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Abstract

Individualized treatment rules (ITRs) recommend treatments that are tailored specifically 

according to each patient’s own characteristics. It can be challenging to estimate optimal ITRs 

when there are many features, especially when these features have arisen from multiple data 
domains (e.g., demographics, clinical measurements, neuroimaging modalities). Considering data 

from complementary domains and using multiple similarity measures to capture the potential 

complex relationship between features and treatment can potentially improve the accuracy of 

assigning treatments. Outcome weighted learning (OWL) methods that are based on support 

vector machines using a predetermined single kernel function have previously been developed 

to estimate optimal ITRs. In this paper, we propose an approach to estimate optimal ITRs by 

exploiting multiple kernel functions to describe the similarity of features between subjects both 

within and across data domains within the OWL framework, as opposed to preselecting a single 

kernel function to be used for all features for all domains. Our method takes into account the 

heterogeneity of each data domain and combines multiple data domains optimally. Our learning 

process estimates optimal ITRs and also identifies the data domains that are most important for 

determining ITRs. This approach can thus be used to prioritize the collection of data from multiple 

domains, potentially reducing cost without sacrificing accuracy. The comparative advantage of our 

method is demonstrated by simulation studies and by an application to a randomized clinical trial 

for major depressive disorder that collected features from multiple data domains. Supplemental 

materials for this article are available online.
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1 Introduction

When making a treatment decision for an individual patient, it is crucial to assign 

the treatment that is most likely to be most effective specifically for each patient. 

Patients manifest heterogeneous response to treatments and tailoring clinical decisions to 

patients’ individual characteristics, rather than a “one size fits all” approach, is termed 

precision medicine. Precision medicine can be aided by recent technology advances that 

provide accessibility to comprehensive data domains of patients’ characteristics such as 

clinical evaluations, neuroimaging measurements, genomics data, and mobile health data. 

Improvements in making precise treatment decisions for complex diseases can be achieved 

by exploiting these data appropriately.

Several methods have been developed to estimate an individualized treatment rule (ITR) for 

precision medicine that depend on each individual’s characteristics. A popular approach to 

estimating ITR’s is to use regression-based methods. For example, Q-learning is meant to 

estimate the mean of clinical outcomes, conditional on an individual’s prognostic variables 

and treatment received, and then determine the ITR by maximizing the predicted conditional 

mean (Qian and Murphy, 2011; Zhang et al., 2012b; Kang et al., 2014). An alternative 

general approach to estimating ITRs is classification-based, i.e., directly maximizing the 

marginal mean of the outcome by solving a classification problem (Zhang et al., 2012a; 

Zhao et al., 2012). Outcome weighted learning (OWL; Zhao et al., 2012) solves the 

classification problem with outcomes serving as weights by implementing a kernel-based 

support vector machine (SVM) (Hastie et al., 2009). The kernel function in OWL is 

used to measure the similarity between the features of each pair of subjects. Augmented 

outcome-weighted learning (AOL; Liu et al., 2018) improves OWL by allowing negative 

outcome weights and reducing the variability of outcome weights in order to achieve higher 

accuracy. These state of the art classification-based methodologies model the association 

between a treatment and an individual subject’s features by using a pre-determined single 

kernel function. This approach is limited in that it can be inefficient when a kernel is not 

optimally specified or when the association between treatment and subject characteristics is 

too complex to be measured using only a single kernel.

In many precision medicine scenarios, the available data for each subject are quite complex, 

perhaps including data that are gathered from each of several domains (e.g., genomics, 

neuroimaging, clinical, behavioral, etc.). In such a situation, a classification-based approach 

that relies on a single kernel to account for the relationship between the baseline data and the 

treatment will likely not be adequate to provide optimal treatment decisions. Multiple kernel 

learning (MKL) has been extensively used in classification problems (Bach et al., 2004; 

Lanckriet et al., 2004a; Bach, 2008; Rakotomamonjy et al., 2008; Gönen and Alpayd in, 

2011). It has been successfully applied to problems such as protein functional classifications 

using multiple types of data (Lanckriet et al., 2004c) and classifying proteins based on 
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various types of genome-wide measurements (Lanckriet et al., 2004b). To date, however, 

this powerful approach has yet to be explored in the realm of precision medicine to develop 

ITRs.

Several recent works have estimated ITRs from multiple data sources (Shi et al., 2018; 

Wu et al., 2020). However, those works consider data sources from multiple studies with 

different subjects, such as studies conducted at multiple centers (Shi et al., 2018), a 

randomized clinical trial and an observational study (Wu et al., 2020). In contrast, we 

are interested in subjects from a single study, but their measurements are collected across 

multiple domains (e.g., neuroimaging, clinical, etc.).

In this paper, we propose a novel method for estimating ITRs within the MKL framework. 

We use multiple kernel functions to allow a variety of similarity relationships between pairs 

of subjects. Data domain knowledge may be incorporated in order to group variables from 

the same data domain (those that might be expected to be more biologically similar) by 

using separate kernels for each data domain.

2 Methods

We begin by reviewing OWL and AOL, approaches that are based on the choice of a single 

kernel. Subsequently, we will describe an approach for using multiple kernels to estimate 

ITRs.

2.1 Outcome Weighted Learning (OWL)

We consider a single stage two-arm clinical trial. Let A denote the treatment assignment 

variable: A ∈  = {−1, 1}. Let Y denote the observed clinical outcome (where we assume 

larger values are more beneficial). Let x ∈  denote a subject’s characteristics measured at 

baseline. The ITR  maps X to A. The marginal mean of an observed outcome under an 

ITR  is referred to as the value function and is defined as V(D) ≔ ED(Y ) = E I(A = D(X))
π(A) Y

(Qian and Murphy, 2011), where π(A) is the treatment assignment probability (which would 

typically be known in a randomized clinical trial and could potentially be estimated for 

an observational study). π(A) could depend on X in some cases. Here, we ignore X in 

notations. The optimal treatment rule * is a rule that maximizes ( ) over choices of . 

Maximizing ( ) is equivalent to minimizing E I(A ≠ D(X))
π(A) Y  over .

Suppose that we observe independent and identically distributed (i.i.d.) data (Xi, Ai, Yi), i 

= 1, …, n. The optimal rule * can be estimated by minimizing 1
n ∑i = 1

n Y i
π Ai

I Ai ≠ D Xi . 

Since (Xi) can always be represented by sign (f(Xi)) for some decision function f ∈ ℋ, e.g., 

ℋ is a reproducing kernel Hilbert space (RKHS, Berlinet and Thomas-Agnan, 2011), this 

criterion is equivalent to minimizing

1
n ∑

i = 1

n Y i

π Ai
I Ai ≠ sign f Xi ,  (1)
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over f (Hastie et al., 2009, Chapter 5). Let f* be the optimal f, then the optimal treatment 

rule * = sign (f*(Xi)). OWL (Zhao et al., 2012) estimates the optimal treatment rule by 

replacing the 0–1 loss in (1) by a hinge loss and solving a weighted classification problem 

with a penalty on f:

min
f

1
n ∑

i = 1

n Y i

π Ai
1 − Aif Xi + + λ f 2, (2)

where [x]+ = max(x, 0), and ∥·∥ is a norm defined in a metric space. When the decision 

function is a linear function of X, then f(X) = ωTX + β0 with ∥ f ∥2 defined as ωTω. This 

linear decision function may not perform well when the optimal decision depends on a 

complex relationship between treatments and data. As an alternative, a nonlinear decision 

function f can be used and represented by f(X) = ∑j = 1
n ωjk X, Xj + β0, where k :  × 

→ ℛ is a positive definite kernel function, and the corresponding space of functions ℋ is a 

RKHS. Common choices of kernel functions include the linear kernel, the Gaussian kernel, 

and polynomial kernels. The norm of f in ℋ is induced by inner product, f = f, f  and 

f 2 = ∑j = 1
n ∑i = 1

n ωjωi k ⋅ , Xj , k ⋅ , Xi = ωTKω, where K is a n × n matrix of k (Xi, Xj) 

for all pairs (i, j) and ω = (ω1, …, ωn)T (Berlinet and Thomas-Agnan, 2011, Chapter 1).

AOL (Liu et al., 2018) replaces Yi in (2) by the residual Ri obtained by regressing out the 

main effects in order to reduce the variability in outcome. The AOL objective minimizes

1
n ∑

i = 1

n Ri

π Ai
1 − Aisign Ri f Xi + + λ f 2, (3)

over f, where Aisign(Ri) is the class label and Ri
π Ai

 is the outcome weight. In the spirit of the 

SVM approach (e.g., Hastie et al., 2009, Chapter 12) that solves a classification problem by 

finding the decision hyperplane f(X) = 0 that best separates the sample points for class 1 and 

−1 while allowing for some tolerable overlap, the weighted classification problem (3) can be 

rewritten in the primal form of the SVM problem by introducing a slack variable ξi which 

represents the tolerance of misclassification. This leads to solving the following optimization 

problem:

min
f, ξ

1
2 f 2 + C ∑

i = 1

n Ri

π Ai
ξi (4)

subject to

Aisign Ri f Xi ≥ 1 − ξi, ξi ≥ 0, i = 1, …, n,

where C is the cost parameter. The dual problem of (4) is
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max
α

∑
i = 1

n
αi − 1

2 ∑
i = 1

n
∑
j = 1

n
αiαjAisign Ri Ajsign Rj k Xi, Xj (5)

subject to

0 ≤ αi ≤ C Ri
π Ai

, i = 1, …, n,

∑
i = 1

n
αiAisign Ri = 0,

where αi, i = 1, …, n, are Lagrange multipliers and C > 0 is the classifier margin. The 

values of αi, denoted αi that solve (5), determine the optimal decision function given by, 

f *(X) = ∑j = 1
n αjAjsign Rj k X, Xj + β0, where β0 is obtained by solving Aisign(Ri) f (Xi) = 1 

for any Xi given αi and the estimated optimal rule *(X) is sign (f*(X)) (e.g., Hastie et al., 

2009, Chapter 12).

2.2 Multiple Kernel Outcome-weighted Learning

The kernel function k (Xi, Xj) provides a measure of similarity between the i-th subject 

and j-th subject. AOL and OWL both rely on a single pre-determined kernel function to 

capture this similarity. However, in many modern applications, using a single kernel may 

not be optimal. Observed data often include measures arising from multiple data domains, 

and thus a single kernel function may not be sufficient for the purpose of optimizing ITRs. 

To address this, we propose to apply a multiple kernel approach for two reasons: to allow a 

different kernel for each data domain; and also to allow for multiple measures of similarity 

within each domain. Our approach lets the learning process itself select among the multiple 

candidate kernels:

kη Xi, Xj = ∑
l = 1

L
ηlkl Xi, Xj , (6)

where kl is a kernel function in a RKHS ℋl, l = 1, …, L, and ηl is the kernel weight of 

the l-th kernel function. It can be shown that kη is also a RKHS kernel function (Aronszajn, 

1950). We require that ηl ≥ 0, l = 1, …, L and also that ∑l = 1
L ηl = 1. In this formulation, ηl 

represents the relative importance of the l-th kernel.

Suppose that we have M different data domains (or sources or modalities). Let 

Xi = Xi
(m)

m = 1
M , where Xi

(m) denotes the predictors in the m-th data domain.

kη Xi, Xj = ∑
m = 1

M
∑

l = 1

Lm
ηm, lkm, l Xi

(m), Xj
(m) ,
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where km, l Xi
(m), Xj

(m)  is the l-th kernel function used for the m-th data domain, l = 1, …, 

Lm, and ηm,l are the corresponding kernel weights. For example, in the application to 

be described in Section 4, the data domains are: demographic characteristics, clinical, 

behavioral performance, and neuroimaging predictors.

We start with a set of candidate kernel functions km,l. Our aim is to find the optimal 

treatment rule with respect to kernel weights ηm,l and Lagrange multipliers α.

We solve the optimization problem:

min
ηm, l

 max
α

∑
i = 1

n
αi − 1

2 ∑
i = 1

n
∑
j = 1

n
αiαjAisign Ri Ajsign Rj ∑

m = 1

M
∑
l = 1

Lm

ηm, lkm, l Xi
(m), Xj

(m)

(7)

subject to

0 ≤ αi ≤ C Ri
π Ai

, i = 1, …, n,

∑
i = 1

n
αiAisign Ri = 0,

ηm, l ≥ 0, m = 1, …, M, l = 1, …, Lm,

∑
m = 1

M
∑

l = 1

Lm
ηm, l = 1.

The estimated decision function is then

f(X) = ∑
j = 1

n
αjAjsign Rj ∑

m = 1

M
∑

l = 1

Lm
ηm, lkm, l X(m), Xj

(m) + β0,

where β 0 is obtained by solving Aisign (Ri) f (Xi) = 1 for any Xi for 0 ≤ αi ≤ C Ri
π Ai

. 

The estimated decision rule is sign(f(X)). The constraints on ηm,l (i.e., ηm,l ≥ 0 and 

∑m = 1
M ∑l = 1

Lm ηm, l = 1) induces model sparsity and enables us to both identify informative 

data domains and select appropriate kernels (i.e., those with ηm, l > 0) for each data domain. 

When M = 1, L1 = 1, and ηM, L1 = 1, this approach reduces to (5). To solve (7), we use the 

MKL algorithm in Rakotomamonjy et al. (2008). We call the resulting method Outcome 
Weighted Multiple Kernel Learning (OWMKL).

Xie et al. Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2023 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 Simulation Studies

We evaluated our method through several simulation scenarios with sample sizes of n = 

150, 200, 400, 800, 1000 for the training data set. For each simulated dataset, we compared 

the empirical value function on a validation set of size 100,000 with: 1) OWL using the 

Gaussian kernel; 2) AOL using the Gaussian kernel; 3) OWL using the linear kernel; 4) AOL 

using the linear kernel; and 5) Q-learning based on regressing the outcome on X, A, and the 

interaction term between them X × A.

3.1 Simulation Settings

We model the data for our simulation studies on the structure of the depression data to be 

described in the next section. To do this, we generate a 50-dimensional vector of Xi for 

each subject with the 50 total predictors derived from seven data domains Xi
(1), …, Xi

(7) of 

continuous predictors generated from a multivariate normal distribution M V N (0, Σ) where 

the covariance matrix Σ and distribution of predictors amongst data domains is described 

in Figure 1. In addition, we generate data from two additional data domains Xi
(8), Xi

(9) each 

consisting of a single binary predictor generated from Bernoulli(0.5). The treatment Ai ∈ 
{−1, 1} is generated independently of Xi with P(Ai = 1) = 0.5.

The outcome was generated from Y i = 1 + 2Xi, 1
(1) − Xi, 1

(2) + Xi, 1
(8) + T i × Ai + ϵi. We generated the 

Ti terms according to six different scenarios, described in Table 1. Thus Ti × Ai is the 

interaction term between predictors and treatment. Also, ϵi is the error term generated 

independently of all other variables from a N(0, 1) distribution. In order to assess how well 

our approach is able to discriminate between data domains that are useful for treatment 

determination from those who are not, in all settings, Ti depends only on data domain 1 Xi
(1)

and data domain 2 Xi
(2) .

For our implementation of OWMKL, we used four kernels for each of the data domains 

Xi
(1), …, Xi

(6) which included multiple continuous predictors. The four kernels are: a linear 

kernel k Xi
(m), Xj

(m) = Xi
(m)TXj

(m); a quadratic kernel, k Xi
(m), Xj

(m) = Xi
(m)TXj

(m) 2; a cubic kernel, 

k Xi
(m), Xj

(m) = Xi
(m)TXj

(m) 3; and a Gaussian kernel k Xi
(m), Xj

(m) = exp − Xi
(m) − Xj

(m)
2
2/d . A linear 

kernel and a Gaussian kernel were used for Xi
(7) which included a single continuous 

predictor. Indicator kernels k Xi
(m), Xj

(m) = I Xi
(m) = Xj

(m)  were used for Xi
(8) and Xi

(9) which 

included a binary predictor (Daemen and De Moor, 2009). The bandwidth d in Gaussian 

kernel function in OWMKL, OWL using the Gaussian kernel, and AOL using the Gaussian 

kernel is predetermined by the median heuristic (the median of Xi
(m) − Xj

(m)
2
2) (Fukumizu et 

al., 2009; Caputo et al., 2002). The only tuning parameter in the algorithm is C which was 

chosen by a two-fold cross-validation that maximizes the empirical value function

1
n ∑

i = 1

n Y i

π Ai
I Ai = D* Xi (8)

on the training set in OWMKL, AOL, and OWL. A grid search was used to determine C 
in OWMKL from the grid (22, 23, …, 210); the grid searches for AOL and OWL were over 
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(2−15, 2−14, …, 215). Simulations were repeated 100 times for each setting. We calculated 

the empirical value function (8) under the estimated optimal treatment rule for each method 

on the validation set.

3.2 Simulation Results

Figure 2 shows the results of the simulation experiment. The performance of OWL and AOL 

using the Gaussian kernel is not better than that of using the linear kernel. Thus, we provide 

boxplots of the empirical value functions for OWL using the linear kernel, AOL using the 

linear kernel, Q-learning, and OWMKL. For reference, we also indicate the results of three 

alternative treatment rules: all subjects are assigned treatment 1; all subjects are assigned 

treatment −1; and subjects are assigned each treatment on the basis of a fair coin toss. We 

also indicate the “true” optimal bound that would assign the treatment with larger Ti × Ai to 

subject i if the true Ti were known.

For Setting 1 in which Ti is a linear function of Xi, as would be expected, the Q-learning 

approach performed the best among those considered. Among the rest, OWMKL came out 

ahead of the others in terms of larger median empirical value function and smaller standard 

deviation. When the sample size increased to n = 800 and n = 1000, results for OWMKL 

were nearly as good as those for Q-learning.

For Settings 2–6, OWMKL tended to perform well relative to the other methods. For 

Settings 2–4 in which Ti included the quadratic terms of Xi, OWMKL resulted in the largest 

empirical value function, which increased at a faster rate for larger n, and nearly reached 

the optimal bound for large sample sizes. The empirical value functions of OWL, AOL, 

and Q-learning tended to increase more slowly for larger n. Q-learning performed the worst 

when the sample size was small in Setting 3. Its performance was even worse than assigning 

all subjects to treatment 1 in Setting 4 and was not improved much when the sample size 

was increased. In Setting 5 when Ti included two-way interaction terms of Xi, OWMKL 

had much larger empirical value function than the other methods, while the performances of 

OWL and AOL were almost the same as the policy of assigning all subjects to treatment −1 

and did not improve much with increasing sample size.

In addition, OWMKL tended to correctly identify the relevant data domains (i.e., those that 

contribute to determination of optimal treatment) while the other methods are not intended 

to be able to do this. To illustrate this point, we calculated the data domain kernel weight 

∑l = 1
Lm ηm, l for each data domain, m = 1, …, 9 and summarized the average data domain 

kernel weights across 100 simulations in Table 2. The kernel weights of data domains 1 and 

2 were the top two largest and were much larger compared to the kernel weights of other 

data domains.

The computational time of OWMKL was about twice of that of AOL approach in our 

simulation studies since we used 28 kernel functions in total. For instance, the average 

running time of one simulation when sample size was 1000 was 70 seconds on an Intel Core 

i9 3.6 GHz processor. In practice, the users can specify a fewer number of candidate kernel 

functions to reduce computational burden.
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4 Application

Major Depressive Disorder (MDD) is a common mental disorder and a leading cause 

of disability as indicated by the Global Burden of Disease. MDD patients display large 

heterogeneity in their clinical symptoms, course of illness, and response to treatment (Fava 

and Kendler, 2000; Belmaker and Agam, 2008). Establishing Moderators and Biosignatures 

of Antidepressant Response in Clinical Care (EMBARC) was a clinical trial that recruited 

patients who had recurrent and early onset MDD (Trivedi et al., 2016). In this study, 

patients were randomly assigned to receive either sertraline or placebo for 8 weeks with 

π(A) = 0.5. Study investigators collected a comprehensive set of clinical, behavioral, 

and neuroimaging predictors for each patient. We used 43 predictors in this illustration 

(Appendix Table A1). The clinical outcome is the change score of the Hamilton Depression 

scale (HAMD17) between baseline visit and at Week 8. (Larger change scores correspond to 

better outcomes.) Missing predictors were imputed using multivariate imputation by chained 

equations (MICE) (Petkova et al., 2017; van Buuren and Groothuis-Oudshoorn, 2011) before 

the analysis. A total of 242 patients were included in the analysis.

An indicator kernel was used for the binary variables gender and hypersomnia. Linear and 

Gaussian kernels were used for age which was treated as a single continuous variable. 

We followed the variable category conventions of Petkova et al. (2017) defining the 

first tier baseline characteristics to group the variables as follows: 16 clinical variables; 

8 behavioral performance variables; 2 structural magnetic resonance imaging (sMRI) 

variables; 10 functional MRI variables including both resting state and task-based predictors; 

3 electroencephalography (EEG) variables; and 1 diffusion tensor imaging (DTI) variable. A 

linear kernel, a quadratic kernel, a cubic kernel, and a Gaussian kernel were used for each 

data domain.

We randomly selected two thirds of the subjects as our training set (161 subjects) and left 

the remaining one third as the validation data (81 subjects). The only tuning parameter C 
was chosen within the training set by 10-fold cross validation with searching grid from 

22 to 215. We repeated the analysis 100 times by randomly assigning observations to the 

training and validation data sets. We compared the OWMKL approach with OWL, AOL, 

and Q-learning. Also, for reference we considered the policies of assigning all patients to 

sertraline; assigning all patients to placebo; and random assignment. The bandwidth for the 

Gaussian kernel in OWMKL, OWL using the Gaussian kernel, and AOL using the Gaussian 

kernel was calculated before the analysis by the heuristic median (Fukumizu et al., 2009; 

Caputo et al., 2002) based on the full data; the searching grid for C in OWL and AOL was 

from 2−15 to 215.

The empirical value functions of each method across the 100 bootstrap samples are shown 

in Figure 3. In terms of the mean and median value of empirical value functions, OWMKL 

outperformed all the other methods. Standard deviations of all methods were similar (Table 

3). Figure 4 visualizes the proportion subjects assigned to sertraline by each method 

across 100 bootstrap samples. Both OWL using the Gaussian kernel and AOL using the 

Gaussian kernel assigned all subjects to the same treatment group in each bootstrap and 

more frequently assigned subjects to sertraline, matching the ‘one-size-fits-all’ policy. The 
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Q-learning policy was more similar to the coin toss policy, with the proportion of subjects 

assigned to sertraline ranging from 0.42 to 0.74 with a median 0.58. In contrast, the 

OWMKL policy varied across 100 bootstrap samples which, suggesting that the OWMKL 

treatment rules are more reflective of each subject’s characteristics.

In order to assess the relative importance of the different data domains, we calculated the 

data domain kernel weights (Table 4). In this table, we report, for each data domain, the 

average weights across the 100 bootstrap samples and the weights obtained from applying 

the procedure once to the entire dataset, where tuning parameter was chosen based on 

the average 10-fold cross validation value function across 100 bootstrap samples of the 

entire dataset. The clinical data domain had the largest average kernel weight over 100 

bootstrap samples followed by the behavioral performance data domain. Thus, the clinical 

and behavior data domains contributed the most to determining the optimal treatment for 

patients. The kernel weights of neuroimaging data domains were relatively small, especially 

DTI. Since it is somewhat expensive to collect neuroimaging predictors, these results 

suggest that we may not need to measure DTI in order to make treatment decisions. If a 

data domain kernel weight threshold is set at 0.1, sMRI, EEG, and fMRI predictors will be 

additionally utilized in the ITR. In terms of time and resource utilization, it is not much 

more difficult to measure all 10 fMRI measures than just to measure one or two of them. 

Thus, we emphasize that for clinical applications, it is sometimes more important to identify 

data domains instead of individual variables.

When applying the procedure once to the entire dataset, the clinical data domain still had 

the largest kernel weight 0.827 while behavioral performance, sMRI, fMRI, and EEG had 

similar kernel weight around 0.04. We further investigated the data domain importance by 

only using clinical data and one of behavioral performance, sMRI, fMRI, and EEG data. 

The kernel weight of clinical data domain was 1 when using it with behavioral performance, 

or sMRI, or EEG. When using clinical data with fMRI, the kernel weight of clinical data 

domain was 0.16 and that of fMRI was 0.84. In clinical practice, we recommend only 

collecting clinical data considering the fMRI brain scan cost.

5 Discussion

In this work, we proposed OWMKL to estimate ITRs by using multiple kernels to model the 

relationships between baseline data domains and an outcome variable. The multiple kernel 

functions can be regarded as a set of basis kernel functions that represent different notions 

of similarity measures across multiple data domains. Our method finds a composite kernel 

function in an optimal fashion that can better accommodate the similarity of predictors 

within data domains rather than choosing any single specific kernel function (a single 

similarity representation). When multiple data domains are available, our method integrates 

prior data domain knowledge to group predictors that are within the same data domain 

and takes into account the heterogeneity across different data domains. The choice of 

kernels is flexible and can be determined based on the types of data domains. In addition, 

some predictors may not be useful for choosing an optimal treatment rule. Our approach 

introduces sparsity to handle high-dimensional variables that can distinguish informative 

data domains from non-informative data domains. This can result in a significant savings in 
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terms of time and expense for patients by eliminating the collection of non-informative data 

domains. In addition, since the cost and time of measuring several neuroimaging measures 

from the same data domain is about the same as that of extracting a single measure from the 

domain, it is most important to identify useful data domains as opposed to single measures 

from the domains. If one is interested in selecting specific predictors that may be important 

rather than identifying entire data domains, our approach can be adapted to use separate 

kernel functions for the specific predictors.

The application of OWMKL to the EMBARC depression study illustrated that the clinical 

data domain is most informative for choosing an optimal treatment rule. These OWMKL 

results suggest that it may be sufficient for clinicians to collect data only from the one easily 

obtained and inexpensive data domain and avoid the collection from the more expensive 

neuroimaging data domains.

Several extensions can be considered. For instance, it would be interesting to explore 

which type of kernels are optimal for various data domains (e.g., scalar, matrix-valued, 

functional data). In our simulation experiment and in our depression example, only scalar 

data domains were used. Also, we only considered a two-arm clinical trial in this work. In 

trials with more treatment arms, our method can be easily generalized to a weighted multi-

group classification problem under the MKL framework (Rakotomamonjy et al., 2008). We 

could also extend our method for a continuous treatment variable, such as dose level, by 

solving a weighted regression problem with multiple kernels (Rakotomamonjy et al., 2008). 

Furthermore, we can consider extending our method from the single-stage decision making 

setting to estimate dynamic treatment regimes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A representation of the covariance matrix Σ of the continuous predictors in the simulations. 

Each node represents one predictor. An edge between two predictors indicates that the 

covariance between the two predictors is 0.3. If there is no edge between two predictors, 

the pair is independent. The diagonal elements of Σ are 1. The node color indicates data 

domain membership. Orange: Data domain 1; Red: Data domain 2; Light blue: Data domain 

3; Green: Data domain 4; Blue: Data domain 5; Yellow: Data domain 6; Grey: Data domain 

7.
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Fig. 2. 
Boxplots of empirical value function in simulations. Black lines: true optimal bound; Grey 

lines: coin toss; Brown lines: all treatment 1; Pink lines: all treatment −1; Solid line: median 

of value function across simulations; Upper dash line: 75% quantile of value function across 

simulations; Lower dash line: 25% quantile of value function across simulations.
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Fig. 3. 
Boxplots of empirical value function across 100 bootstrap samples in EMBARC study.
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Fig. 4. 
The proportion of subjects assigned to sertraline by each method across 100 bootstrap 

samples in the EMBARC study.
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Table 1

Simulation Settings. The last column refers to the percentage of the population for whom Treatment 1 would 

be more beneficial than Treatment −1

Setting T i Treatment 1 benefit

1 (linear) 1 − Xi, 1
(1) + 2Xi, 2

(1) − Xi, 1
(2) + Xi, 2

(2) + 2Xi, 5
(2) 60%

2 (quadratic) 1 + Xi, 1
(1) + 2Xi, 2

(1) + Xi, 1
(2) − Xi, 2

(2) 2 + Xi, 5
(2) 2

60%

3 (quadratic, more predictors) 1 + Xi, 1
(1) + 2Xi, 2

(1) − Xi, 3
(1) 2 + Xi, 1

(2) − Xi, 2
(2) + 2 Xi, 5

(2) 2 + 2 Xi, 6
(2) 2

80%

4 (quadratic, weak signal) 1 + Xi, 1
(1) + 0.5Xi, 2

(1) − Xi, 3
(2) 2 + Xi, 1

(2) − 0.5Xi, 2
(2) + 0.5 Xi, 5

(2) 2
60%

5 (two-way interaction) 1 − Xi, 1
(1) + 2Xi, 2

(1) 2 + Xi, 1
(2) − Xi, 2

(2) 2 + Xi, 5
(2) 50%

6 (exponential) 1 − exp Xi, 1
(1) − Xi, 2

(1) + exp Xi, 1
(2) + Xi, 2

(2)
70%
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Table 2

Average data domain kernel weights across 100 simulations from OWMKL.

Data Data Data Data Data Data Data Data Data

Setting n domain 1 domain 2 domain 3 domain 4 domain 5 domain 6 domain 7 domain 8 domain 9

Setting 1 150 0.258 0.416 0.086 0.086 0.064 0.082 0.004 0.002 0.002

200 0.294 0.443 0.064 0.064 0.067 0.062 0.003 0.001 0.001

400 0.335 0.391 0.068 0.068 0.086 0.050 0.001 0.001 0.001

800 0.372 0.442 0.048 0.047 0.053 0.036 0.000 0.000 0.000

1000 0.370 0.427 0.057 0.054 0.054 0.037 0.000 0.000 0.000

Setting 2 150 0.346 0.269 0.089 0.078 0.103 0.083 0.030 0.001 0.002

200 0.377 0.285 0.093 0.067 0.080 0.066 0.028 0.002 0.002

400 0.358 0.363 0.072 0.066 0.072 0.052 0.017 0.000 0.000

800 0.332 0.452 0.056 0.055 0.054 0.037 0.013 0.000 0.000

1000 0.332 0.483 0.046 0.045 0.045 0.036 0.012 0.000 0.000

Setting 3 150 0.249 0.180 0.149 0.146 0.121 0.148 0.005 0.001 0.002

200 0.283 0.183 0.148 0.129 0.145 0.108 0.003 0.001 0.001

400 0.280 0.267 0.100 0.120 0.156 0.072 0.004 0.001 0.001

800 0.284 0.275 0.106 0.113 0.159 0.062 0.001 0.000 0.000

1000 0.253 0.270 0.109 0.125 0.169 0.072 0.001 0.000 0.000

Setting 4 150 0.395 0.268 0.076 0.069 0.096 0.073 0.020 0.001 0.002

200 0.424 0.275 0.067 0.069 0.092 0.058 0.013 0.002 0.001

400 0.441 0.278 0.065 0.064 0.089 0.051 0.010 0.000 0.001

800 0.513 0.291 0.051 0.049 0.051 0.036 0.007 0.000 0.001

1000 0.520 0.298 0.047 0.046 0.050 0.032 0.006 0.000 0.000

Setting 5 150 0.229 0.362 0.110 0.111 0.098 0.080 0.005 0.003 0.003

200 0.281 0.372 0.073 0.083 0.115 0.070 0.005 0.001 0.001

400 0.321 0.279 0.093 0.076 0.162 0.067 0.001 0.001 0.000

800 0.401 0.282 0.084 0.081 0.098 0.053 0.001 0.000 0.000

1000 0.434 0.285 0.080 0.079 0.074 0.048 0.001 0.000 0.000

Setting 6 150 0.458 0.189 0.087 0.095 0.085 0.075 0.006 0.003 0.003

200 0.467 0.197 0.088 0.078 0.099 0.063 0.006 0.001 0.002

400 0.478 0.309 0.049 0.045 0.075 0.037 0.005 0.001 0.002

800 0.458 0.341 0.044 0.048 0.073 0.032 0.004 0.001 0.000

1000 0.454 0.351 0.051 0.052 0.059 0.029 0.002 0.000 0.001
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Table 4

Estimated data domain kernel weights from OWMKL.

Data Number Average kernel weights Kernel weights

domain of variables over 100 bootstrap samples on entire data

Gender 1 0.001 0

Hypersomnia 1 0 0

Age 1 0.005 0.006

Clinical 16 0.368 0.827

Behavioral Performance 8 0.244 0.043

sMRI 2 0.123 0.039

fMRI 10 0.122 0.042

EEG 3 0.120 0.036

DTI 1 0.016 0.007
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