 

respectively. We also find that NR molecules are moderately constrained in their rotational 

diffusion with wobble cone angles Ω of 1.12 ± 0.93 sr, 1.13 ± 0.95 sr, and 1.01 ± 1.01 sr 

for 1000-nm, 350-nm, and 150-nm spheres, respectively. We note that despite the severe 

refractive index mismatch between water (n2 = 1.33) and the silica sphere supporting each 

bilayer (ns = 1.45, Figure 3a), the raMVR system can image NR throughout the entire 

spherical SLB without any shape distortions (Figure 3b,c), which has never before been 

achieved by other SMOLM techniques.

To quantify localization precision, we isolate cross sections of each sphere along various 

directions θCS (Figure 3b and Movie S2) and measure the distance r between the each 

molecule and the center of the sphere (Figure 3c,e). Because of raMVR’s isotropic 

localization precision (Figure 2c,d), our measured localization precision is uniform across 

all cross-section angles θCS. The apparent full-width at half-maximum (FWHM) thicknesses 

of the SLBs are 76.1 nm for 1000-nm spheres (Movie S2), 42.6 nm for 350-nm spheres, 

and 51.6 nm for 150-nm spheres (Figure S23). The average distances r as functions of 

θCS yield eccentricities of 0.23, 0.28, and 0.20 for the 1000-nm, 350-nm, and 150-nm 

spheres, respectively (Figure 3e), where the length ratio between short and long axes is 0.96 

for an eccentricity of 0.28. Thus, the raMVR microscope accurately reconstructs spherical 

structures with nanoscale resolution.

6D imaging of amyloid and lipid membrane interactions

Nanoscale interactions between lipid membranes and amyloid aggregates are of tremendous 

interest for studying the pathogenesis of neurodegerative disease [38, 39], and while atomic 

force and transmission electron microscopes have provided detailed static snapshots of these 

structures [40, 41], a 3D imaging technique to resolve the morphology and organization 

of individual peptide-lipid structures is still missing. Here, we use the raMVR system to 

image aggregates of the 42-residue amyloid-beta peptide (Aβ42), which are a primary 

signature of Alzheimer’s disease [42], intercalated within spherical SLBs (Figure 4). We 

incubated Aβ42 monomers with lipid-coated 350-nm spheres at 37°C with constant shaking 

(200 rpm). While NR binds to both lipid membranes and Aβ42 aggregates, the sensitivity 

of NR’s rotational dynamics to its chemical environment [15, 16] enables us to resolve 

pure SLBs [Figure 4c(i)] from those that have been infiltrated by Aβ42. When in contact 

with amyloid aggregates on the spheres’ surfaces, NR shows larger wobble angles [Figure 

4c(ii-iv), Ω = 2.98 ± 1.14 sr in panel (ii), 2.33 ± 1.20 sr in panel (iii), and 2.09 ± 1.15 sr 

in panel (iv)] compared to those within DPPC SLBs (Figure 3d, Ω = 1.13 ± 0.95 sr). This 

larger wobble with Aβ42 present is also easily distinguished from that within a 100-nm 

pure lipid vesicle attached to a sphere [Figure 4b(i), Ω = 1.69 ± 0.93 sr, and Movie S3]. 
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Kolmogorov-Smirnov tests of these wobble distributions return p-values much less than 

0.01 (see Supplementary Section 5.3 for details), thereby confirming that NR exhibits 

dramatically different orientational dynamics when in contact with regions of the SLBs 

infiltrated by amyloid aggregates versus pure lipid membranes.

In the presence of lipids, we observe that Aβ42 is more likely to form oligomers and 

proto-fibrils than long fibril structures, in agreement with previous studies [43, 44]. For 

example, a cluster of NR exhibiting small wobble angles [Figure 4c(v)] reveals a small 

Aβ42 aggregate attached to the sphere near the coverslip in Figure 4b(v). We also observed 

larger aggregates linking multiple spheres (Figure S28). Across more than 25 spheres 

from 7 separate aggregation reactions (Figure S26), we observe only one occurrence of 

significant fibril growth (Figure 4 and Movie S3, day 7*). NR molecules bound to the 

fibril appear to be parallel to its long axis and more rotationally-fixed [Figure 4c(vi), Ω = 

0.70 ± 0.67 sr] compared to those within the SLBs. This result is consistent with previous 

work [14, 15] and a control experiment of Aβ42 fibrils aggregated in the absence of 

lipids (Figure S17). Overall, principal component analysis of NR orientation distributions 

(Supplementary Section 5.4) indicates that Aβ42 aggregation in the presence of lipid 

membranes is extremely heterogeneous (Figure S25-S27), and membrane disorder generally 

becomes more heterogeneous with longer Aβ42 aggregation reactions.

6D imaging of the fluidity of HEK-293T cell membranes

Environmentally sensitive fluorophores have exciting promise as moleculesized sensors for 

visualizing the nanoscale organization of lipid membranes [16, 45-49]. We demonstrate, 

for the first time, 6D imaging of cell membrane morphology and fluidity by analyzing 

fluorescence flashes of merocyanine 540 (MC540, Figure S20) transiently binding to fixed 

HEK-293T cells (Figure 5, Extended Data Figure 5, Movie S4 and Supplementary Section 

4). Here, the raMVR microscope measures 3D SM positions and 3D rotational dynamics 

within a 23 × 23 × 2 μm3 volume without scanning the sample or focal plane, obtaining an 

experimental 3D resolution (using Fourier shell correlation [50, 51]) of 64.1 nm (FWHM) 

for a vesicle (Figure 5a, yellow box and Figure S30a) and 73.0 nm for a planar membrane 

(Figure 5a, green box and Figure S30b). First, we examine the rotational mobility of MC540 

molecules across various regions of the membrane. We observe smaller MC540 wobble 

(2.12 ± 1.40 sr, median ± std. dev., Extended Data Figure 5d) near the cell-coverslip 

interface compared to that for membranes above the coverslip (3.62 ± 1.17 sr, Extended Data 

Figure 5d), suggesting that the rigidity of the coverglass reduces membrane fluidity and thus 

constrains the rotational motions of MC540. In contrast, the tip of a membrane protrusion 

exhibits larger wobble angles (3.83 ± 0.98 sr, Figure 5d) compared to its middle (3.11 ± 1.16 

sr, Figure 5d). Previous studies have shown that dye wobble is proportional to the degree of 

intermolecular spacing and fluidity within the membrane [15, 16, 22], implying that lipids 

within the protrusion’s tip also are more fluid than those in surrounding regions.

Next, we quantify the tilt of MC540 relative to the membrane surface (within the xy-plane) 

as Δϕ = ϕ − ϕmembrane ∈ [0°, 180°], where ϕmembrane is computed using first-order least 

mean-square error (LMSE) fits of the localizations in regions (i)-(iv) in Figure 5d,e and 

Extended Data Figure 5d,e. Similar to NR bound to DPPC SLBs (Figure 3), cross-sectional 
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SMOLM images (Figure 5c and Extended Data Figure 5c) show that MC540 binds 

perpendicularly to the membrane surface with tilt given by Δϕ = 101.1° ± 29.9° in Figure 

5d,f(ii) and Δϕ = 88.9° ± 22.1° in Extended Data Figure 5e,f(iv). We also detect MC540 

molecules binding parallel to the membrane (Extended Data Figure 5c) with a tilt of Δϕ = 

0.6° ± 23.8° in Figure 5e,f(iii) (see Figure S31 for raw images). NR4A [49], a NR variant 

with a membrane-targeting moiety (Figure S20), does not exhibit parallel binding behavior 

(Extended Data Figure 6).

Interestingly, certain areas show both parallel and perpendicularly oriented MC540 

[Extended Data Figure 5e,f(iii): 30% parallel (Δϕ = 4.6° ± 18.3°) and 70% perpendicular 

(Δϕ = 103.2° ± 18.7°) and Figure 5e,f(iv): 28% parallel (Δϕ = 83.6° ± 20.8°) and 72% 

perpendicular (Δϕ = 0.4° ± 17.0°)]. The ratio of parallel to perpendicularly oriented MC540 

even varies within a continuous region of the membrane (Extended Data Figure 5d); 37% 

parallel (Δϕ = 6.1° ± 15.1°) vs. 63% perpendicular MC540 (Δϕ = 89.7° ± 25.5°) in Extended 

Data Figure 5d,f(i) morphs into virtually completely perpendicular MC540 in Extended Data 

Figure 5d,f(ii) (Δϕ = 78.0° ± 28.3°). Ensemble experiments have also found MC540 to be 

aligned both parallel and perpendicular to model membranes [52, 53], but because of its SM 

sensitivity and nanoscale resolution, raMVR imaging resolves spatial heterogeneities in the 

fluidity of HEK-293T membranes. The variations in MC540 orientations likely stem from 

variations in lipid composition, phase, and packing of the membrane [55, 56], charges within 

the membrane [52], and consequent variations in the concentration of MC540 molecules [54, 

57].

Discussion

In summary, we demonstrate the design of a radially and azimuthally polarized multiview 

reflector (raMVR) microscope for 6D imaging of fluorescent molecules in SMOLM. When 

imaging Nile red binding to spherical supported lipid bilayers (Figure 3), we observe 

rotationally-fixed molecules perpendicular to the membrane and achieve a 3D experimental 

localization precision of ~16.0 nm (std. dev., corresponding to an FWHM of 42.6 nm 

for 350-nm spheres) with 5000 signal photons detected. We reconstruct nearly perfectly 

spherical SLBs with radii from 150 nm up to 1 μm, thereby confirming the raMVR system’s 

robustness against refractive index mismatch (Supplementary Section 3.7). We also resolve, 

for the first time to our knowledge, Aβ42 aggregates intercalating with lipid membranes 

in 3D with nanoscale resolution (Figure 4). NR molecules bound to mixed oligomer-lipid 

membranes typically exhibit larger rotational motions compared to those bound to pure 

lipid membranes, whereas NR bound to fibrils are more fixed and oriented parallel to the 

long-axis grooves of their stacked β-sheets. Finally, 6D SMOLM of fixed HEK-293T cells 

(Figure 5 and Extended Data Figure 5) resolves variations in membrane fluidity throughout 

the cell. Despite the relative complexity of natural cell membranes, we detect MC540 

binding both parallel and perpendicular to the membrane, similar to behaviors previously 

observed on model membranes [52, 53]. Notably, we also observe MC540 molecules that 

are neither parallel nor perpendicular to the membrane [Δϕ = 62.2° ±31.3° in Figure 5d,f(i)]. 

This observation raises the intriguing possibility that MC540 can be used to interrogate 

complex molecular interaction networks within biological cell membranes, such as those 

mediated by the cytoskeleton [13] and membrane proteins [1]. Overall, a distinguishing 
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characteristic of our Aβ42-lipid membrane and HEK-293T cell membrane 6D imaging 

is strong nanoscale heterogeneity in both orientational alignments and rotational diffusion 

exhibited by Nile red and merocyanine 540. Exploring how these behaviors are correlated 

with peptide identity, membrane composition, and dye structure will be exciting subjects of 

future studies.

The heart of the raMVR design is the integration of a vortex waveplate and pyramidal 

mirrors to precisely manipulate and split polarized SM fluorescence into multiple imaging 

channels. One disadvantage of this design is its alignment complexity; we provide 

detailed schematics (Extended Data Figures 1-3 and Figure S1) and alignment protocols 

(Supplementary Section 1) to mitigate these challenges. However, much like telescopes, 

the reflective geometry has outstanding and unique advantages for nanoscopic imaging 

of dim light sources; splitting both signal and background into separate channels enables 

6D position and orientation measurements with minimal light loss, a large ~2 μm depth 

range, and a relatively compact DSF. The raMVR mirror is specifically designed to encode 

molecules’ 3D positions into lateral shifts of the DSF [Figure 1e(iv,v)] and their 3D 

orientations into the relative brightness of the DSF in each channel (Figure S4). Thus, 

unlike most other methods, position and orientation information are disentangled, and the 

combined 6D measurement is robust across a range of in vitro and cellular targets. This 

strategy yields isotropic 3D spatial resolution, with raMVR achieving ~26-59% smaller 

standard deviations on average for measuring the 3D positions and orientations compared to 

recent, state-of-the-art methods [11-13, 15, 17].

We believe the raMVR pupil-splitting approach has many exciting possibilities for 

further development. It can be adapted for real-time orientation-resolved epifluorescence 

microscopy (Figure S17) of cellular structures. Since the 3D information within raMVR 

images is encoded similarly to that of SM light-field microscopy [58], utilizing a fast 3D 

deconvolution algorithm should enable high-throughput polarization-resolved 3D imaging 

with larger FOVs and higher temporal resolution than demonstrated here. In addition, light-

sheet illumination [59, 60] should reduce background autofluorescence for extended-depth 

imaging. Finally, rapid advancements in deep learning for SM microscopy [61-64] could 

enable real-time 6D SMOLM imaging of cells and tissues, shedding light on a variety of 

cellular processes with unprecedented detail.

Methods

Imaging system

A 100×, 1.5 NA total internal reflection fluorescence (TIRF) objective lens (OL, Olympus 

UPLAPO100XOHR) and an achromatic tube lens (TL, f = 175 mm) create an intermediate 

image plane (IIP). Two 4f systems (L1, L2 and L3-L5, f4f = 150 mm) then project 

the intermediate image planes to the cameras and create conjugate pupil planes for the 

waveplates and MVR mirrors of the system. A variable waveplate (VaWP, Thorlabs 

LCC1223-A, Figure 1a) and a vortex half waveplate (VWP, Thorlabs WPV10L-633, Figure 

1a) are placed before and at the back focal plane (BFP), respectively, in the first 4f system 

(L1, L2). They convert radially and azimuthally polarized light to x- and y-polarized 

light, compensating for the birefringence of the dichroic mirrors used in our experiments 
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[17, 30] and are calibrated and aligned according to the procedure reported previously 

[17]. A polarizing beamsplitter (PBS, Meadowlark Optics BB-100-VIS) is placed in the 

second 4f system (L3-L5, Extended Data Figure 3a) to create separate imaging channels 

containing radially or azimuthally polarized fluorescence collected from the sample. After 

being separated by the MVR mirrors, the polarized fluorescence is captured by detectors 

C1 (Hamamatsu ORCA-flash4.0v2 C11440-22CU) and C2 (Hamamatsu ORCA-flash4.0v3 

C13440-20CU); the effective pixel size is 66.8 × 66.8 nm2 in object space. The detailed 

dimensions and placement of the pyramid mirrors are documented in Supplementary Section 

1.

Forward imaging model

For a molecule located at position r = [x, y, z]⊤ with orientational second moments m = 

[mxx, myy, mzz, mxy, mxz, myz]⊤, the image I(u, v) formed by a microscope is given by

I(u, v) = sBm + b(u, v)
= s Bxx(u, v; r)mxx + Byy(u, v; r)myy

+ Bzz(u, v; r)mzz + Bxy(u, v; r)mxy
+Bxz(u, v; r)mxz + Byz(u, v; r)myz
+ b(u, v)

(1)

where (u, v) represents the image plane coordinate system, s represents the number of signal 

photons, b(u, v) represents the background fluorescence from the sample, and Bij(u, v; r) are 

termed the basis images (Figure S4) of the imaging system that depend on the position of the 

molecule (see Supplementary Section 2.1 for details). We note that the BFP segmentation 

guarantees that the basis images in the image plane are linearly independent with respect 

to the six second moments (Figure S4). The DSF in each channel translates along the x 
direction as an emitter translates in the x direction, as shown by the spatial gradient of 

each basis image [Figure S5(i-iii)]. However, if an emitter translates axially, each channel 

shifts laterally in a unique direction [Figure S5(iv-vi)], thereby enabling 3D positions to 

be estimated from the lateral positions of corresponding DSFs across all 8 channels. We 

also note that the direction of the k-vector of each channel is tilted by 1° relative to the 

camera normal. Thus, the apparent lateral shift caused by the non-normal propagation vector 

is negligible compared to that caused by the partitioning of the BFP.

Detection and estimation algorithms for raMVR imaging

To localize SMs within MVR images for single-molecule orientation-localization 

microscopy (SMOLM), we need to group the DSFs detected across the 8 imaging channels 

to their corresponding molecules, i.e., assign spots detected in each channel to unique (x, 

y, z) positions corresponding to each emitter. Further, depending on the orientation of a 

particular emitter, one or more channels will contain no or very few photons, e.g., channels 

6 and 8 for a molecule with orientation (θ = 90°, ϕ = 0°, Ω = 0 sr) [Figure 1e(i)] or channels 

2 and 4 for a molecule with orientation (θ = 90°, ϕ = 45°, Ω = 0 sr) [Figure 1e(ii)]. While 

these “empty” channels improve the raMVR system’s orientation sensitivity, because these 

channels are only dark for specific orientations, this phenomenon makes spot assignment 

more challenging.
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Briefly, detecting and localizing SMs follows a three-step process. First, a regularized 

maximum likelihood estimator is used to detect and localize SMs independently in each 

imaging channel (Supporting Section 3.2). Next, the coarse 3D position of each SM is 

calculated by grouping DSF images together across imaging channels. Finally, the 3D 

position and 3D orientation of each SM is estimated using maximum likelihood estimation 

(Supporting Section 3.3). This approach yields excellent estimation precision and accuracy 

(Table S3).

Sample preparation

Lipid-coated silica spheres—We follow previously reported procedures [16, 17, 22] for 

preparing lipid-coated silica spheres. First, we prepare large unilamellar vesicles (LUVs) 

composed of DPPC and 40% cholesterol. A mixture of 17.62 μL of the stock DPPC solution 

(25 mg/mL DPPC in chloroform, Avanti Polar Lipids 850355C) and 15.46 μL of 10 mg/mL 

cholesterol (Sigma-Aldrich C8667) in chloroform are placed under vacuum overnight to 

evaporate the chloroform. The dried lipid mixture is then resuspended in 1 mL Tris Ca2+ 

buffer (100 mM NaCl, 3 mM Ca2+, 10 mM Tris, pH 7.4) to arrive at a lipid concentration 

of 1 mM. The lipid solution is kept under nitrogen in a water bath at 65 °C and vortexed 

for 20 seconds every 5 minutes for a total of 6 repetitions. The solution is then moved to 

an extruder set (Avanti Polar Lipids 610000) kept on a hot plate to maintain its temperature 

above the phase transition temperature of DPPC. A 25-passage extrusion is performed to 

improve the homogeneity of the size distribution of the final suspension.

We next dilute silica spheres (Bangs Laboratories SS02001, SS03001, SS04002, 2 g/mL) 

using Tris Ca2+ to reach a concentration of 40 μg/mL. It is further diluted in Tris Ca2+ 

according to Table S4. The diluted sphere solution is warmed by immersing it in a 65° C 

water bath and then mixed with the lipid LUV solution. The volume of each component 

(Table S4) ensures full coverage of SLBs on the surfaces of the spheres [65]. The mixture 

is kept in the water bath for 30 minutes and then gradually cooled to room temperature. 

We vortex the mixture every 5 minutes during the entire process. Finally, we centrifuge 

the mixture at a speed according to the sphere size (Table S4) and replace the Tris Ca2+ 

supernatant with Tris (for DPPC SLB imaging, 100 mM NaCl, 10 mM Tris, pH 7.4) or PBS 

(for SLBs mixed with Aβ42 imaging, 100 mM NaCl, 50 mM Na2PO4, pH 7.4).

Amyloid-beta 42 aggregation—The Aβ42 sample is prepared according to previously 

reported procedures [14, 15]. To image the interaction between model lipid and amyloid, we 

incubate 20 μM monomeric Aβ42 and 1 μg/mL lipid-coated 350-nm spheres at 37 °C with 

200 rpm shaking. For imaging Aβ42 fibrils on coverglass, only 10 μM monomeric Aβ42 is 

incubated for 48 hours.

HEK-293T cell culture—HEK-293T cells (ATCC CRL-3216) are maintained in 

Dulbecco’s modified eagle medium (DMEM, Thermo Fisher 10569044) supplemented 

with 10% fetal bovine serum (Thermo Fisher 26140079) and 1X Antibiotic-Antimycotic 

Solution (Corning 30004CI). To prepare fixed cell sample, we plate HEK-293T cells at 

50% confluency on 8-chamber coverglass (Cellvis C8-1.5H-N) treated with fibronectin 

(Sigma-Aldrich FC010), according to the manufacturer’s protocol. The cells are returned to 
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the incubator for 24 hours before they are fixed on ice with 2% paraformaldehyde in PBS for 

20 minutes.

Extended Data

Extended Data Figure 1. 
Pyramid mirror designs. (a) Alignment of the pyramidal mirrors and (b-e) dimensions of 

the (b) air pyramid, (c) one sector of the air pyramid, (d) mount for glass pyramid, and (e) 

glass pyramid. (i) Isometric view, (ii) top view, and (iii) side view of the mirrors and mount. 

Length unit: mm.

Extended Data Figure 2. 
Simulation of rays propagating in the MVR system. A total of 100 rays, randomly oriented 

within the imaging system’s numerical aperture and originating from random positions 

within the IIP are shown. (a) Three-dimensional view of rays propagating within one of the 
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polarized imaging channels. (b-d) Position of each ray at the (b) IIP, (c) glass pyramid, (d) 

air pyramid, and (e) detector. Scale bars: 50 mm in (a), 1 mm in (b,c), 5 mm in (d,e).

Extended Data Figure 3. 
Light propagation within the second 4f system of the raMVR microscope. (a) When folding 

mirrors FM1-4 are out of the emission path, detectors C1 and C2 observe the (i) radially 

and (ii) azimuthally polarized image plane. Colourbar: photons; scale bar: 2 μm. (b) When 

FM1 and FM3 are in the emission path and mirror M3 is properly aligned, detector C2 

captures the (i) radially polarized BFP. Similarly, when FM2 and FM4 are in the emission 

path, detector C1 captures the (ii) azimuthally polarized BFP. Grid size: 1 cm; colourbar: 

normalized intensity; scale bar: 1 mm.
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Extended Data Figure 4. 
Image size comparison of CHIDO, the vortex DSF, raPol standard DSF and raMVR. (a-d) 

Images and (e) line profiles of (a) CHIDO (x-polarized channel), (b) the Vortex DSF, (c) 

raPol standard DSF (radially polarized channel), and (d) raMVR (azimuthally polarized 

channel) for isotropic emitters located at z = 250 nm, z = 750 nm (best focus), and z = 1250 

nm. The nominal focal plane zf = 1200 nm. Colourbar: normalized intensity; scale bar: 500 

nm. (e) Line profiles of the DSFs in (a-d). Yellow: CHIDO; green: Vortex DSF; gray: raPol 

standard DSF; red: raMVR.

Extended Data Figure 5. 
6D nanoscopic imaging of MC540 molecules bound to the membranes of another 

HEK-293T cell. (a,b) Super-resolved images of two representative cells. Colours represent 

the estimated (a) axial position z and (b) azimuthal angle ϕ. Inset: summed diffraction-

limited images from all imaging channels captured under lower excitation power. Scale bar: 
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2 μm. (c) yz- and (d,e) xy-views of boxed regions in (b). Lines are oriented and colour-coded 

according to the measured (c) polar angle θ, (d) wobble angle Ω, and (e) azimuthal angle 

ϕ. Their lengths are proportional to (c) μy
2 + μz

2 and (d,e) sin θ. Scale arrows: 2 μm in 

(a,b), 500 nm in (c-e). (d) Insets show the distribution of measured wobble angle Ω within 

the yellow and white boxed areas (i,ii) and a side view of yellow and white boxed areas 

(i). Three-dimensional animations of the localizations in (c-e) are shown in Movie S5. (f) 

MC540 tilt Δϕ relative to the membrane surface within the white boxed areas in (d,e).

Extended Data Figure 6. 
6D nanoscopic imaging of NR4A molecules bound to the membranes of HEK-293T cells. 

(a-d) Super-resolved images of two representative cells. Colours represent the estimated 

(a,c) axial position z and (b,d) azimuthal angle ϕ. Insets: summed diffraction-limited images 

from all imaging channels captured under lower excitation power. Scale bar: 2 μm. (e,f,h) 

The zoomed regions of interest in (b,d). Lines are oriented and colour-coded according to 

the measured azimuthal angle ϕ. Their lengths are proportional to sin θ. Scale bar: 500 nm. 

(g, j) Distributions of measured azimuthal angle from the membrane Δϕ within the white 

boxed areas in (e,f,h).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Concept of raMVR single-molecule orientation-localization microscopy (SMOLM). (a) 

Schematic of the radially and azimuthally polarized multi-view reflector (raMVR) 

microscope. OL: objective lens; TL: tube lens; L1-L5: 4f lenses; C1, C2, detectors; NFP, 

nominal focal plane. (b) The fluorescent molecule is modeled as an oscillating dipole 

uniformly wobbling within a hard-edged cone with an average orientation μ and a “wobble” 

solid angle Ω. After turning radially and azimuthally polarized fluorescence to (red) x- and 

(blue) y-polarized light using a variable waveplate (VaWP) and a vortex (half) waveplate 

(VWP), the emission light is separated into different polarization channels using a polarizing 

beamsplitter (PBS). The (c) raMVR pyramidal mirrors further separate light at the back 

focal plane (BFP) into four detection channels and project the (d) image plane onto a 

detector (C1, C2) in each channel. Dashed lines represent the edge of the field of view. 

Colourbar: intensity (a.u.); scalebar: 20 μm. (e) Representative dipole spread function (DSF) 

in each channel for molecules located at (i-iv) z = 750 nm and (v) z = 250 nm with 

orientations (θ, ϕ, Ω) of (i) (90°, 0°, 0 sr), (ii) (90°, 45°, 0 sr), (iii) (45°, 0°, 0 sr), and (iv,v) 

(90°, 0°, π sr). Numbers 1-8 represent the indices of the imaging channels corresponding to 

those in (d). Colourbar: normalized intensity; scalebar: 500 nm; nominal focal plane position 

zf = 1200 nm.
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Fig. 2. 
Theoretical precision of measuring the (a) average orientation, (b) wobble angle, (c) lateral 

position, and (d) axial position of an SM using the raMVR microscope compared to other 

methods, with 5000 signal photons and 40 background photons per pixel total across 

all channels. Lines represent the median, and shaded areas represent the 10th and 90th 

percentiles across all possible orientations. Yellow: CHIDO [12]; green: vortex DSF [11]; 

red: raMVR.
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Fig. 3. 
6D nanoscopic imaging of spherical supported lipid bilayers (SLBs). (a) Nile red (NR) 

molecules transiently binding to DPPC SLBs containing 40% cholesterol surrounding a 

silica sphere. (b) An xz-view of all localizations on spheres with radii of 150 nm, 350 nm, 

and 1000 nm. Lines are oriented and colour-coded according to the measured polar angle 

θ. Their lengths are proportional to μx
2 + μz

2. (c) Localizations within cross sections with tilt 

angles θCS of (i,iv,vii) 90°, (ii,v,viii) −45° and (iii,vi,ix) 45° and thickness of 200 nm. Lines 

are oriented and colour-coded according to the measured azimuthal angle ϕ. Their lengths 

are proportional to the length of the unit vector μ projected into the cross-sectional planes. 

(d) NR orientation θ⊥ = cos−1 (μ · r/r) and wobble (Ω) measurements for the three spheres in 

(b). (e) Measured distances r from NR localizations to the center of the sphere as a function 

of the cross-section angle θCS. Solid lines represent the average distance, and shaded areas 

represent ± 1 std. dev. Blue: 1000-nm spheres; orange: 350-nm spheres; purple: 150-nm 

spheres. Scalebar: 500 nm.
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Fig. 4. 
6D nanoscopic imaging of amyloid-lipid interaction. (a) yz-views of all NR localizations 

on 350-nm lipid-coated spheres without (incubated for 7 days) and with (incubated for 1, 

3, 5, and 7 days) Aβ42. Lines are oriented and colour-coded according to the measured 

polar angle θ. Their lengths are proportional to μy
2 + μz

2. (b) Localizations within the 150 

nm-thick z slices marked in (a) centered at (z1 = 600, z2 = 400, z3 = 200) nm. Lines are 

oriented according to the measured azimuthal angle ϕ and colour-coded according to the 

measured wobble cone angle Ω. Their lengths are proportional to sin θ. Scalebar: 500 nm. 

(c) Distribution of measured wobble cone angles within the boxed areas in (b).
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Fig. 5. 
6D nanoscopic imaging of MC540 molecules bound to the membranes of an HEK-293T 

cell. (a-b) Super-resolved images of two representative cells. Colours represent the estimated 

(a) axial position z and (b) azimuthal angle ϕ. Inset: summed diffraction-limited images 

from all imaging channels captured under lower excitation power. Scale bar: 2 μm. (c) yz- 

and (d,e) xy-views of boxed regions in (b). Lines are oriented and colour-coded according to 

the measured (c) polar angle θ, (d) wobble angle Ω, and (e) azimuthal angle ϕ. Their lengths 

are proportional to (c) μy
2 + μz

2 and (d,e) sin θ. Scale arrows: 2 μm in (a-b), 500 nm in (c-e). 

(d) Insets show the distribution of measured wobble angle Ω within the yellow and white 

boxed areas (i,ii). Three-dimensional animations of the localizations in (c-e) are shown in 

Movie S5. (f) MC540 tilt Δϕ relative to the membrane surface within the white boxed areas 

in (d,e).
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