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SUMMARY Listeria monocytogenes is a Gram-positive facultative intracellular patho-
gen that can cause severe invasive infections upon ingestion with contaminated
food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia,
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meningitis or meningoencephalitis, and pregnancy-associated infections manifesting
as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main
cause of foodborne illness leading to hospital admissions in Western countries.
Sources of contamination can be identified through international surveillance sys-
tems for foodborne bacteria and strains’ genetic data sharing. Large-scale whole ge-
nome studies have increased our knowledge on the diversity and evolution of L.
monocytogenes, while recent pathophysiological investigations have improved our
mechanistic understanding of listeriosis. In this article, we present an overview of
human listeriosis with particular focus on relevant features of the causative bacte-
rium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment
and prevention.

KEYWORDS epidemiology, histopathology, Listeria monocytogenes, listeriosis,
neurolisteriosis, pathophysiology, pregnancy-related listeriosis, bacterial genetics

INTRODUCTION

L isteria monocytogenes is a Gram-positive rod-shaped facultative intracellular patho-
gen that is widespread in the environment and can be isolated from soil, ground

water, and feces of animals and humans (1–3). L. monocytogenes is a tenacious orga-
nism that easily adapts to fluctuating environments and survives harsh conditions
including cold temperatures, acidity and high salt concentrations (4–7). The bacterium
uses seven percent of its genome for adaptive regulation to engage specific environ-
mental conditions (8).

L. monocytogenes infection, also known as listeriosis, is mainly foodborne, contracted
through the ingestion of contaminated food products such as processed meat, dairy prod-
ucts, pre-packed sandwiches, cold-smoked fish, prepared vegetables, salads and fruits
(9–11). Many listeriosis cases are classified as sporadic, but foodborne outbreaks are fre-
quently observed (12–15). Human listeriosis ranges from subclinical and uncomplicated
febrile gastro-enteritis to severe invasive disease (16). Invasive Listeria infections can be cate-
gorized into 3 main clinical forms: (i) pregnancy-associated and neonatal listeriosis, (ii) bac-
teremia or septicemic listeriosis, and (iii) central nervous system (CNS) infection, such as
meningitis or meningoencephalitis (in this review, generically referred to as neurolisteriosis),
with each respectively accounting for 14%, 52%, and 31% of human listeriosis cases (12, 16).
Less common infection sites include the peritoneal cavity, arthroskeletal tissue, lung and
pleural cavity, cardiovascular system, urinary tract, biliary tract, and the eye; each typically
accounting for less than 1% of the total number of listeriosis cases (16, 17). There is also an
unusual form of cutaneous listeriosis, a pyogranulomatous rash seen in farmers or veterinar-
ians, contracted by direct exposure to infected lochia, placenta or aborted fetuses from
materno-fetal cases of L. monocytogenes infection in ruminants (18).

The identification of L. monocytogenes as a foodborne pathogen in the 1980s led to
the establishment of extensive food safety programs at national and international level
(10). While implementation of these programs contributed to reducing the number of
outbreaks (19–22), listeriosis remains one of the main 3 causes of foodborne disease
leading to hospital admissions in North America and Europe (12, 23–25). In North
America, health care and food safety costs associated with human listeriosis have been
estimated at 2.3 billion to 22 billion dollars per year (26). The worldwide burden of the
disease amounted in 2010 to 23,150 cases, 5,463 deaths and 172,823 disability-
adjusted life-years (DALY) (27). With these figures, human listeriosis ranks among the 5
most important foodborne illnesses (25, 27, 28). In this review, we provide an update
on human listeriosis, focusing on the epidemiology and risk groups for infection, bac-
terial characteristics and typing methods, pathogenesis and pathophysiology, and clin-
ical presentation, outcome, treatment and prevention.

LISTERIA MONOCYTOGENES

L. monocytogenes is the only Listeria species that is recognized as a human
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pathogen (29). Phylogenetically it belongs to the Listeria sensu strictu division (29). A
second pathogenic species, Listeria ivanovii, causes abortion, septicemia and enteritis
in ruminants (30, 31), but is very rarely isolated from humans (32). Nonpathogenic spe-
cies in the sensu strictu division are Listeria innocua, Listeria welshimeri, Listeria seeligeri,
and Listeria marthii (29). At earlier bifurcations of the genus, there is a more diverse
group of Listeria-related organisms collectively known as “Listeria sensu lato” species,
all of which are nonpathogenic (29). Evidence from comparative genomic studies indi-
cates that the Listeria sensu strictu clade evolved from a common ancestor that had
acquired the Listeria pathogenicity island 1 (LIPI-1), with repeated loss of this central
virulence locus (and the other members of the PrfA virulence regulon) (see below)
resulting in the nonpathogenic species (33). The Listeria sensu strictu genome has a
size of 2.8–3.2 Mb and is rather stable, with limited gene gain and loss. It comprises
2,032 core genes and approximately 4,500 accessory genes (in L. monocytogenes, 2,360
and 3,109 genes, respectively) (33, 34). Seventeen percent of the genome is described
as involved in nucleic acid synthesis and metabolism, 14% in cellular macromolecular
metabolism and, 10% in protein metabolism (33). During the last decade, a number of
new Listeria species have been discovered (35), and the Pasteur Institute has devel-
oped an interactive web platform for phylogenomic analysis and systems biology of
Listeria (36).

Whole genome single nucleotide polymorphism (SNP) analyses show that L. monocyto-
genes is an ancient species that diversified into 4 different lineages designated I to IV (37,
38). These can be subdivided into 13 sublineage-related serotypes and more than 1,500 (reg-
istered) sequence types grouped into clonal complexes (CCs) or core-genome multi-locus
sequence typing (MLST) types (CT) and sublineages (SL) (39, 40). While all L. monocytogenes
strains are potentially pathogenic, epidemiological and experimental evidence indicates it
is heterogeneous in terms of virulence. For example, only 3 of the 13 serotypes - 4b, 1/2a
and 1/2b - represent 92% to 95% of the clinical isolates (41–45). Phylogenetic studies of
L. monocytogenes lineage I and II showed that serogroup 4 (sublineage I) was most likely an-
cestral in L. monocytogenes and horizontal gene transfer events introduced serotype 1/2-
related O-antigen genes and gene clusters (46). There is also a lower rate of homologous
recombination in lineage I compared to lineage II (47, 48). The majority of genomic differen-
ces involve insertion/deletion events and include phage insertions, transposable elements,
scattered unique genes, and genomic islands encoding mostly unknown functions (37).

Core Virulence Determinants

All L. monocytogenes isolates have a core set of virulence determinants responsible
for the basic features of the listerial intracellular infection cycle, namely, (i) host cell
invasion, (ii) escape from the phagocytic vacuole, (iii) rapid intracellular proliferation,
and (iv) actin-based motility and cell-to-cell spread (Fig. 1) (49–53). These virulence
functions are encoded by 10 key virulence genes arranged in 5 transcriptional units, all
coordinately expressed under the control of the PrfA transcriptional regulator (54, 55).
For this reason, these 10 virulence genes are collectively designated as the PrfA regu-
lon (55). Two of the transcriptional units lie in a discrete 10-kb chromosomal region
called LIPI-1 (51). These include hly encoding the pore-forming toxin listeriolysin O
(LLO), which mediates vacuole escape (56); the plcA and plcB encoding 2 phospholi-
pases C (phosphatidylinositol-specific and broad-substrate range, respectively), which
act in concert with LLO to promote bacterial release from the phagocytic vacuole (57,
58); mpl encoding a metalloprotease required for the post-secretional processing of
pro-PlcB into an active phospholipase (59); and the surface protein ActA, required for
actin-based intracellular motility and cell-to-cell spread (60). Given the important role
of the LIPI-1 products in the establishment of listerial intracellular infection, LIPI-1 is
also referred to as the “Listeria intracellular survival cassette” (61).

Three other PrfA-regulated transcriptional units are at different chromosomal loca-
tions. Two of them encode members of the internalin (inl) multigene family of Listeria.
The inlAB operon encodes 2 surface-associated internalins, InlA and InlB, required for
entry into normally non-phagocytic cells (62). Together with the actin-based cell-to-cell
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FIG 1 Pathogenesis of L. monocytogenes infection. (A) Invasion of the intestine through intestinal villi enterocytes, goblet cells and M cells.
Entry into non-phagocytic cells is mediated by expression of bacterial surface-associated internalins A and B (InlA and InlB), which use as
host ligands the adherens junction protein E-cadherin and the Met tyrosine kinase receptor, respectively. After host cell internalization, the
listerial pore-forming toxin listeriolysin O (LLO) and phospholipases A and B (PlcA and PlcB) lyse the phagocytic vacuole membrane. The
released bacteria replicate in the cytosol aided by the listerial virulence factor Hpt, which promotes rapid intracellular proliferation by
allowing utilization of host-cell hexose phosphates. Then, the listerial actin-polymerizing protein ActA recruits host cell Arp2/3 complexes

(Continued on next page)
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spread mechanism mediated by ActA, InlA and InlB are responsible for the invasive
character of L. monocytogenes infections. Another member of the internalin multigene
family, the inlC monocistron, encodes a small, secreted protein, which is predominant
in the L. monocytogenes culture supernatant (63) and aids in the ActA-mediated cell-
to-cell passage process (see below) (63). Finally, another monocistronic unit, the hpt
gene, encodes an organophosphate transporter that promotes rapid replication in the
cytosol by allowing Listeria bacteria to access host cell-derived glucose metabolic inter-
mediates (glucose-6-phosphate, glucose-1-phosphate and fructose-6-phosphate) as a
carbon source (64). At the time of its discovery, Hpt was the first nutritional virulence
factor to be identified in a bacterial pathogen.

As is the case for many bacterial virulence factors, individual members of the PrfA viru-
lence regulon may have several critical roles in listerial infection. Thus, besides its key role
in vacuole escape, the pore-forming toxin LLO promotes host cell invasion by inducing
Ca21 influx, suppresses the macrophage oxidative burst, reduces the transcriptional activity
of a subset of host genes –including key innate immunity genes– by inducing histone
modifications, dysregulates protein small ubiquitin-related modifiers (SUMO)ylation alter-
ing key host cell processes, silences the adaptive immune responses by promoting the
expression of negative regulators of T cell receptor signaling, and prevents plasma mem-
brane damage and premature host cell killing by interacting with the endocytic adaptor
protein Ap2a2 (65, 66). ActA also allows L. monocytogenes to avoid autophagy in the host
cell cytosol in addition to its critical role in cell-to-cell spread (67). Another example is InlC,
which not only promotes membrane protrusion formation during cell-to-cell spread by
binding to the host protein Tuba, inhibiting N-Wasp and reducing actin cortical cytoskele-
ton rigidity (68), but also dampens innate immune responses by targeting the IkB kinase
subunit IKKa, reducing NF-kB activation (69).

Regulation of Listeria Virulence

The central regulator of Listeria virulence is the LIPI-1-encoded PrfA protein, an
allosterically controlled transcription factor of the Crp/CAP family. PrfA binds to a 14-
bp palindromic sequence TTAACANNTGTTAA, called the “PrfA-box,” located in the -35
region of the regulated promoters, recruiting RNA polymerase and activating transcrip-
tion (49, 55). PrfA acts as a master switch that turns on and off virulence gene expres-
sion when L. monocytogenes senses its presence in a mammalian host (specifically its
cytosolic compartment, see below) or the environmental habitat, respectively (49, 52).
As such, PrfA is not only essential for the coordinated activation of the listerial viru-
lence program during infection, but also for ensuring maximum bacterial fitness out-
side the host by preventing the metabolically costly production of virulence factors
when these are not needed (70). In addition to the “core” set of 10 directly regulated
genes, transcriptomic studies indicated that PrfA exerts a more global role in listerial
homeostasis, influencing the expression of as many as 145 genes of the L. monocyto-
genes EGD genome (55).

The mechanism underlying PrfA’s allosteric on-off switching remained elusive for a long
time but has recently been elucidated. PrfA activity levels are antagonistically regulated by
activating and inhibitory nutritional peptides imported via the listerial Opp oligopeptide
transporter (71). Activating peptides provide cysteine, which Listeria cannot synthesize, and

FIG 1 Legend (Continued)
and induces actin-based motility, which propels the bacteria through the cytosol and into neighbouring cells, where the infection cycle starts
again. InlC, another listerial virulence factor, assists in the process of cell-to-cell spread by targeting the cytoskeletal protein Tuba, and also
interacts with IkB kinase (IKKa) dampening the innate immune response. (B) L. monocytogenes is taken up by macrophages which transport
the bacteria to the lymph node system, and via the bloodstream to the primary target organs (liver and spleen), and from there to the
secondary target organs (placenta or brain). See Fig. 3. (C) L. monocytogenes can colonize the placenta via cell-to-cell spread from infected
macrophages to extravillous cytotrophoblasts, or via direct invasion of the trophoblast through InlA and InlB. Another internalin family protein,
InlP, has been reported to facilitate placental invasion involving interaction with the cell junction-associated host protein afadin. (D) L.
monocytogenes can gain access into the central nervous system in different ways: via cell-to-cell spread from infected phagocytes, or via direct
(InlA/B-mediated) invasion of endothelial cells of brain microcapillaries, the basolateral side of the choroid plexus, or nerve cells of trigeminal
nerve terminals (followed by intra-axonal ascension to the rhombencephalon). Invasion of brain endothelial cells is further facilitated by
interaction of the listerial internalin family protein InlF with the host intermediate filament protein vimentin. See text for details.
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is the rate-limiting precursor of the redox buffer tripeptide glutathione (GSH), required for
PrfA function (71). GSH (g-L-glutamyl-L-cysteinylglycine) is endogenously synthesized by
the listerial GshF enzyme and stabilizes PrfA in active (“on”) conformation by binding with
low affinity in a large tunnel between the N- and C-terminal domains of the PrfA monomer
(72, 73). On the other hand, exogenous peptides that lack cysteine directly inhibit virulence
gene expression via promiscuous (sequence-independent), high-affinity competitive bind-
ing to PrfA’s GSH binding site (71). Through this clever mechanism, PrfA acts as a sensor of
the surrounding habitat via the sensitive detection of changes in the composition of avail-
able peptides, the main N source for microbes, to adjust listerial virulence gene expression
levels accordingly.

A number of other mechanisms, involving environmental, metabolic, or stress sig-
nals and their processing pathways, contribute to modulate PrfA-dependent expres-
sion (74–82). Particularly important among them is an RNA thermoswitch that inhibits
prfA gene translation below 30° C (83), a signal indicative of presence outside a warm-
blooded host. The multiplicity of redundant mechanisms converging on PrfA, specifi-
cally those aimed at repressing its activity, indicates that preventing any fitness loss
due to untimely virulence factor expression (e.g., outside the host) is critically impor-
tant for L. monocytogenes (70).

Spontaneous inactivation of PrfA function due either to nonsense, missense, frame-
shift or truncation mutations in the prfA gene, or mutations in the gshF gene encoding
the listerial GSH synthase, may occur and result in complete loss of virulence in L.
monocytogenes (84, 85). Although relatively infrequent (0.1% of isolates), the PrfA-dis-
abling mutations have considerable evolutionary significance as they convert L. mono-
cytogenes in an obligate saprophyte. These mutations are probably at the origin of the
emergence of the nonpathogenic species within the Listeria spp. “sensu strictu” clade
(L. innocua, L. seeligeri, L. welshimeri and L. marthii) (33, 53, 85–87).

Other Virulence-Associated Factors

The PrfA virulence regulon is at the basis of Listeria pathogenicity and facultative
intracellular parasitism and is present in all strains of the pathogenic Listeria spp, L. monocy-
togenes and L. ivanovii (30, 33). In addition, species- or genogroup-specific virulence deter-
minants have also been identified. Unique to L. ivanovii, LIPI-2, a large, spontaneously
deletable pathogenicity island, encodes multiple PrfA-regulated internalins and SmcL, a
sphingomyelinase that contributes to vacuole escape (88). In L. monocytogenes, LIPI-3 is
present in 88% of lineage I strains which are most often associated with epidemic out-
breaks, but is absent from lineage II isolates. LIPI-3 encodes listeriolysin S (LLS), initially
described as a peptide hemolysin but later identified as a bacteriocin that displays bacteri-
cidal activity and modifies the host microbiota during infection. This highlights the impor-
tance of L. monocytogenes interactions with gut microbes in foodborne listeriosis (89–91).
A cellobiose phosphoenolpyruvate:sugar phosphotransferase system (PTS) designated LIPI-
4, unique to the L. monocytogenes “hypervirulent” clonal complex CC4, was associated with
the capacity to cause invasive (maternofetal and neuromeningeal) listeriosis, yet through
(an) unknown mechamism(s) (92).

Additional listerial components have been reported to be involved in infection. These
include surface-associated determinants, secreted proteins, secretion mechanisms, metabolic
pathways, and stress tolerance or detoxification factors. Among the latter, bile salt resistance
mechanisms have been shown to promote listerial survival in the intestine. Regulators other
than PrfA, such as SigB, CodY, DegU, VirR, Agr, the SreA/SreB S-adenosylmethionine (SAM)
riboswitches, and various others including a number of small RNAs, have also been reported
to have a role in L. monocytogenes virulence. We refer the reader to other publications and
references therein for more information about these additional virulence-associated factors
(93–97). A caveat is that while these additional mechanisms are explicitly or implicitly
described as virulence factors, many are present in the nonpathogenic Listeria species. In con-
trast to the PrfA regulon, most of these factors have therefore probably not primarily evolved
to support a parasitic lifestyle but instead fulfill housekeeping functions generally important
for optimal bacterial survival in diverse conditions, including infection.
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Subtyping

Historically, many different methods have been used for Listeria subtyping. These include
serotyping, phage typing, isoenzyme typing, pulse-field gel electrophoresis, ribotyping, multi-
locus tandem-repeat sequence analysis (MLSTA), different variations of MLST (e.g., multi-viru-
lence-locus sequence typing (MVLST)), 10-gene multilocus sequence typing (98), PCR
serogroup-sequence typing, and single nucleotide polymorphism (SNP) analysis (99). Because
of the diversity of typing methods, comparison between studies over time has often been dif-
ficult. Such was the case of the most common subtypes associated with human listeriosis in
Asia as determined by PCR serogroup-sequence typing (IIb-ST87, followed by IIa-ST378, I ST8
and IIa-ST155) (100–102), which could not be compared to the corresponding European and
North-American data where MLST was more frequently used (92, 103).

Since the introduction of next-generation sequencing, whole genome MLST has
enabled the rapid comparative analysis of L. monocytogenes isolates (104–108). This
has been aided by a number of initiatives in different countries aimed at harmonizing
Listeria subtyping, such as the Pasteur Institute’s Listeria MLST database which allows
interlaboratory comparison of data (39), the PulseNet network organized by the
Centers for Disease Control (CDC) in the United States (US) focusing on foodborne out-
break investigation (https://www.cdc.gov/pulsenet/index.html), or ‘GenomeGraphR’, a
web application for foodborne pathogen whole genome sequencing (WGS) data inte-
gration and analysis (109).

WGS-enhanced surveillance changed the landscape of listeriosis outbreak detection.
A study showed that WGS in combination with epidemiologic and food product tracing
data detected more listeriosis clusters and outbreaks compared to the pre-WGS era
(107). WGS has also improved listeriosis outbreak investigation (110) and the sensitive,
early detection of clusters of cases through accurate whole genome phylogenetic
relatedness, potentially resulting in fewer cases per outbreak (107). This is particularly im-
portant given the often wide (often international) distribution of processed retail food
and the low attack rates of listeriosis. Without the level of resolution afforded by WGS,
related isolates from low incidence common source outbreaks could be easily missed
and wrongly interpreted as unrelated sporadic cases (111–116).

EPIDEMIOLOGY
Surveillance

Human listeriosis has an estimated incidence ranging between 0.1 and 11.3 cases
per million population per year, depending on geographical location and surveillance
system (117). L. monocytogenes emerged as a human foodborne pathogen in 1981 fol-
lowing its identification as the cause of a listeriosis outbreak in Nova Scotia, Canada,
involving 7 adults and 34 perinatal cases, associated with consumption of contami-
nated coleslaw (10). A coleslaw sample from the refrigerator of one of the patients
yielded a L. monocytogenes strain of the same serotype (4b) as that isolated from the
blood of the same patient. This landmark study was soon followed by additional publi-
cations linking human listeriosis outbreaks to the consumption of food, paving the
way for the introduction of Listeria-targeted food safety measures (10). Subsequently,
strict regulations were introduced in the food industry aimed to decrease the number
of human listeriosis cases (118, 119).

Pioneering work in this area was developed in the 1980s by the French Listeria refer-
ence laboratory, initially established by Audurier et al. based on phage typing of the iso-
lates (120). In the USA, the Foodborne Disease Active Surveillance Network (FoodNet) is
implementing laboratory-based surveillance in Listeria epidemiology since 1996 (20, 121).
FoodNet involves the CDC, the US Department of Agriculture’s Food Safety and Inspection
Service (USDA-FSIS) and the US Food and Drug administration (FDA). USDA-FSIS and FDA
are responsible for improvement of food safety through regulations in food processing to
prevent Listeria contamination (20). Reports from the FDA showed a stable incidence rate
in the US over the period 2004–2013 (21, 22).

In 2002, the European Union (EU) established the European Food Safety Authority
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(EFSA), which among others assesses the risks posed by L. monocytogenes by monitor-
ing prevalence and levels of the pathogen in food, and advises on control measures
(122). Control and safety criteria have been regulated by EU legislation (123–125). A
steady increase of human listeriosis was detected in Europe over the period 2010–
2014 at European level (13), probably driven by the increased use of ready-to-eat food
products and relative rise of the susceptible population - particularly the immunocom-
promised and the elderly (116, 126, 127).

L. monocytogenes Diversity and Distribution

Large-scale genotyping studies of clinical, food, and environmental isolates have
provided key insight into the structure and distribution of L. monocytogenes popula-
tions (115). While all L. monocytogenes isolates are considered to be potentially patho-
genic by regulatory authorities, epidemiological evidence indicates that the species is
heterogeneous in terms of virulence. Indeed, there is an unequal distribution of geno-
types among clinical strains of L. monocytogenes, with two-thirds belonging to lineage
I and only one-third to lineage II. Also, only 3 of the 13 serovars of the species (1/2b
and 4b within lineage I and 1/2a within lineage II) cause .95% human listeriosis cases.
In addition, although lineage II predominates among isolates recovered in food surveys
(chiefly serovars 1/2a and 1/2c) or the environment, the majority of listeriosis cases is
caused by lineage I serovar 4b strains (40, 47, 115, 128–136).

A detailed population genomic study in France based on the analysis of 6,633
strains found that certain serovar 4b lineages, specifically CC1, CC2, CC4, and CC6,
were overrepresented among clinical isolates from invasive (neuromeningeal and pla-
cental-fetal) listeriosis cases, and tended to be found in patients with fewer or no debil-
itating comorbidities (92). These serovar 4b CCs were considered to be “hypervirulent”.
This was as opposed to lineage II CCs such as CC9 or CC121, which were mostly found
in food or, if causing infection, in immunocompromised patients (associated with bac-
teremia rather than invasive maternofetal or neuromeningeal listeriosis), and were con-
sidered “hypovirulent” (92). Other studies point in the same direction and confirm the
predominance of certain serovar 4b CCs among human listeriosis cases. A study involv-
ing 1143 L. monocytogenes strains from 22 European countries found that CC1 and CC6
were most commonly isolated from clinical cases and CC121 and CC9 from food prod-
ucts (137). Among neurolisteriosis cases, the most common MLST sequence types in
strains collected from the cerebrospinal fluid (CSF) in The Netherlands between 1985
and 2014 were ST2 (CC2) (24%), ST1 (CC1) (16%), and ST6 (CC6) (12%) (118). The reason
for the predominance of serovar 4b isolates, and specifically certain clones thereof, in
invasive listeriosis cases remains unknown. Based on preliminary data in mice, it has
been recently suggested, however, that this predominance might be related to a previ-
ously unrecognized capacity of the “hypervirulent” L. monocytogenes serovar 4b clones
to survive in vivo (138).

L. monocytogenes clonal complexes can be associated with different food product
sources (139). Hypovirulent CC121 and CC9 strains were associated with meat products
and food processing environments, and were rarely isolated in dairy products. In con-
trast, hypervirulent clonal complexes, in particular CC1, were most commonly found in
dairy products. These findings seem to suggest that the adaptation of certain L. mono-
cytogenes genotypes to specific ecological niches impacts their distribution in food
products (139).

Over time, Listeria population genetics trends evolve, with absolute and relative
changes in the predominance of CCs (140). This has been recently observed, for exam-
ple, in the Netherlands among CNS infections, with an increase of CC6 and CC155 and
a decrease of CC1, CC2, and CC3 (118). Regional population structure trends are also
noted, with CC6 being most commonly found in Europe and North America and less in
other continents (92, 115, 141, 142). However, in 2017–2018, an extensive listeriosis
outbreak in South Africa was caused by an ST6 (CC6) strain (lineage I, sublineage 6,
sequence type 6, and core genome multilocus sequence type 4148) detected both
in patients and the food source (polony, a ready-to-eat processed meat, see below)
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(143, 144). Of note, in 2017, the European Centre for Disease Prevention and Control
also identified an ongoing ST6 outbreak affecting several European countries (114,
145, 146).

Outbreaks

A substantial proportion of human listeriosis cases has been linked to outbreaks. A
retrospective study using WGS-enhanced surveillance of human listeriosis in Europe over
the period 2010 to 2015 concluded that up to 50% of 2,726 cases had a high likelihood
to have occurred within an outbreak (147). Focusing on the last 4 decades, we identified
more than 80 outbreaks worldwide affecting 5 or more patients with a known source of
contamination (Fig. 2) (10, 107, 112–114, 117, 146, 148–215). The number of cases associ-
ated with these outbreaks varied between 5 and 1566, and the 2 largest occurred in Italy
(in 1997) and South Africa (period 2017 to 2018) (Table 1).

The Italian outbreak stressed the significance of human listeriosis in immunocom-
petent patients. The clinical features in the infected patients were mainly limited to
fever and gastrointestinal complaints (155). The food sources identified were corn and
tuna salad served in a school cafeteria. Samples taken at the catering plant were posi-
tive for L. monocytogenes serotype 4b. A total of 292 patients (all children) were hospi-
talized for a median duration of 3 days; 123 of 141 stool specimens (87%) were positive
in contrast to only 1 blood sample. All patients affected survived.

The source of the South African outbreak was identified as processed meat sausage
(polony) (189). The total number of laboratory-confirmed cases in this outbreak was
937, including over 400 neonates (39%) and 193 fatal cases (27%) (189). It was a nation-
wide outbreak, and it took several months before the source of contamination was
identified using whole genome-sequencing of the isolates and systematic use of ques-
tionnaires (189). In this outbreak, HIV infection was associated with 53% increased
odds for death (144).

Another interesting well-documented outbreak took place in 2000 in British
Colombia, Canada. Here, 84 patients were infected with a serotype 4b L. monocyto-
genes acquired through consumption of a soft ripened cheese (166). The pasteurized
milk and pasteurization process were ruled out as contamination source. Instead, wild
swallows defecating in the dairy plant’s open cistern water reservoir and thereby con-
taminating the water supply used during the curd-washing step of the cheese making
process, were identified as the infection source (166). This finding led to enhanced
inspection of plants and improved plant design.

Serotypes were identified for 66 of the 87 outbreaks (76%) listed in Fig. 2 (10, 107,
112–114, 117, 146, 148–155, 157–218): of these, 4b and 1/2a were the most common,
accounting for 62% and 29%, respectively, of the outbreaks (Table 1). One outbreak
was caused by serotype 3b (158). The median number of cases per outbreak was 22
(interquartile range [IQR] from 11 to 38) and median number of deaths was 3 (IQR 1 to
6) (10, 107, 112–114, 117, 146, 148–155, 157–218). Unpasteurized milk products and
ready-to-eat products were the cause in 54 of 87 outbreaks (62%) (112–114, 117, 146,
148–152, 154, 155, 157, 159–163, 165, 167–169, 171, 172, 182, 183, 188, 189, 191–193,
195–208, 210, 211, 216–218). A meta-analysis of L. monocytogenes contamination in
deli meat, soft cheese, and packaged salads based on review of studies with a sample
size $100 showed prevalences of 2,9%, 2,4%, and 2%, respectively (219). Listeria con-
tamination of meat products is higher in deli counters compared to deli meat factories
(220). This is probably explained by cross-contamination at retail level due to insuffi-
cient cleaning and sanitisation of the slicing equipment (220, 221). Another concerning
source of L. monocytogenes contamination are frozen foods, such as ice cream (156,
222). In 2014–2015, an ice cream-associated listeriosis outbreak in the USA affected 10
patients (222). Four of the affected individuals had consumed the contaminated ice
cream in the same Kansas hospital where they were treated during a previous unre-
lated admission #28 days before listeriosis onset (223). A multistate listeriosis outbreak
in the USA also caused by contaminated ice cream and affecting 25 patients was
ongoing at the time of writing (191). Although official outbreak reports are not yet
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FIG 2 Outbreaks of Listeria between 1969 and 2022. Described by year, location, number of patients, serotype and source of infection. NR = not reported.
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TABLE 1 Outbreaks in human listeriosis between 1969 and 2022a

Author and yr of publication Period Country Cases
Perinatal
cases Death Suspect vehicle Serotype

Flight et al. 1971 (541) 1969 Auckland, New Zealand 20 14 NAb Not yet known if food borne 4b
Lennon et al. 1984 (197) 1980 Auckland, New Zealand 22 22 5 Raw fish and shellfish 1/2b
Schlech et al. 1983 (10) 1981 Nova Scotia, Canada 41 34 18 Coleslaw 4b
Faoagali et al. 1985 (198) 1982 Christchurch, New Zealand 18 NA NA Shellfish and raw fish suspected 4b
Fleming et al. 1985 (199) 1983 Massachusetts, USA 49 7 14 Pasteurized milk 4b
Bula et al. 1995 (148) 1983 Switzerland 57 NA 18 Vacherin Mont d'Or cheese 4b
Linnan et al. 1988 (149) 1985 California, USA 142 94 48 Mexican-style cheese 4b
McLauchlin et al. 1989 (200) 1987 United Kingdom 366 NA NA Pate 4b
McLauchlin et al. 1989 (200) 1987 United Kingdom 23 NA NA Unknown 4bX
Jensen et al. 1994 (201) 1989 Denmark 26 3 7 Blue mold cheese 4b
Jacquet et al. 1995 (194) 1992 France 279 0 85 Pork tongue in jelly 4b
Salamina et al. 1996 (152) 1993 Italy (North) 18 0 0 Rice salad 1/2b
Goulet et al. 1998 (151) 1993 France 38 31 10 Rillettes 4b
Dalton et al. 1997 (153) 1994 Illinois, USA 45 0 0 Chocolate milk 1/2b
Ericsson et al. 1997 (154) 1994 Sweden 9 3 1 Cold-smoked rainbow trout 4b
Aureli et al. 2000 (155) 1997 Italy (North) 1566 NA 0 Cold corn and tuna salad 4b
Miettinen et al. 1999 (157) 1998 Finland 5 0 0 Vacuum-packed cold-smoked trout 1/2a
CDCc website (191) 1998 Multistate, USA, 22 states 108 NA 14 Hot dogs 4b
Valk et al. 2001 (159) 1999 France 10 3 3 Rillettes 4b
Lyytikainen et al. 2000 (158) 1999 Finland 25 0 6 Butter 3a
Valk et al. 2001 (159) 1999 France 32 9 10 Pork tongue 4b
MacDonald et al. 2005 (161) 2000 North Carolina, USA 13 11 5 Mexican-style cheese 4b
Olsen et al. 2005 (162) 2000 Multistate, USA 30 8 7 Turkey ready-to-eat meat 1/2a
Sim et al. 2002 (160) 2000 New Zealand 32 NA NA Ready-to-eat meats 1/2
Frye et al. 2002 (163) 2001 California, USA 28 0 0 Delicatessen meat 1/2a
Carrique et al. 2003 (165) 2001 Sweden 48 0 0 Unpasteurized cheese 1/2a
Makino et al. 2005 (164) 2001 Japan 38 NA NA Cheese 1/2b
Gaulin et al. 2003 (203) 2002 Quebec, Canada 17 3 0 Unpasteurized cheese unknown
Gottlieb et al. 2006 (167) 2002 Multistate, USA 54 12 8 Turkey ready-to-eat meat 4b
McIntyre et al. 2015 (166) 2002 British Colombia, Canada 48 2 NA Cheese production 4b
McIntyre et al. 2015 (166) 2002 British Colombia, Canada 86 NA NA Cheese (contaminated by

swallows)
4b

Little et al. 2012 (204) 2003 United Kingdom 5 0 0 Prepacked sandwiches 1/2a
Swaminathan et al. 2007 (117) 2003 Texas, USA 12 NA NA Mexican-style cheese 4b
Bille et al. 2006 (168) 2005 Switzerland 12 3 2 Tomme cheese 1/2a
Winter et al. 2009 (169) 2006 Germany 11 NA 5 Scalded sausage 4b
Koch et al. 2010 (170) 2006 Germany 189 11 26 Acid curd commercial cheese

(made from pasteurized milk)
4b

Johnsen et al. 2010 (205) 2007 Norway 17 0 3 Camembert cheese from
pasteurized milk

unknown

Pichler et al. 2009 (171) 2008 Austria 12 0 0 Jellied pork 4b
Gaulin et al. 2012 (206) 2008 Quebec, Canada 38 16 2 Pasteurized milk cheese unknown
Little et al. 2012 (204) 2008 Ireland 7 0 3 Sandwiches with sliced meat 4b and 1/2a
Cartwright et al. 2013/Jackson
et al. 2016 (107, 173)

2008 Multistate, USA 20 0 5 Sprouts 1/2a

Currie et al. 2015 (172) 2008 Canada 57 0 24 Delicatessen meat 1/2a
Smith et al. 2011 (207) 2009 Denmark 8 0 2 Beef from the same meals-on-

wheels delivery catering
company

unknown

Fretz et al. 2010/Rychli et al.
2014/Schoder et al. 2014
(174–176)

2009 Austria, Germany, Czech
Republic

20 0 3 Traditional Austrian curd cheese
(Quargel)

1/2a

Magalhaes et al. 2015 (177) 2009 Portugal 30 2 11 Cheese 4b
GamL et al. 2013 (178) 2010 Texas, USA 10 5 0 Celery 1/2a
Little et al. 2012 (204) 2010 United Kingdom 5 0 1 Sandwiches with salmon and cress 4b
Yde et al. 2012 (179) 2011 Belgium 12 0 4 Hard cheese (pasteurized milk) 1/2a
McCollum et al. 2013/
Laksanalamai et al. 2012
(180, 181)

2011 Multistate, USA 147 33 4 Cantaloupe 1/2a en 1/2b

Hachler et al. 2013 (193) 2011 Switzerland 6 NA NA Cooked ham 1/2a
Gelbicova et al. 2018 (182) 2012 Czech Republic 25 2 0 Turkey ready-to-eat meat 1/2a

(Continued on next page)
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TABLE 1 (Continued)

Author and yr of publication Period Country Cases
Perinatal
cases Death Suspect vehicle Serotype

Acciari et al. 2015/Heiman et
al. 2015 (184, 185)

2012 Multistate, USA 22 4 1 6 from ricotta salad from
pasteurized sheep milk (from
Italy) and others from cross-
contamination of cheese cut
with the same equipment

1/2a

Jacks et al. 2016 (183) 2012 Finland 20 0 2 Ready sliced meat jelly unknown
CDC Website (191) 2013 Multistate, USA 6 1 1 Cheese 4b
CDC Website (191) 2014 Illinois and Michigan, USA 5 2 0 Mung bean sprouts 4b
Chen et al. 2017 (222) 2014 California and Maryland,

USA
8 NA 0 Dairy products 1/2b

CDC Website (191) 2014 Multistate, USA 5 1 1 Quesito casero cheese *d

Lachmann et al. 2020/Adler et
al. 2020 (209, 210)

2014 Germany 39 0 3 Meat products (sold in healthcare
facilities)

1/2a

CDC Website (191) 2014 Multistate, USA 35 NA 7 Prepackaged caramel apples 4b, 4bV
Maesaar et al. 2021 (212, 228) 2014 European Union

(Denmark, Estonia,
Finland, France,
Sweden)

22 NA 5 Ready-to-eat fish 1/2a

Duranti et al. 2018 (213) 2015 Italy 24 NA 4 Pork ready-to-eat products 1/2a
McLauchlin et al. 2021 (113,
214)

2015 Multicountry, Europe 47 0 9 Frozen sweet corn 4b

CDC Website (191) 2015 Multistate, USA 10 NA 3 Ice cream/frozen yogurt/frozen
snacks

*

CDC Website (191) 2015 Multistate, USA 30 NA 3 Soft cheeses from a dairy company *
Hanson et al. 2019 (187) 2015 Ontario, Canada 34 1 4 Pasteurized chocolate milk Unknown
Schjorring et al. 2017 (188) 2015 Denmark, Germany,

France
12 NA 4 Marinated salmon 1/2a

CDC Website (191) 2016 Multistate, USA 19 NA 1 Package salads 4bV
Self et al. 2019 (195) 2016 USA and Canada 33 0 1 Package salads 4b
Marshall et al. 2020 (211) 2016 Multistate, USA 9 NA 3 Frozen vegetables *
Marshall et al. 2020 (211) 2016 Multistate, USA 8 NA 0 Hummus *
CDC Website (191) 2017 Multistate, USA 8 NA 2 Soft raw milk cheese *
National Institute for
Communicable diseases
(542)

2017 South Africa 1024 410 200 Polony 4b

Cabal et al. 2019a/Cabal et al.
2019b (112, 196)

2018 Austria 13 0 0 Liver pate 4bV

Halbedel et al. 2020 (146) 2018 Germany 112 0 1 Blood sausage 4b
Inderbinden et al. 2021 (114) 2018 Switzerland 34 1 10 Brie 4b
CDC Website (191) 2019 Michigan, USA 8 NA 1 Sliced meat at a deli *
CDC Website (191) 2019 Georgia, USA 8 NA 1 Hard boiled eggs *
Palacios et al. 2022 (215) 2019 Multistate, USA 13 4 1 Queso fresco (pasteurized) *
Regional Health Authorities in
Andalucía (543)

2019 Spain 222 NA 3 Chilled pork roast 4b

ECDCe Website (217) 2019 The Netherlands and
Belgium

21 1 3 Ready to eat products 4b

Government Website UK (218) 2019 United Kingdom 9 NA 6 Sandwich and salad supplier Unknown
CDC Website (191) 2020 Multistate, USA 12 NA 1 Deli meats *
CDC Website (191) 2020 Multistate, USA 36 6 4 Enoki mushrooms *
CDC Website (191) 2021 Multistate, USA 13 NA 1 Queso fresco *
CDC Website (191) 2022 Multistate, USA 18 NA 3 Packaged salads *
CDC Website (191) 2022 Multistate, USA 10 NA 1 Packaged salads *
CDC Website (191) 2022 Multistate, USA 25 NA 1 Ice cream *
aOutbreaks were included in this table if they included 5 or more cases.
bNA; Not available.
cCDC; Centre for Disease Control.
dTyping known according to CDC but not published.
eECDC; European Center for Disease Control.
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available, a number of listeriosis outbreaks have been recently reported across Europe.
In Spain, the source was Andalusian chilled pork roast containing a serotype 4b L.
monocytogenes; 222 cases were linked to this outbreak including 3 deaths (216). In the
Netherlands and Belgium, a total of 21 listeriosis cases including three deaths (14%)
were traced back to a serotype 4b strain linked to a ready-to-eat meat product-manu-
facturing company (217). In England, a nosocomial outbreak which affected 9 patients
of whom 6 died (67%), was linked to a sandwiches and salads supplier of several UK
hospitals; the serotype has not been published (218). In Germany, a retrospective WGS
and questionnaire study identified 22 outbreaks between 2010 and 2021 (with 18 out-
breaks $5 clinical cases) in which smoked and graved salmon products were the most
likely source based on genetically closely related isolates from clinical cases and fish
processing plants (224).

The role of public health in tracing outbreaks. High-income Western countries
have a well-established track record of listeriosis surveillance, resulting in more but
smaller outbreaks being described than in other geographic areas (10, 107, 112–114,
117, 146, 148–155, 157–215, 225). National and international disease prevention and
control centers collaborate to connect (multi-country) outbreaks spanning over longer
periods of time, and to identify contamination sources via WGS typing based epidemi-
ological tracing (112–114, 122, 146, 147, 226, 227). For example, in 2019 a rapid out-
break assessment traced L. monocytogenes sequence type 1247 (CC8) originating from
an Estonian fish procesing company as the cause of 22 listeriosis cases (212, 228, 229).
Outbreak analyses and food testing have helped to focus and enhance national and
international hygiene regulations (230–234). In 2018, a 7-step strategy was introduced
to intensify sampling routes (214). The WGS source tracking program in the US sug-
gested that each additional 1,000 WGS isolate added to the public National Center for
Biotechnology Information (NCBI) database resulted in a decrease of approximately
2.31 human listeriosis cases per year (i.e., 13% reduction). Annual health benefits of
WGS for E. coli, L. monocytogenes and Salmonella together are estimated at nearly $500
million, compared to an approximately $22 million investment by public health agen-
cies (235).

Risk Groups

L. monocytogenes infection can manifest in young and healthy patients (16, 236, 237),
but well-known risk groups are pregnant women/neonates, the elderly, and immunocom-
promised people (16, 236). A major role is played by the host immune system in the sus-
ceptibility to invasive Listeria disease (12, 16, 238–240).

The elderly. Listeriosis incidence in patients $65 years old is 1.3 cases per 100,000
population compared to an annual average of 1.3 for the general population (relative
rate, 4.4) (12). Aging of the immune system involves functional and structural altera-
tions in host defense mechanisms. Next to a decreased ability to fight infections and
an impaired ability to effectively respond to antigens, elderly have a diminished
response to vaccines, a higher rate of cancer and auto-immune diseases and persistent
low-grade inflammation (241). Cell-intrinsic changes are found in both innate and
adaptive immune cells (241). Age-associated decline of the adaptive immune response
manifests in naive CD41 T cells deficits, and their response to type I interferon signal-
ing and cytokines (242–244). A mouse study showed older Listeria-infected animals
lost body weight dose dependently and had higher bacterial colony forming unit
(CHU) counts (245). Older mice tend to have higher baseline of T helper type 2 (Th2)
cell and regulatory T cells (Treg) responses (245). This response increases during
Listeria infection thereby counteracting the protective pro-inflammatory responses,
resulting in less effective pathogen removal from the host (245). Due to their dimin-
ished immune response, the elderly could be considered as a specific category of
immunocompromised patients.

Immunocompromised adults. Patients with a malfunctioning immune system are
more susceptible to a low-grade infection, such as listeriosis. The prospective MONALISA
study (16) showed that 93% of all patients with listeriosis had at least 1 underlying
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immunosuppressive comorbidity (16). Most frequent among these were solid tumors
(31%) and diabetes mellitus (22%). Immunosuppressive therapy was given to 43% of lis-
teriosis patients over a 5-year period prior admission. Another prospective study showed
that patients with active cancer, both solid and hematological malignancies, were more
likely to develop listerial CNS infection (21%) compared to patients without cancer (5%)
(246, 247). Other vulnerable groups in neurolisteriosis are alcoholics (248). Patients with
a history of chronic liver disease have a 5-fold increased risk of brain infection caused by
L. monocytogenes compared to other pathogens, whereas the risk is 8-fold increased in
patients with a history of immunosuppressive therapy (249).

Pregnant women. Compared to the overall population, pregnant women have a
10 to 18-fold higher risk for listeriosis in relation to the overall population (incidence
3 to 12 per 100.000) (12, 255), and a .100-fold increased risk compared to non-preg-
nant women of reproductive age (256). During pregnancy, cellular immunity is
diminished due to the elevated progesterone levels, increasing the susceptibility to
L. monocytogenes invasive infection (257, 258). Between the 1980s and 2015, the
number of neonatal Listeria infections decreased 12-fold in France, and a 17-fold
reduction in listerial meningitis cases in neonates was observed in the Netherlands
(118, 119). The incidence in women in childbearing years has been slowly increasing
in Europe over the period 2008 to 2015, but a relation with pregnancy has not been
confirmed (231).

Within the pregnancy risk group, ethnic minorities were found to have a higher inci-
dence of perinatal listeriosis in the US (Hispanics), France (Maghreb or Sub-Saharan
Africa origin), UK and Australia. This unequal distribution was suggested to be linked
to dietary habits and insufficient education on listeriosis during pregnancy (16, 21, 250,
256, 259, 260). US studies in the periods 2004 to 2009 and 2008 to 2016 also suggested
a higher relative risk for listeriosis in non-pregnant Hispanics (256), Afro-American, and
Asian populations as well (261).

Neonates. The reported incidence of neonatal listeriosis is between 1.3 and 25 per
100.000 live births (260, 262–266). Neonatal listeriosis can have severe manifestations
such as meningitis, sepsis, or pneumonia (264, 267, 268). CNS infection as the main
manifestation occurs in 13 to 18% of neonatal cases (16, 264, 265). Surveillance data in
the USA placed L. monocytogenes as the second leading cause of bacterial meningitis
in patients younger than 1 month (22%) in the 1990s (269). Twenty years later, this pat-
tern appears to have changed. Bacterial meningitis cases were caused by L. monocyto-
genes in 5% of children ,90 days old admitted in 7 tertiary centers in Canada (270), in
4% of infant cases in England (271), and 1.5% of neonatal (,28 days) bacterial menin-
gitis cases in France (272). This suggests that the relative importance of L. monocyto-
genes in neonatal meningitis has decreased (273).

Nosocomial and iatrogenic risk. Listeriosis is infrequently reported as nosocomial
infection. However, hospitalized patients are considered to be a vulnerable group, and
a number of hospital-acquired listeriosis outbreaks have taken place. Outbreaks were
foodborne in origin, caused by prepacked sandwiches (274), sliced-meat-jelly (183), or
other contaminated food (110, 178, 191, 275–277) and linked to products supplied by
hospital caterers (278). Furthermore, cases and small outbreaks of nosocomial listerio-
sis due to cross-infection in neonatal wards have been reported (279–285). One exam-
ple is an outbreak occurred in 1989 in Costa Rica involving 9 neonates between 4 and
8 days old where the proven source was a mineral oil from a multidose container
applied to the infants (286).

As iatrogenic risks, in addition to immunosuppressive therapy, 3 nationwide observatio-
nal studies, in Australia, Denmark, and Germany, showed that use of proton pump inhibi-
tors (PPI) was associated with increased likelihood of developing listeriosis (250, 251, 252).
The precise pathophysiological mechanisms are unknown, but, in general, the use of pro-
ton pump inhibitors raises the gastric pH, potentially increasing the survival of the ingested
Listeria when crossing the stomach (253, 254).
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PATHOGENESIS
Listeria Intracellular Parasitism

Host cell invasion. The invasive nature of Listeria infection is primarily determined
by the action of 3 surface proteins of the PrfA virulence regulon, the invasins InlA
and InlB from the internalin multigene family, and the actin-polymerising protein
ActA. The former are used by the pathogen to invade different normally non-phago-
cytic cells such as enterocytes, fibroblasts, hepatocytes or endothelial cells. InlA binds
to E-cadherin, a junctional protein expressed by a variety of cell types (287). InlB rec-
ognizes the tyrosine kinase receptor Met, the natural ligand for hepatocyte growth
factor (HGF) (288). It also uses the gC1qR complement component C1q receptor and
host cell surface glycosaminoglycans as co-receptors (289). InlA and InlB hijack the
endocytic recycling machinery of these receptors, inducing signaling events which,
in the case of InlB, involve activation of class I phosphoinositide 3-kinase (PI3-K)
(290–292), ultimately triggering cytoskeletal remodeling and bacterial internalization
(94, 287, 293). Both InlA and InlB are needed for efficient host cell entry, while the rel-
ative importance of InlA and InlB varies depending on the cell type or the receptor
isoform produced by a particular animal species, potentially influencing cell and host
tropism (62, 287, 290–292, 294–297). ActA, in addition to mediating a key direct cell-
to-cell invasion pathway (discussed below), has been shown to also contribute to
host cell invasion from the extracellular space, presumably via recognition of hepa-
ran-sulfate proteoglycan receptors (298). Other Listeria proteins may aid in the inter-
action with non-phagocytic host cells, such as LAP (Listeria adhesion protein), a 104
kDA alcohol acetaldehyde dehydrogenase that promotes adhesion to gastrointesti-
nal cells in an InlA-independent manner (299–303). Additionally, L. monocytogenes
gains access to the intracellular compartment via the normal phagocytic function of
macrophages and other antigen presenting cells. This internalization pathway is
independent of the InlA/InlB invasins and involves the immunoglobulin Fc receptor I
(FCGR1A) and other phagocytic receptors (304).

Vacuole escape and cytosolic replication. After internalization, whether by a pro-
fessional phagocyte or a normally non-phagocytic cell, other PrfA-regulated virulence
factors promote listerial intracellular survival and replication. As mentioned above, 3
secreted membrane-damaging proteins, LLO (56) and the PlcA and PlcB phospholi-
pases, the latter assisted by its activating metalloprotease, Mpl, lyse the membrane of
the phagosome and cause bacterial release to the cytosol (61, 65, 305). LLO is a key vir-
ulence factor, as shown by the severely attenuated phenotype of L. monocytogenes hly
mutants (56, 65). LLO is the only member of the cholesterol-dependent cytolysins
(CDC, a family of pore-forming toxins widespread among Gram-positive bacteria) that
has evolved as a phagosome-specific lysin.

Once Listeria reach the cytosol, bacterial growth ensues at comparable rates to those in
rich medium. Rapid intracytosolic replication is fueled by utilization of the first intermediates
of host cell glucose metabolism, glucose-6-phosphate, gluclose-1-phosphate or fructose-5-
phosphate, as a carbon source. Uptake of these sugars is mediated by the Hpt transporter, a
hexose phosphate permease related to the enterobacterial UhpT. Hpt expression is con-
trolled by PrfA and thus selectively activated in the cytosol (64). Cytosolic peptides rather
than free amino acids are the primary N source as demonstrated by recent experiments with
mutants with a disabled Opp oligopeptide transporter (71), also supported by the lack of sig-
nificant defects in intracellular proliferation of L. monocytogenes auxotrophic mutants requir-
ing specific amino acids (306). The available evidence indicates that both the Hpt-transported
sugar phosphates and the Opp-transported peptides allow L. monocytogenes to sense the cy-
tosolic compartment and induce the strong PrfA activation that takes place during intracellu-
lar infection (49). On the one hand, uptake of sugar phosphates by Hpt bypasses a catabolite
repression-like response that causes PrfA downregulation, by as of yet unclear mechanisms.
Sugars that repress PrfA are those transported via the phosphotransferase (PTS) system, such
as free glucose or, particularly, b-glucosides such as cellobiose abundantly present in the
environment (307). On the other hand, data using L. monocytogenes bacteria with disabled
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Opp-mediated oligopeptide transport indicate that uptake of cysteine in peptide form from
the host cytosol is essential for the early activation of PrfA and PrfA-dependent gene expres-
sion upon host cell infection (71). The regulation of the prfA gene by the global regulator
CodY (308) may provide additional layers of regulation linking listerial virulence and metabo-
lism upon CodY sensing intracellular levels of branched-chain amino acids (BCAAs), such as
leucine (81), or GTP pools, which become depleted during the starvation-induced stringent
response (78, 309).

L. monocytogenes intracellular replication (but not extracellular growth in culture
media) requires the bacterial lipoate ligase enzyme LplA1 (310). Lipoic acid (LA) is a
disulfide-containing antioxidant that, via ligation of its lipoyl moiety, acts as a cofac-
tor in target enzyme complexes, of which the most well-known is pyruvate dehydro-
genase (PDH). Accordingly, LplA1, exogenously sourced by Listeria in the form of
lipoyl peptides (311), was shown to mediate lipoylation of the listerial E2 subunit of
PDH to produce E2 lipoamide (310), which plays a pivotal role in the aerobic metabo-
lism of glucose in most organisms. This observation is intriguing because L. monocy-
togenes has a bifurcated tricarboxylic acid cycle and its metabolism is essentially
fermentative, so the virulence-specific role of LplA1-mediated lipoate ligation may be
related to the modification of other listerial proteins specifically required for intracel-
lular survival.

Direct (intracellular) cell-to-cell spread. Another key feature of the Listeria intracellular
parasitic lifestyle is the ability of these bacteria to directly spread cell-to-cell. This is mediated
by a surface protein encoded by the first gene of LIPI-1’s actA-plcB-orfX operon (57), ActA,
which accumulates at the older pole of each of the 2 daughter bacteria after cell division
(312, 313). The actA-plcB-orfX operon is expressed from a PrfA-regulated promoter with nu-
cleotide mismatches and thus requiring full activation of the PrfA system, which takes place
once listerial cells are actively replicating in the host cytosol (55, 314). The polarly distributed
ActA protein triggers actin polymerization at the surface of L. monocytogenes, involving mim-
icry of host proteins of the WASP family by the N-terminal region of ActA (315), thus bypass-
ing the control of upstream Rho-family small GTPases on the actin nucleation activity of the
Arp2/3 complex (312, 316). In their movement across the cytosol, the bacteria eventually
reach the cell periphery, and push outwards in pseudopod-like protrusions with a bacterium
at a tip, know as “listeriopods”. These structures are eventually phagocytized by neighboring
cells, resulting in double-membrane secondary vacuoles, from which Listeria escape again by
the concerted action of LLO, PlcA and, particularly, PlcB (57, 317, 318), reinitiating the infec-
tion cycle. Listeriopod formation is aided by the PrfA-regulated small-secreted internalin InlC,
which locally reduces membrane tension by inhibiting recruitment of the cortical actin regu-
lator N-WASP and the host endoplasmic reticulum (ER) coat protein complex II (COPII pro-
teins) via interaction with the protein adaptor Tuba (68, 319). Internalization of listeriopod
protrusions by neighboring macrophages involves efferocytosis (the process by which phag-
ocytes remove dead cells by phagocytosis) via recognition of exofacial phosphatidylserine
(PS) by the PS-binding receptor T cell membrane protein 4 (TIM-4) upon LLO-mediated
plasma membrane damage (320).

Implications for pathogenesis and immunity. The mode of spread of pathogenic
Listeria across host tissues, directly from cytosol to cytosol largely avoiding exposure to the
extracellular space, has a pivotal impact on the immune response and the type of immune
effectors that mediate infection resolution. Since extracellular host defenses, such as antibod-
ies, complement and the highly listericidal neutrophils, do not have access to the intracellu-
larly spreading Listeria bacteria, infection clearance depends on cytosolic innate immunity
and the correct mounting of a cell-mediated immune response involving tumor necrosis fac-
tor a (TNF-a), interferon g (IFNg), M1 (classically) activated macrophages, and major histo-
compatibility complex (MHC)-class-Ia-restricted CD81 T cells (61). A detailed review of the
immune mechanisms in Listeria infection is beyond this review and the reader is referred to
other publications (321, 322).

The listerial virulence factors and, in particular, the intrusion of Listeria bacteria into
the intracellular compartment, can modulate or interfere with a number of cellular
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functions and responses, with potentially significant impact on the host-pathogen
interaction. For example, ActA-mediated actin-based motility and the PlcA and PlcB
phospholipases help L. monocytogenes avoiding intracellular destruction by autophagy
(323–326), while the actin cloud at the listerial surface itself prevents ubiquitin deposi-
tion and accumulation of signaling molecules involved in autophagosome formation
(327, 328). Inlc, also highly expressed in (and secreted into) the cytosol, interacts with
the IkB kinase subunit IKKa, preventing nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) activation, thus dampening the innate immune response (68,
69). The major vacuole disrupting factor, LLO, induces histone H3 dephosphorylation
and histone H4 deacetylation by promoting efflux of potassium ions (329). It also
causes a decrease in SUMO-conjugated host proteins by inducing proteasome-inde-
pendent degradation of Ubc9, a critical component of the SUMOylation machinery
which plays a critical role in the post-translation control of a wide range of cellular proc-
esses (330, 331). Additional examples include the secretion of nucleomodulins, such as
the listeria-nuclear-targeted protein A (LntA) protein (332) or the LIPI-1 encoded OrfX
(57, 333). Via these and other mechanisms, Listeria can manipulate host cell transcription
and gene expression to diminish the innate immune response and depress specific inter-
feron stimulated genes, or induce the upregulation of the unfolded protein response
(UPR) in the endoplasmic reticulum (ER) (334) and the induction of mitochondrial frag-
mentation (335), among others (94, 336).

Pathophysiology of Infection: Early Stages

Pathophysiologically, Listeria infection can be subdivided into 3 distinct phases, as ex-
trapolated from experimental data in laboratory animals, clinical observations, and logical
interpretation of the natural history of listeriosis (61). The first 2 involve the traversal of the
intestinal barrier and translocation to mesenteric lymph nodes and the “primary target
organs,” i.e., liver and spleen (61, 138). These early stages are subclinical in most patients
but could manifest as a nonspecific febrile syndrome and, in some cases, gastroenteritis.
Whether Listeria infection is halted at its early stages or progresses to clinical invasive liste-
riosis through systemic dissemination and colonization of the “secondary target organs,”
i.e., brain or placenta, is likely determined by 3 main factors: (i) the number of bacteria
ingested with food, (ii) the virulence properties of the strain, and (iii) the immunological
status of the host (61). The following sections discuss the different stages of the physiopa-
thogenesis of listeriosis. Figure 3 summarizes the key steps of the process.

Survival in gastrointestinal tract. To reach the portal of entry in the small intestine,
ingested Listeria bacteria are confronted to significant environmental stresses starting
with the harsh conditions of the acidic stomach (337). The glutamic acid decarboxylases
(GAD) (338) and induction of the adaptive acid tolerance response (ATR) assist as a
defense mechanism for L. monocytogenes survival to the high gastric acidity (6, 8). In vitro
studies have shown that pre-exposure to a pH of 5.5 results in an increased resistance of
L. monocytogenes down to a pH of 3.5 (339). Moreover, acid-adapted L. monocytogenes
has an increased tolerance toward other environmental stressors such as heat and os-
motic stress (339). Bile salts are another important gastrointestinal stressor encountered
by L. monocytogenes. To counter their toxic effect, the bacterium uses a bile salt hydro-
lase (bsh gene product) to deconjugate the bile acid (254, 340), and a bile exclusion (bilE)
exclusion pump (lmo1421-1422 gene products) (341). Furthermore, transcriptomic analy-
ses showed upregulation of 2 multidrug efflux pump genes, mdrM and mdrT, following
contact with bile acid (342). A key part of L. monocytogenes adaptation to the gastroin-
testinal tract is the activation of the general stress response sigma factor, SigB, as
demonstrated by transcriptomic studies which show a strong induction of its controlled
regulon in the intestine (343). Members of the SigB regulon include systems for bile,
acid, and salt adaptation (343). SigB regulon activation is specific to the intestine as is
observed neither once the pathogen has invaded host tissues nor in the intracellular
compartment (76, 344–346). In addition to resisting the above stresses, L. monocytogenes
needs to overcome competition by the intestinal microbiota. A mechanism involved in
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this aspect is the above-mentioned bacteriocin listeriolysin S encoded by LIPI-3, present
in lineage I epidemic strains of L. monocytogenes (90, 91).

Traversal of intestinal barrier. L. monocytogenes uses 2 pathways for intestinal
crossing. One is InlA/B-independent and inefficient, involving penetration through
the M-cells lining the Peyer’s patches. The other involves the active invasion of the
intestinal epithelium mediated by the InlA/B internalins (294, 347–349). InlA/B-medi-
ated invasion of the enterocytes lining the intestinal villi and crossing of this epithe-
lium can occur within 15 min (296, 297, 350, 351). The InlA receptor, E-cadherin
(E-cad) accumulates in the basolateral membrane of the enterocytes and is difficult
to reach from the intestinal lumen, but can be accessed by L. monocytogenes around
goblet cells, extruding enterocytes at the tips of intestinal villi, and in the epithelial
folds of the villi (297). After intestinal barrier traversal, L. monocytogenes spreads to
the draining mesenteric lymph nodes, followed by lymphohematogenous dissemina-
tion to the liver and spleen.

Infection of primary target organs (liver and spleen). In systemically infected mice,
60% of the intravenously injected L. monocytogenes bacteria are cleared within 10 min by
the liver (352). A fraction of the bacteria are found in the spleen but most (90%) of the
inoculum accumulates in the liver (353) upon uptake by Kupffer cells, the resident macro-
phages that line the hepatic sinusoids. Kupffer cells possess a complement C3b receptor
called ‘complement receptor for immunoglobulin superfamily’ (CRIg) (354), which facilitates
phagocytosis of circulating Listeria opsonized with C3b (355). After a drop in the bacterial
load during the first 6 h after infection, likely reflecting killing by resident macrophages, L.
monocytogenes numbers rise in both liver and spleen. Hepatocytes are the principal site of
listerial multiplication in the liver (356–359). Initial control of the infectious foci in the liver
is the result of the coordinated action of Kupffer cells, neutrophils, migrating macrophages

FIG 3 Pathophysiology of foodborne listeriosis. L. monocytogenes bacteria cross the epithelial barrier of
the intestine, translocate to the mesenteric lymph nodes, and reach their primary target organs, i.e.,
liver and spleen. There they establish infectious foci that in an immunocompetent individual are
efficiently cleared by cell-mediated immunity. In adult people with no predisposing conditions, the process
is largely subclinical. In this population, exposure to larger infective doses may cause febrile gastroenteritis
and, in rare cases, invasive disease. In immunocompromised adults and elderly people who are unable
to mount an efficient T-cell-mediated immune response, the primary infectious foci are inadequately
resolved and Listeria bacteria may be released to the bloodstream. This results in febrile bacteremia and,
eventually, invasive infection of the brain. In pregnant women, L. monocytogenes colonizes the uterus in
addition to the liver and spleen. While the infection is controlled in the latter organs, the placental
immune tolerance mechanisms provide a permissive niche for the proliferation of L. monocytogenes.
Bacteria from the placental reservoir released to the bloodstream may reinfect the mother’s liver and
spleen, contributing to infection maintenance and amplification (395). Transplacental dissemination to
the fetus results in abortion, stillbirth, or neonatal sepsis. A late-onset congenital form is also observed in
neonates, often accompanied by meningitis. Reproduced from reference 410, based on an earlier
depiction in reference 61.

Human Listeriosis Clinical Microbiology Reviews

March 2023 Volume 36 Issue 1 10.1128/cmr.00060-19 18

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00060-19


and (lymphokine-activated) natural killer cells (357). Influx of neutrophils into the liver
within hours after infection kills extracellular bacteria and destroy Listeria-infected hepato-
cytes (352, 360, 361). Neutrophil-Kupffer cell interaction is promoted by adhesion mole-
cules expressed by Kupffer cells such as intracellular adhesion molecule-1 (ICAM-1) and
vascular cell adhesion molecule-1 (VCAM-1) (362). Liver and spleen macrophages elicit a
pro-inflammatory response by producing interleukin (IL)-6, IL-12, IL-1b , tumor necrosis fac-
tor a (TNF-a) and nitric oxide (363). Modulated by IL-2 and IL-12, local natural killer (NK)
cells produce interferon g (IFN-g) leading to an early innate immune response triggering
macrophage activation (364–366). This is followed by an adaptive immune response that
in naive mice typically clears the L. monocytogenes foci in liver and spleen by day 7 to 10
postinfection. Resolution of the infection is promoted by IFN-g-secreting Th1 CD41 T cells,
which stimulate the bactericidal capabilities of macrophages, and ultimately mediated by
CD81 T cells which destroy infected cells by cytolysis (321, 367). During this process, the
neutrophils that initially surround the infectious foci are gradually replaced by activated
mononuclear cells and lymphocytes, forming characteristic granulomas (368).

Central Nervous System Invasion

The key events in the pathogenesis of CNS infections is the interaction with the
blood-brain or blood-choroid plexus barriers (Fig. 1). Neuro-invasion by L. monocyto-
genes occurs in the context of a systemic disease and typically results from bacterial
dissemination via the bloodstream (369). Evidence indicates that L. monocytogenes
may invade brain endothelial cells either directly or by cell-to-cell spread from infected
phagocytes (369–371).

The exact preferential site of brain invasion by L. monocytogenes remains unclear.
Studies have indicated either the choroid plexus, ventricles, or the brain microvascula-
ture as entry sites (372–374). Recently, entry via the trigeminus nerve has been sug-
gested in a case series of Listeria rhombencephalitis (375). Neuroimaging analyses
showed involvement of the trigeminal nerve and nucleus in the early stage of disease
but remained inconclusive (375). Animal studies have documented axonal entry and
spread while neuropathological studies showed bacteria in axons, Schwann cells, satel-
lite cells, and ganglionic neurons (376, 377). Studies in ruminants suggested that the
neuropathogenesis process involves interaction between Listeria bacteria and E-cad
expressed in satellite cells and myelinating Schwann cells (378). A study in neonatal
mice hypothesized that listerial invasion of the central nervous system can take place
via nasal spread. By colonization of the mucosa in the nasopharynx, listeriae ascended
via the olfactory epithelium and the sensory neurons to the cribriform plate, resulting
in infection of the frontal segment of the brain (379).

In vitro data support that L. monocytogenes may gain access to the CNS by InlA/B-
mediated direct invasion of endothelial cells, with a possible major role for InlB (370,
371, 380, 381). Alternatively, brain infection may proceed through InlA/B-mediated
invasion of epithelial papilloma cells in the choroid plexus from the basolateral side
(382, 383). In vitro studies using sheep choroid plexus epithelial cells and in vivo studies
using intravenously inoculated mice suggested that L. monocytogenes may use a sur-
face-associated autolysin, IspC (a novel peptidoglycan hydrolase), to breach the cho-
roid plexus (382). Invasion is interrupted locally by inflammatory cells and phagocytes
from the bloodstream. In vitro experiments show low endothelial infiltration grade
when host inflammatory cells are present and activated (384). L. monocytogenes coloni-
zation of the endothelial layer is supported by the pore-forming toxin LLO (385). A
recent in vivo mouse study showed that infected monocytes are protected by InlB
from CD81 T cell-induced cell death, resulting in increased transfer of infected phago-
cytes into the brain (380). Experiments in mice also suggested that vimentin, an inter-
mediate filament protein present in the cytosol and localized to the cell surface, plays
a role in the uptake of L. monocytogenes into brain endothelial cells via interaction
with the internalin InlF (386, 387).

Once bacteria have been detected in the CSF by the immune system (372, 373,
388), macrophages and neutrophils are attracted into the CNS resulting in further pro-
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inflammatory cytokine production (389). The macrophage inflammatory proteins MIP-
1a, MIP-1b and MIP-2 attract neutrophils and monocytes into the CSF (390). Studies in
gerbils showed that after invasion of the CNS, the majority of Listeria are observed in
the brain parenchyma rather than in the CSF (391). Macrophages, neutrophils, choroid
plexus epithelial cells, ependymal cells of the ventricular wall, and periventricular neu-
rons are all target cells for murine listerial meningoencephalitis (388). During listerial
meningoencephalitis, a severe inflammatory response occurs in a normally immune
privileged site (392). In vivo and in vitro studies indicated that extracellular traps (ETs)
released from microglial vesicles and composed of extracellular DNA, matrix metallo-
peptidases MMP9 and MMP12, and citrullinated histone H3, could arrest or kill Listeria
bacteria in the brain (393). Co-localization in human CSF was confirmed by marking
the microglia and staining the extracellular DNA of CSF samples from 9 listerial CNS
infection patients (393). A study of CSF samples from neurolisteriosis patients revealed
elevated concentrations of 51 cytokines and chemokines compared to controls (394).
In this study, 101 cytokines, chemokines and complement factors were analyzed, show-
ing that inflammatory markers involved in T cell activation (sIL-2Ra, sCD40L and IL-
12p40), complement activation (C3a), immunoregulatory responses (IFN-a2, IL-18,
CX3CL1, CCL20), and endothelial growth factor production (VEGF, CXCL7), were associ-
ated with poor outcome (394). It remains unclear whether these pro-inflammatory
markers are causatively linked to the outcome of are merely a reflection of severe dis-
ease (394).

Invasion of Placenta and Fetus

Like the major invasion pathway of the brain by L. monocytogenes, listerial colo-
nization of the placenta is hematogenous (Fig. 1 and 3). Studies in animal models,
and specifically, competitive infection experiments in guinea pigs (which have a
placental structure similar to humans) have shown that small numbers of L. monocy-
togenes bacteria that traffic from primary infectious foci in the maternal organs are
sufficient to establish a placental infection, most often as a clonal expansion of a
single bacterial cell (395). This fits well with a hypothetical scenario in which inva-
sive listeriosis is caused by blood-borne L. monocytogenes released from primary
infectious foci in the liver and spleen and which, secondarily, seed the placenta in
pregnant women (or the brain in at-risk non-pregnant adults; see above). The time
required for the initial subclinical expansion of the bacterial population in the pri-
mary target organs, and secondary expansion of a small inoculum reaching the
placental-fetal unit until onset of obstetric signs, is consistent with the relatively
prolonged incubation period of pregnancy-associated listeriosis (median 27.5 days,
range 17 to 67 and up to 90 days) (396).

The available experimental evidence supports a key role for the fetally-derived
trophoblast in placental barrier penetration by L. monocytogenes (397–400). Studies
with human placental explants or primary cells indicated that the syncytiotropho-
blast lining the villi, which forms most of the maternal-fetal interface and is exten-
sively exposed to maternal blood, is relatively resistant to L. monocytogenes infection
(399, 401) (Fig. 1). The extravillous cytotrophoblast (EVT), which anchors the placenta
in the uterine decidua and line the maternal arteries (Fig. 1), was more permissible
and the preferential entry site. While still capable of eliminating approximately 80%
of the intracellular Listeria in 24 h, bacteria surviving this bottleneck can successfully
colonize the placenta (402) (see below). The Listeria-restricting capacity of EVTs may
be linked to the intriguing ability of decidual killer lymphocytes (NK cells) to transfer
the antimicrobial peptide granulysin via nanotubes to the trophoblast cells without
killing them (403). L. monocytogenes triggers inflammasome signaling in human
trophoblasts with enhanced secretion of IL-1b and IL-18, driving the innate immune
defense against placental infection (404). In addition to a pro-inflammatory response,
signature genes associated with poor pregnancy outcomes and production of tolero-
genic factors are also upregulated in Listeria-infected trophoblasts, which on the
other hand could facilitate placental infection (401). Evidence also indicates that early
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immune signaling events during Listeria infection even prior to transplacental inva-
sion blunts maternal regulatory T cell (Treg)-mediated suppression, disrupting fetal
tolerance and precipitating fetal demise (405). These observations illustrate that the
immune response to Listeria infection in the human placenta is a double-edge sword,
and how it is regulated or affected by the pathogen may be critical in determining
the fetal outcome.

The mechanism by which L. monocytogenes invades the trophoblast remains
unclear. While in in vitro cell culture systems the internalins InlA and InlB (required for
entry into non-phagocytic cells, see above) promoted listerial internalization into
trophoblast cells, in vivo in animal models –either mice (including transgenic mice
expressing the human isoform of the InlA receptor E-cad), gerbils, or guinea pigs–
these listerial invasins had only a contributing yet dispensable (or even negligible) role
(400, 406, 407). It therefore appears that listerial placental invasion in vivo primarily
takes place via cell-to-cell spread from infected phagocytes trafficking to the maternal-
fetal interface rather than via blood-borne free extracellular bacteria (395, 408, 409).
This is supported by experiments in mice showing that the actin polymerizing protein
ActA consistently facilitated the colonization of the fetoplacental unit whereas InlA
and InlB were dispensable (407). However, in guinea pigs, an actA mutant was only
minimally affected in placental invasion, although spread to the fetuses was signifi-
cantly reduced (398). The relative contribution of each of these 2 invasion pathways
may vary according to the specificities of the experimental host system, in particular
the species-specificity of the InlA/B-host receptor interactions (400). It may also crit-
ically depend on the intensity of the blood-borne exposure of the placenta to L. mono-
cytogenes, in turn determined by the infection dose and extent and dynamics of the
primary infection in maternal organs (410). Additional listerial factors could also con-
tribute to the colonization of the placenta, as recently reported for InlP. This secreted
internalin family protein has been reported to promote placental invasion in mice and
guinea pigs (presumably by favoring L. monocytogenes transcytosis via interaction with
the cell junction-associated host protein afadin) as well as listerial proliferation in
human placental organ cultures and trophoblasts (408, 411).

A critical role of the inoculum size in the outcome of maternal-fetal listeriosis has
been experimentally confirmed in nonhuman primates. Cumulative analysis of trials
where pregnant macaques received single oral or intragastric L. monocytogenes inocula
shows a stillbirth rate of 6 out of 26 mothers (23.1%) when the infection dose was
between 102 and 106, and of 8 out of 11 (72.7%) with 107 to 1010 doses (412–414). The
incubation periods were also shorter with the larger doses (average of 20 versus
59 days). The more acute course observed with the latter correlated with an extensive
neutrophilic inflammatory response and disruption of the macaques’ maternal-fetal
barrier, with necrotic thrombovasculitis of the decidual spiral arteries and presence of
bacteria in the intervillous maternal circulation, villous capillaries, and umbilical cord
(414), obviously facilitating listerial spread to the fetus. In all the experiments with mac-
aques, no outward signs of maternal illness were observed until fetal demise, confirm-
ing the eminently subclinical nature of L. monocytogenes systemic infection in the
pregnant mother (412–414).

Once the placenta is invaded by L. monocytogenes, active bacterial proliferation
ensues, leading to colonization of the fetus involving ActA-mediated cell-to-cell spread
(397, 398). Experimental infections in pregnant guinea pigs showed rapid listerial
growth in the placenta (.103-fold at 24 h, 107-fold at 72 h), equalizing or even surpass-
ing the bacterial population in the maternal organs from an initial ratio of 1:103-104

(395, 398, 406). Collectively, the experimental observations indicate that the placenta
offers a permissive “sanctuary” for L. monocytogenes survival and proliferation. This has
been linked to the fetal trophoblast lacking class I human leukocyte antigen (HLA) -A
and -B antigens and class II antigens while expressing nonclassical HLA class I mole-
cule, which dampens allorecognition by uterine NK cells and T cells. Together with
other placental immune tolerance mechanisms, this may prevent rejection of the
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semiallogenic fetus (415–417) while, at the same time, allowing the proliferation of in-
tracellular pathogens like L. monocytogenes, which depend on T cell-mediated immu-
nity for clearance (321, 322). Hofbauer cells (villous macrophages of fetal origin) may
play an important role as an intracellular amplification niche in the chorionic villi from
which L. monocytogenes can spread to other placental and fetal cells (418). While
Hofbauer cells undergo the typical M1 (pro-inflammatory) polarization observed in
infected macrophages, they maintain the expression of tolerogenic factors known to
prevent maternal anti-fetal adaptive immunity (418).

HISTOPATHOLOGY
Brain

Although often referred to as listerial meningitis, in human patients the infection of-
ten involves the brain tissue and pathologically is therefore more accurately described
as meningoencephalitis. A study of 4 brains from neurolisteriosis patients showed that
the pathogen was found intra- and extracellularly in the brain parenchyma, the blood
vessels, and the meninges (419). The intracellular listeriae are often present within
phagocytes while extracellularly they are often found in necrotic areas (420, 421). In
neuropathological studies, monocytes and macrophages appeared to be the primary
host defense cells. Efferocytosis, a clearance mechanism in which apoptotic cells are
engulfed by macrophages, forming a large fluid-filled vesicle around the dead cell, is
also observed. It has been shown that L. monocytogenes takes advantage of efferocyto-
sis to facilitate cell-to-cell spread (320) and this mechanism could contribute to the dis-
semination of the pathogen in the brain tissue. Other characteristic neuropathological
findings in listerial CNS infection are ventriculitis and small periventricular abscesses
(419). Abscesses are also found in the basal ganglia, brainstem, or cerebral white mat-
ter (237, 421–423). It has been hypothesized L. monocytogenes enters the CNS through
the choroid plexus and ventricles, and subsequently spreads via meningeal blood ves-
sels and perivascular structures, contributing to abscess formation and extensive ven-
tricular inflammation (372, 374, 422–424).

Placenta

In a series of 7 histopathologically examined second and third trimester placentas
from pregnancy-associated listeriosis, macro abscesses and inflammation of the decidua
and septum were found in all cases. Abscesses had a median size of 1.7 cm (range 0.5 to
3.0 cm), and showed necrosis and neutrophil infiltration (425). Chorioamnionitis, villitis,
and funisitis were also consistently present. Remarkably, 4 of the placentas described in
the study had an incorrect initial diagnosis (placental infarction) based on a macroscopi-
cal examination, stressing the need for histological analysis to accurately visualize micro-
abscesses (425). Early gestational listeriosis experiments performed in macaques showed
extensive infiltration of the endometrium and placenta, while pathological changes in
the decidual arteries included severe vasculitis, thrombosis, and necrosis consistent with
a hematogenous infection. Neutrophils infiltrated into the cytotrophoblastic shell and
multifocal necrosis and multiple micro-abscesses were present. In the intervillous mater-
nal circulation, the capillaries showed inflammation with necrosis and intralesional bacte-
ria. In the fetuses, there was inflammation and edema of the chorion and amnion, neutro-
phil infiltration, vasculitis, and necrosis in the umbilical cord (414). The abundant presence
of neutrophils in the macaque study indicated a strong inflammatory response which
could have contributed to the spread of the bacteria to the fetus (414). Observations in
human patients indicates that if the amnion is infected (culture positive in 10% of cases)
(267), high concentrations of Listeria bacteria can be found in fetal lung and gut due to
ingress of infected amniotic fluid (426, 427). In stillbirth cases, histopathological analyses
may reveal a disseminated form of listerial infection known as granulomatosis infantisep-
tica, characterized by the widespread presence of microabscesses and granulomas, reflect-
ing milliary dissemination across the fetus (426, 427).
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CLINICAL PRESENTATION AND OUTCOME OF LISTERIOSIS

This section focuses on the 3 most common forms of invasive listeriosis, i.e., neuro-
listeriosis, bacteremia, and pregnancy-related infection including neonatal listeriosis,
which respectively represent 31%, 52%, and 14% of cases (12, 16). There are only few
prospective cohort studies on the clinical presentation and outcome of human listerio-
sis (16, 428–430), but many retrospective cohort studies are available (15, 102, 236,
250, 261, 267, 251–253, 431–433).

Brain Infection (Neurolisteriosis)

Most patients with neurolisteriosis are of older age and/or immunosuppressed (236,
430, 432, 434, 435). In a recent cohort study of 2140 patients with community-acquired
bacterial meningitis, L. monocytogenes was identified as the causative pathogen in
16% of .80 years old patients (436). Cancer and diabetes mellitus were described as
the most common debilitating comorbidities (437, 16). A recent study identified
inflammatory bowel disease as risk factor for neurolisteriosis, which was linked to TNF
inhibitors usage (438). About 4% of patients are young (# 40 years) non-immunosup-
pressed adults without relevant medical history, typically presenting with brainstem
symptoms (16). It has been suggested these patients may have a genetic predisposi-
tion to Listeria infections, but data are lacking to substantiate this hypothesis (16).
Subclinical immunodefiencies might also increase the risk for listerial infection. A
Danish long-term follow-up study showed that following a diagnosis of neurolisterio-
sis, the risk of death from cancer within 5 years was 3-fold higher compared to controls
(437). Patients with listerial CNS infections typically present with a slower onset of
symptoms compared to patients with bacterial meningitis due to other pathogens
such as pneumococci or meningococci (428). Median time of presentation of symp-
toms in patients with neurolisteriosis is 2 days before hospital admission (428, 432).
While fever is consistently reported (85 to 90% of cases) (16, 428, 430), the classical
triad of bacterial meningitis consisting of fever, neck stiffness, and a change in mental
status, was found in a relatively low proportion of patients (36 to 68%) (428, 430, 432).
One in five patients present in a coma while seizures are observed in 10% of cases
(430, 432). CSF leukocyte counts in listerial meningitis are elevated but to a lesser
extent than as seen in meningitis due to other bacteria (16, 428, 432, 439). CSF protein
level is typically high and CSF to blood glucose ratio low (16, 428, 430).

Focal cerebral lesions detected by computed tomography (CT) or magnetic resonance
imaging (MRI) have been reported in 23 to 26% of cases (428, 432). Ventriculitis is seen on
neuroimaging in about 10% of cases and may be associated with hydrocephalus, which is
seen in 10 to 15% of adult neurolisteriosis patients (428, 440). Listeria infection has been
identified as an independent risk factor for hydrocephalus in community-acquired bacterial
meningitis (441). The frequency of cerebral hemorrhage is 15% (428, 440). It is hypothesized
that dysregulation of coagulation and fibrinolytic pathways, vascular endothelial cell swel-
ling, and vasculitis, play a role in the pathophysiology of hemorrhages in bacterial meningi-
tis (442–446). Brain abscesses are rare in neurolisteriosis, being reported in only 2% of cases
(16), mostly in immunocompromised patients (447, 448). A meta-analysis of brain abscess
cohort studies showed L. monocytogenes was cultured from the abscess aspirate in only 13
(0.4%) of 5894 cases (449).

The reported case fatality rate of listerial CNS infection ranges from 13% to 36% (16, 45,
118, 430, 432, 439, 450, 451) in Western countries, and 11%–73% in Asian studies (452, 453).
Patients with a positive blood culture who received adjunctive dexamethasone had a higher
risk of dying in the MONALISA study (16). However, in a Dutch prospective cohort study no
harmful nor beneficial effect of adjunctive dexamethasone treatment was identified (428),
and comparable results were found in a Danish study (454). In patients who survive Listeria
CNS infections, neurological sequelae have been reported in 16% to 44% of cases (16, 432).

Bacteremia

Bacteremia, or systemic infection, is the most common invasive form of listeriosis, but
can be difficult to recognize (16). In the above-mentioned MONALISA study, although the
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mean time between symptom onset and hospital presentation was 2 days, in up to 25% of
patients it was delayed until $6 days (16). Manifestations present in a continuum, ranging
from nonspecific symptoms such as fever, diarrhea, chills, and muscle/joint pain, to septic
shock leading to multiorgan failure and death (16). In systemic listeriosis, there is a slight
male predominance (54-60%) (16, 453, 455) and patients have a higher age compared to
neurolisteriosis patients (mean age 74 [SD 14] versus 67 [SD16] for neurolisteriosis) (16, 45).
Almost all (97%) listerial bacteremia cases in the MONALISA study had an immunosuppres-
sive condition, which included over 70 years of age (16). Other common immunosuppres-
sive conditions linked to bacteremic listeriosis are cancer (31-62%), (16, 45, 455, 456), ste-
roid use (39%) (453, 455) and diabetes mellitus (22-31%) (16, 455). Most commonly
associated cancer forms are solid organ neoplasias (31%) (16). Patients present with fever
or tachycardia in 94% of cases and diarrhea in 22% of cases (16). Elevated inflammatory pa-
rameters in blood are found in up to 96% of cases (16). The most common means of diag-
nosis for systemic listeriosis is a positive blood culture (61 to 79%) (16, 45). Twenty-one per-
cent of patients with bacteremia needed intensive care, and half of them needed
mechanical ventilation. Multiorgan failure has been reported in 18% of patients (16).
Systemic listeriosis has been associated with high case fatality rates of 21 to 46% (12, 15,
45, 102, 250, 429, 451, 453, 455). Risk factors for death due to listerial bacteremia are
advanced age, active malignancies, female sex, and disease characteristics such as weight
loss, multiorgan failure, low monocyte count, and neutrophilia in blood (16, 45, 429, 455).

Pregnancy-Associated and Neonatal Infections

In most documented cases, maternal-fetal listeriosis manifests in the third term of ges-
tation. Duration of symptoms prior to diagnosis is usually shorter compared to non-preg-
nancy-related listeriosis or neurolisteriosis (mean time before presentation is approximately
1 day) (457). Although maternal listeriosis may occur without clear symptoms before mani-
festation of obstetric signs, 20 to 34% of cases present with general malaise as well as
symptoms such as abdominal pain, dry cough, fever, nausea, vomiting, headache, and
dyspnea (16, 119, 250, 260, 261, 431, 453, 458). In cases where the mother experiences few
symptoms, the only manifestation may be early labor, which may be accompanied by
severe fetal distress (268, 457). In contrast to systemic listeriosis, immunosuppressive
comorbidity is rare in pregnancy-associated listeriosis (128). In a Chinese retrospective
study between 2008 and 2017, 89% of cases among pregnant women had an intrauterine
Listeria infection (based on cervical swabs) (453). The diagnostic modality with the highest
sensitivity for diagnosis of pregnancy-associated listeriosis are placental swabs and new-
born gastric fluid swabs (both 78% positive) (16). Blood cultures positive for L. monocyto-
genes in mothers have been reported in 33 to 68% of cases (16, 119, 250, 260, 268, 459).
Severe illness in Literia-infected pregnant women is uncommon, most cases recovering
without impairment (102, 128, 268), even without antibiotic treatment (16).

Neonatal listeriosis is caused by transmission of the bacteria from the mother to the
infant. Two forms of presentation can be distinguished: (i) early-onset, when symptoms
present at or within 48 h of birth; and late-onset, when symptoms develop 48 h post-
partum. Although it is commonly believed that early-onset cases result from transpla-
cental transmission and late-onset ones from exposure to infected vaginal or certical
fluids during labor (460), the primary cause of neonatal listeriosis is most likely a pla-
cental infection (see above). Neonates in pregnancy-associated listeriosis develop bac-
teremia in 62 to 72% of cases (453, 458), pneumonia in 9 to 13% of cases, and meningi-
tis in 13 to 19% of cases (453, 458). Reported mortality rates for neonatal listeriosis are
9 to 50%, and up to 13% of surviving babies develop neurological sequelae (250, 260,
264, 267, 451, 453, 455, 458, 461, 462). Fetal and neonatal adverse effects are less com-
mon as gestational age increases or with higher gestational age at birth (265, 266, 431,
459, 463). In a recent study of 42 neonatal cases from the large South African
polony outbreak 2017 to 2018, 81% were born preterm (median 32 weeks). Common
clinical symptoms were respiratory depression or distress, often requiring respiratory
support (69%). In 4 newborns (11%), listerial CNS infection was demonstrated by cul-
ture, although based on high CSF white cell counts or protein levels, 40% were defined
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as listerial meningitis (462). In a retrospective study of listeriosis in China, miscarriage
or fetal demise/stillbirth accounted for a fatality rate of 42% among maternofetal/neo-
natal cases (453). Early treatment of neonatal listeriosis improves the outcome and
therefore early diagnosis and treatment is strived for (464).

TREATMENT
Antimicrobial Therapy

Fast administration of an adequate antimicrobial treatment is key to prevent com-
plications, death, and long-lasting sequelae in human listeriosis (16, 249, 433, 465,
466). However, no controlled trials have been conducted so far to establish a drug of
choice or optimal duration of therapy (467). The b-lactam antibiotics penicillin and
aminopenicillins ampicillin or amoxicillin are the first-choice treatment despite they
appear to be bacteriostatic against intracellular L. monocytogenes (467, 468). At subin-
hibitory concentrations, b-lactams have been reported to reduce the production of
the essential virulence factor LLO (469), whereas they achieve full bacterial killing at
high concentrations (e.g., from 16-fold above MIC) (470). Binding of b-lactams to key
penicillin-binding-proteins (PBPs) is crucial for effective killing of L. monocytogenes.
Several PBP’s play a role in listerial susceptibility to b-lactams, albeit to different
degrees, with PBP3 being a critical target (470). L. monocytogenes has a natural resist-
ance to antibiotics that poorly bind PBP-3 such as cephalosporins, even if other PBP’s
(1, 2, and 4) are completely blocked (471). PBP3 is involved in the late stages of pepti-
doglycan synthesis and its blockade significantly hinders Listeria viability (472).

Cotrimoxazole (trimethoprim-sulfonamide) is the alternative choice in listerial infections
(473, 474). Trimethoprim and sulfonamides are effective against intra- and extracellular
Listeria and, while bacteriostatic on their own, in combination they achieve bactericidal ac-
tivity. Cotrimoxazole enters mammalian cells via diffusion and therefore easily reaches in-
tracellular L. monocytogenes (475, 476).

b-lactam antibiotics are usually combined with an aminoglycoside to treat listeriosis,
although clear proof of improved efficacy is lacking (474). In vitro and in vivo studies show
contradicting results on the added value of the aminoglycoside combination (477–480).
The case for adding an aminoglycoside originates from an in vitro study where 7 L. mono-
cytogenes strains from neonatal infections were tested (481). However, although aminogly-
cosides rapidly kill L. monocytogenes in broth culture (482), they have poor activity against
intracellular bacteria (483). Aminoglycosides are taken up by mammalian cells via fluid-
phase pinocytosis, resulting in varying concentrations per cell type and over time.
Intracellularly, aminoglycosides are trapped in lysosomes and their functionality is dimin-
ished due to low pH values (484, 485). Nevertheless, 2 large cohort studies have suggested
clinical beneficial effects of using the b-lactam-aminoglycoside combination (16, 236, 486),
leading to an ongoing discussion on the added value of aminoglycosides in the treatment
of human listeriosis (432, 466, 487–489). Other antibiotics used in the treatment of listerio-
sis are shown in Table 2.

A potential addition to the combination therapy of listeriosis is fosfomycin, a bacteri-
cidal antibiotic that inhibits peptidoglycan biosynthesis through covalent inactivation of
UDP-N-acetylglucosamine-3-enolpyruvyl transferase (MurA). In addition to a well-estab-
lished safety record and synergistic activity with many antimicrobials including b-lactams,
intravenous fosfomycin has low plasma protein binding and excellent intracellular and tis-
sue penetration, including the blood-brain barrier and placenta (490). Interestingly, L.
monocytogenes is intrinsically resistant to fosfomycin in vitro (467, 491, 492) due to the
presence of a fosX gene encoding a fosfomycin-hydrolyzing enzyme (493). However, the
fosX-mediated resistance is overcome when expression of the PrfA-regulated sugar phos-
phate transporter Hpt, required for rapid cytosolic replication (64), and which also
transports fosfomycin into the bacterial cell, is activated intracellularly (492).
Consequently, most L. monocytogenes isolates are fully susceptible to fosfomycin
in vivo during infection despite testing resistant in vitro (492, 494, 495). These find-
ings represented the first molecular elucidation of an in vitro-in vivo paradox in
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antimicrobial therapy (492), and of an epistatic interaction between virulence and
resistance genes in a pathogen (493). They also illustrate how basic microbiologi-
cal research can translate into direct clinical applications.

Treatment per age-group and indication. In neonates with listeriosis in the first
week of life, ampicillin or amoxicillin (100-300 mg/kg/day during 14 days, parenterally)
is the antimicrobial treatment of choice. If listeriosis occurs later (between day 8 and
28), a 21-day course is advised. Both regimens can be prescribed in combination with
gentamicin (2 mg/kg during 7 days) (496).

According to the IDSA and ESCMID bacterial meningitis treatment guidelines, adult neu-
rolisteriosis should be treated with 12 g b-lactam antibiotics a day during at least 21 days
(273, 497). Because ampicillin and amoxicillin penetrate the blood-brain barrier relatively
poorly, the dosages are higher than those used in non-CNS infections (498–501). Linezolid
(499), rifampicin (502), moxifloxacin (479, 500, 503), meropenem (466), fosfomycin (501),
cotrimoxazol (501), and chloramphenicol (501) are found in high concentrations in the cere-
brospinal fluid and are able to penetrate the blood-brain barrier with both inflamed or unin-
flamed meninges; however, no superiority to b-lactam antibiotics has been proven (501). In
patients with Listeria brain abscesses or rhombencephalitis, it is advised to prolong antibiotic
treatment for at least 6 weeks with radiological monitoring (236).

During pregnancy, b-lactam antibiotics have a long history of use without significant
harmful effects on the fetus and therefore are considered safe (504). Intravenous amoxicil-
lin or ampicillin (6 to 12 g/day) both pass through the placental barrier quickly (457) and
are the first-line drugs for pregnancy-related listeriosis. In France, amoxicillin 100 mg/kg/
day for 2 weeks or until delivery, in combination with gentamicin 5 mg/kg/day for 3–
5 days, is recommended (505). Erythromycin (4g/day) is suggested as second-line antibi-
otic in case of penicillin allergy in pregnant women (506), but transplacental passage is
low and concentrations reached in the amniotic fluid and fetal serum are subtherapeutic
(507). Recommendations on second-line antibiotic treatment of maternofetal listeriosis

TABLE 2 Antibiotics and L. monocytogenes invasive disease

Antibiotic
Bactericidal/
bacteriostatic

Intracellular
activity

Pass placental
barrier

Pass blood-brain
barrier Synergetic effect with. . .

Aminoglycosides
Gentamicin Bacteriostatic (482) Limited (482) Limited (544) No (236, 502) Amoxicillin (16, 502, 505)

imipenem (545)
Amoxicillin Bacteriostatic intracellular,

bactericidal extracellular
(546)

Yes (480) Yes (504) Yes (502) Gentamicin (16, 502, 505)
cotrimoxazol (502)

Ampicillin Bacteriostatic (546) Yes (480) Yes (504) Yes (502)
Chloramphenicol Bacteriostatic (478) Yes (547) Yes (504) Yes (501)
Cotrimoxazole Bactericidal (548) Yes (549) Yes (509) Yes (502) Amoxicillin or rifampicin (502)

Glycopeptides
Vancomycin Bactericidal (545) No (480) Limited (544) No (502)
Fosfomycina Bactericidal (495) Yes (492) Yes (544) Yes (550)
Imipenem Bactericidal (548) Yes (480) Yes (551) Yes (502) Gentamicin (552)
Linezolid Bacteriostatic (553) Yes (553) Yes (504) Yes (499)

Macrolides
Erythromicin Bacteriostatic (478) Yes (480) Limited (507) Limited (477)
Meropenem (273, 483, 497) Bacteriocidal (483, 554) Yes (554) Limited (555) Yes (556)
Penicillin Bacteriostatic (478) Limited (478) Yes (504) Limited (501)

Quinolones
Moxifloxacin Bactericidal (468, 483) Limited (480) Yes (557) Yes (501)
Rifampicin Bacteriostatic (467) Yes (480) Yes (502) Cotrimoxazole (502)
Tetracyclines Bacteriostatic (467) Limited Yes (504) Yes (501)

aSodium salt for intravenous use. It is important to note that L. monocytogenes tests resistant to fosfomycin in vitrowhereas it is fully susceptible to this antibiotic in vivo
during infection. The reason for this in vitro-in vivo paradox is that expression of the fosfomycin transporter, the virulence factor Hpt (a sugar/organophosphate permease
homologous to enterobacterial UhpT), is tightly controlled by the Listeria virulence gene activator PrfA. As a result, Hpt-mediated fosfomycin uptake is fully activated within
infected host cells whereas it is abolished in vitro in culture media (492, 493).
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vary through the literature. Cotrimoxazole can pass the placenta easily, and has a bacteri-
cidal effect on L. monocytogenes but is not commonly considered a safe second choice
due to concerns that it might cause neural tube defects in the first trimester (267, 508).
However, a large retrospective US study (2001 to 2008) involving 20,064 cases showed no
increased risk of congenital anomalies in pregnant women treated with cotrimoxazole
compared to b-lactams (509). Sulfamethoxazole has been contraindicated during the third
trimester because of its ability to displace bilirubin from its albumin-binding sites in plasma,
causing an elevation of plasma bilirubin potentially leading to kernicterus (496, 506).
However, again a literature review (1940 to 2012) showed no reported cases of kernicterus
in neonates treated with cotrimoxazole, so this risk also appears to be negligible (510).

Fetal complications in pregnancy-related listeriosis resulting in neonatal infection often
occur in the absence of overt illness in the mother and symptoms can be nonspecific. In the
absence of specific evidence, recommendations to start antibiotic treatment in mildly ill
women with known or suspected exposure to L. monocytogenes vary. Expert opinions range
from treating every febrile pregnant woman potentially infected with L. monocytogenes (263,
505), to only treating febrile and symptomatic pregnant women with known exposure to
the pathogen (511).

The therapeutic approach also differs in bacteremic listeriosis. In an English study (2006
to 2015), 96% of cases in which treatment was documented received at least 1 antibiotic,
63%$ 2 antibiotics, 15%$ 3 antibiotics, and 3%$ 4 antibiotics (45). Amoxicillin or ampi-
cillin are the most used antimicrobials to treat listerial bacteremia (71 to 82%), followed by
(adjuvant) gentamicin (44 to 48%) (16, 45).

Antimicrobial resistance. The rate of antibiotic resistance in L. monocytogenes isolates
causing human listeriosis is low (512–515). In a French study which examined strains
recovered between 1926 and 2007, 23 antibiotics were tested and no clinically significant
acquired resistance was found against any first-line drug. Only 1.27% of isolates showed
resistance, in most cases to tetracycline or ciprofloxacin (516). More recent studies
reported sporadic intermediate resistance to erythromycin, chloramphenicol (513), rifam-
pin, gentamicin (517), and cotrimoxazole (512). Although antimicrobial resistance is rarely
a clinical issue in listeriosis, surveillance of susceptibility is important to monitor transfer of
resistance genes from other bacteria or MIC increases to penicillin/b-lactams (480, 516).
Horizontal transfer of transposons and plasmids from other Gram-positive bacteria to
Listeria has been observed and there is therefore a risk of resistance acquisition through
these mechanisms (514).

Several L. monocytogenes genes have been associated or shown to protect against
quaternary ammonium compounds, commonly used as disinfectants in the food indus-
try and medical environments. One of these is the emrE gene encoding a small multi-
drug-resistant (SMR) protein family efflux pump (518), found in LGI1, a Listeria genomic
island identified in isolates responsible for a deadly listeriosis outbreak in Canada in
2008 (519). The plasmid pLM80 (520), also found in L. monocytogenes strains from a
human listeriosis outbreak, specifies resistance to benzalkonimum chloride (BC) via a
3-gene cassette bcrABC, 2 SMR efflux pumps, and cognate transcriptional regulator
(520). Furthermore, a transposon (Tn6188) was identified in serovar 1/2a isolates from
food and food processing environments which contains a qacH gene coding for a qua-
ternary ammonium compound resistance protein (521). In addition to resistance to BC
disinfectants, these genes may be associated to resistance to antimicrobials or even
increased virulence (522, 523). An example of the latter is the efflux transporter gene
emrC linked to the emergence of neurolisteriosis with an increased rate of poor out-
come in patients, caused by an ST6-strain in the Netherlands (524). Disinfectant resist-
ance genes are not equally represented in L. monocytogenes, and have specifically
been associated with the food environment-adapted CC9 and CC121 genotypes while
rarely found in CC1 and CC4 isolates (139).

Adjunctive Treatment

Clinical trials have shown that treatment of bacterial meningitis patients with dexa-
methasone associates with decreased mortality, from 30% to 20% (273, 525, 526).
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These observations are consistent with experimental pnemococcal meningitis data
showing a reduced inflammatory response in the subarachnoid space in rabbits and
an improved outcome when treated with antibiotics and a corticosteroid (527, 528).
However, when considering listerial CNS infection patients specifically, dexamethasone
was found to have no beneficial effect on outcome in a nationwide cohort of 92
patients of whom 53% received dexamethasone (428). Moreover, in the MONALISA
study, a deleterious effect of dexamethasone was suggested, but only 32 of 252
patients (13%) received dexamethasone and there may have been confounding by in-
dication, meaning only the most severely ill patients received dexamethasone (16).
Further investigation is needed to establish whether adjunctive treatment with cortico-
ids has any significant clinical effect in invasive listeriosis.

PREVENTION

Being a foodborne infection caused by an environmental organism, control of human
listeriosis revolves around reducing food chain contamination by L. monocytogenes.
Substantial efforts have been made through food safety regulations and educational pro-
grams (529), and by the food industry via specific control measures and risk analysis mod-
els for listerial contamination ‘from farm to fork’ (230). Among the first interventions were
those implemented in France in 1986 in production plants that exported cheese to the
USA, subsequently expanded to all cheese production manufacturers by the government
in 1988, and to ready-to-eat and meat products in 1992 (230). Control measures included
systematic microbiological monitoring of raw and processed foods and sanitation plans in
case of L. monocytogenes detection, complemented with food hygiene training programs
for employees (230). Between 1987 and 1997 these measures reduced the incidence of
human listeriosis in France by 68% to 72% (230), paving the way to modern Listeria control
strategies and programs. A cornerstone of Listeria control is the monitoring of the environ-
ment in food processing plants to facilitate identification of bacterial harborage niches and
subsequent enhanced sanitation efforts to eradicate the organism.

The importance of clear information and education on listeriosis to consumers and
risk groups needs to be emphasized (230, 266, 530, 531). Educational efforts have tradi-
tionally focused on pregnant women (266, 530, 531), with positive results as noted for
example in France with intensified education about prevalence and food-associated
risk of human listeriosis (119). As a result, pregnant women are currently generally
aware about the potential complications for the fetus caused by Listeria (530). Other
areas potentially benefitting from education on listeriosis include collective canteens,
nursing homes, and hospitals, in which food-related outbreaks among fragilized
patients, or in neonatal units due to poor hygiene, have taken place (110, 178, 183,
191, 274–286). Targeted measures should also focus on the elderly, because they tend
to store food beyond the ‘best-before’ date in their refrigerators (532). The domestic
environment may be an unrecognized source of cross-contamination, as suggested by
a sampling study in Dutch households which found L. monocytogenes in 21% of the
213 investigated houses, with particularly high CFU rates (104 CFU/object) in kitchen
cloths and dish brushes (533).

CONCLUSIONS AND FUTURE DIRECTIONS

The impact of human listeriosis on society over the last 4 decades remains high (16,
428). Its identification as a foodborne disease has been fairly recent, as was the realiza-
tion that robust continued action is needed to curb Listeria infections (10, 27).
Although food regulatory measures are critical, there is no international consensus about
the acceptable level of contamination by L. monocytogenes. European regulations estab-
lished in 2000 a limit of ,100 CFU/gram as acceptable (534), whereas in the US the Food
and Drug Administration conducts a zero tolerance policy on the grounds that low con-
tamination levels involves a risk to highly susceptible people (535). The latter is supported
by risk assessments that indicated that consumption of 100 g food with , 100 CFU L.
monocytogenes was linked to 3.5% of human listeriosis cases (536), and implicitly by

Human Listeriosis Clinical Microbiology Reviews

March 2023 Volume 36 Issue 1 10.1128/cmr.00060-19 28

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00060-19


epidemiological evidence from EFSA showing a slow but consistent increase of human lis-
teriosis cases in Europe over the last 2 decades (231). The recent insight into the differential
virulence of L. monocytogenes genotypes/clonal complexes (92) may help to clarify the
debate and allow tailoring regulations to specifically target the application of zero toler-
ance criteria to those genotypes most likely to cause invasive listeriosis, thereby helping to
reduce the economic burden of the control measures.

Given the crucial role of surveillance systems in Listeria control and the increasing inter-
nationalization of food production and retail distribution, transnational team-work and
harmonization in WGS-based outbreak detection and identification of contamination sour-
ces is expected to develop further in the coming years.

Since listeriosis remains a difficult to treat infection with significant case fatality rates
and frequency of sequelae, another area that will benefit from enhanced international col-
laboration is the clinical management of patients. Large, randomized trials (only possible
through multi-center approaches given the relatively low incidence of listeriosis) will be im-
portant to test the therapeutic approaches and resolve controversies over the efficacy of
gentamicin coadministration or the adjunctive treatment with corticoids. Among others, it
would be important to ascertain the potential benefits of adding fosfomycin (492, 493) to
the combination therapy of invasive listeriosis in terms of reducing the length of treatment
and hospitalizations, and improving the clinical outcome.

Over the last 20 years, much has been learned about the genetic, molecular and cel-
lular mechanisms underlying Listeria infection (336). In contrast to the many ground-
breaking advances in these areas, the pathophysiological mechanisms of listeriosis
have attracted less attention and remain less well characterized. Why does L. monocy-
togenes preferentially invade the placenta and the central nervous system, and why do
pregnant women infrequently develop neurolisteriosis or bacteremia? (16) Why do
some healthy young patients without risk factors contract neurolisteriosis (16, 428)?
What is the significance and which mechanisms underlie the ascending neuroinvasion
via the trigeminal nerve? These are examples of questions that require further
investigation.

Since pioneering research discovered the basic molecular and cell biological fea-
tures of its virulence in the late 1980s/early 1990s, L. monocytogenes is one of the best
characterized models in bacterial intracellular parasitism (537). Its biomedical signifi-
cance extends back to the 1960s, when the ability to survive inside macrophages and
inability of antibodies to protect against intracellular infection established L. monocyto-
genes as a key research model in cellular immunity (321, 322, 538). Further research on
this pathogen should not only help improving the clinical management of the severe
infection it causes, but also deciphering the intricate mechanisms of microbial patho-
genesis, and developing novel translational applications in medicine based on this
knowledge (539, 540).
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