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What explains the origin, emergence, and persistence of Candida

auris?

Candida auris is a major emerging human fungal pathogen that was first reported in 2009 as

an isolate from the ear canal of a patient in Japan [1]. Since this initial report, C. auris has

grown to represent a “serious threat” in healthcare settings, as indicated by the United States

Centers for Disease Control (CDC) and is now on the World Health Organization (WHO)

fungal priority pathogen list, described as the “most wanted” critical pathogen [2,3]. However,

many questions remain about the emergence, spread, and persistence of C. auris. In particular,

the sudden, simultaneous, and independent worldwide emergence of 5 C. auris clades in

completely separate geographical regions is a profound puzzle.

One hypothesis suggests that C. auris was not detected until recently as a consequence of

nonreliance on conventional phenotypic typing methods. Correct identification of C. auris is

crucial for the adequate treatment and control of outbreaks and has been a frequent limitation.

C. auris can be grown under similar conditions to those of other Candida species and single

colonies can be obtained on conventional Sabouraud dextrose agar following 24 hours of incu-

bation at 30 to 35˚C [4]. However, the ability of C. auris to grow at temperatures up to 42˚C

differentiates it from other Candida species [5]. In clinical microbiology laboratories C. auris
is frequently undetected, as 90% of isolates are misdiagnosed as Candida haemulonii, Candida
famata, Candida guilliermondii, Candida lusitaniae, Candida parapsilosis, Candida sake, Rho-
dotorula glutinis, Candida duobushaemulonii, Candida catenulata, Candida tropicalis, or Sac-
charomyces cerevisiae, with commercial identification systems that utilize biochemical

phenotyping [6–8].

C. auris appears white, pink, or purple on conventional CHROMagar Candida chromo-

genic medium (Becton-Dickinson, Rungis, France) but on CAN2 plates (bioMérieux,

Capronne, France), colonies are initially white, but later appear as a light reddish pink color

[5]. Recently, CHROMagar Candida Plus (Becton-Dickinson, Rungis, France) and HiCrome

C. auris MDR selective agar (HiMedia, Mumbai, India) have been found to be highly specific

and sensitive for the isolation and identification of C. auris after 36 to 48 hours of incubation

[9–11]. FDA-approved methods such as MALDI-TOF mass spectrometry, combined with up-

to-date spectra databases, as well as the user-made MSI library (Paris, France) have also been

used for the definitive identification of C. auris [12]. Finally, a combination of D1/D2 and ITS

sequencing have proven to be the gold standard for C. auris identification [13]. While recent

advances in fungal molecular diagnostics have improved C. auris detection and identification,

the hypothesis that C. auris was not accurately detected is not alone sufficient to explain the
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sudden emergence of this species, since a reanalysis of Candida isolates between 1997 and

2016 detected only a small number of misidentified C. auris strains [14].

Another hypothesis suggests that extensive use of antifungals in the clinic and in agricul-

tural settings could serve as a possible selective force in generating a transmission reservoir of

antifungal-resistant C. auris strains; a similar hypothesis has been used to explain the emer-

gence of azole-resistant Aspergillus fumigatus strains [15]. In support of this hypothesis, several

C. auris strains, most of which were cross-resistant to medical and agricultural azoles, have

been isolated from the surface of apples, although contamination from human handling can-

not be excluded [16]. However, this hypothesis cannot explain the sudden worldwide emer-

gence of C. auris belonging to 5 different clades, which suggests that other important

contributing factors play a role.

The recently described “global warming emergence hypothesis” suggests that an increase in

global warming led to the simultaneous emergence of thermal tolerant C. auris in different

geographical locations [17]. Because C. auris is tolerant of temperature and salinity, Casadevall

and colleagues have proposed that prior to being recognized as a human pathogenic species, C.

auris existed as a plant saprophyte in specialized ecosystems, such as wetlands [18]. In support

of this hypothesis, Arora and colleagues recently described the first environmental isolations

of C. auris from a sandy beach and a salt marsh wetland in the Andaman Islands, India [19].

The isolation of 2 clonal strains, one of which exhibited slow growth at 37˚ and 42˚C and was

susceptible to antifungals and a second that grew well at 37˚ and 42˚C, suggested a close associ-

ation with the wild C. auris inhabiting the environment. These findings suggest that C. auris
existed as a slow growing and drug-susceptible pathogen, which acquired thermal tolerance

initially as a consequence of global warming and then developed drug resistance after its adap-

tation in humans [13]. In addition, the fact that C. auris colonizes colder body areas and is

unable to grow in the absence of free oxygen may suggest an environmental origin. Acquisi-

tion of virulence traits in C. auris could also be explained by a combination of global warming

and UV radiation that might have induced genetic mutations and/or epigenetic changes lead-

ing to improved adaptability for growth in different ecological niches [18,20]. Although the

global warming hypothesis is well supported and may seem attractive, other factors, including

global human migration, poor hygiene, and high population densities, should not be ignored

and might also have contributed to the development of persistence and antifungal resistance in

C. auris.

What are the molecular and genetic determinants of antifungal

resistance in C. auris?

C. auris is best known for its strong resistance to a wide variety of antifungal therapies. Based

on the tentative breakpoints proposed by the CDC, about 90%, 30%, and 2% to 10% of C. auris
isolates are resistant to the major antifungal drugs fluconazole (FLU), amphotericin B (AMB),

and echinocandins, respectively [21]. Overall, about 90% of C. auris strains have acquired

resistance to at least 1 drug, 30% to 41% are resistant to 2 drugs and about 4% are resistant to

all 3 antifungals [21]. It is also important to mention here that C. auris has been classified in 5

phylogenetically distinct clades based on whole-genome sequence data, with each clade differ-

ing from the other clades by>200,000 SNPs [22–25]. Table 1 describes the main characteris-

tics of each clade. Recently, genomic and centromeric analyses have also demonstrated

extensive rearrangements across all 7 chromosomes of C. auris [23,26,27]. The broad geo-

graphical distribution and genetic diversity among C. auris isolates belonging to different

clades, as well as conflicting virulence reports, suggest that all clades need to be studied exten-

sively and that the data from one clade cannot necessarily be extrapolated to others.
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Azole resistance in C. auris has been mainly attributed to mutations in the ERG11 gene,

which encodes the azole target lanosterol 14-α-demethylase (Table 2) [30,31]. Increased

ERG11 copy number, largely observed in Clade III strains, may amplify the effects of these

mutations. This finding also suggests clade-specific variation in azole resistance mechanisms

[31]. Increased expression of CDR1, an ABC-transporter, has been shown to substantially con-

tribute to C. auris clinical azole resistance and significantly increased expression of MDR1,

encoding a MFS transporter, has been observed in FLU-resistant Clade III clinical C. auris
strains (Table 2) [32–34]. Mutations in several transcriptional regulators that control the

expression of drug efflux pumps, including TAC1B and MRR1A, have also been associated

with altered C. auris antifungal susceptibility (Tables 1 and 2) [35–37]. Whole-genome com-

parison of C. auris to other sequenced Candida species has revealed the notable expansion of

gene families linked to virulence and drug resistance, including siderophore-based iron trans-

porters, secreted lipases, and oligopeptide transporters [23].

In 2019, Ruiz and colleagues showed that the genome of C. auris undergoes substantial kar-

yotypic reorganization under stress conditions [43]. The authors also hypothesized that as nei-

ther polyploid states nor sexual reproduction have been described in C. auris, it is highly likely

that this species is not capable of generating genome diversity via aneuploidy or polyploidy.

However, Burrack and colleagues have recently shown that C. auris acquires aneuploidy very

rapidly in just 3 passages [44]. This aneuploidy can be easily detected in the population during

in vitro evolution, in the presence and absence of FLU [44]. Another instance of rapid

Table 1. Main characteristics of Candida auris clades.

Characteristics Clades

South Asian (I) East Asian (II) African (III) South American (IV) Iranian (V)

Antifungal

susceptibility

profile

Resistant to FLU, cross-

resistant to echinocandins

and AMB, some are pan-

resistant

Lower resistance

to antifungal

agents

Resistant to FLU, cross-

resistant to echinocandins

and AMB, some are pan-

resistant

Resistant to FLU, cross-

resistant to echinocandins

and AMB, some are pan-

resistant

Resistant to FLU, cross-

resistant to echinocandins

and AMB, some are pan-

resistant

Clinical isolation

site

Ear, blood, or other invasive

sites

Mainly ear Ear, urine, blood, or other

invasive sites

Blood, or other invasive sites Nail, skin, ear

Mating type MTLa MTLα MTLα MTLa Not known

ERG11 mutations Y132F or K143F K143R, L43H,

Q357K

F126L Y132F, K143R, K177R,

N335S, E343D

Y132F, I466L

TAC1B mutations R495G, A640V, A657V,

A15T, S195C, P595L

F214S None F214S, F862_N866del, K247E,

M653V, A651T, P595H

Not known

Outbreaks Invasive infections Ear infections Invasive infections Invasive infections Invasive infections

Geography Dominates in the United

States, Europe, South Asia

Dominates in

Korea, Japan

Dominates in Europe, Africa Dominates in the United

States

Dominates in Iran

Phenotypes

Growth on

actidione

No Yes Yes Not known Not known

Pseudohyphae Yes No No Not known Not known

Large cellular

aggregates

No Yes Yes Not known Not known

Assimilation of L-

rhamnose

No No Yes No Yes

Utilization of N-

acetyl glucosamine

Yes No Yes Yes Yes

AMB, amphotericin B; del, deletion; FLU, fluconazole.

Data obtained from references [4,13,24,25,28–30].

https://doi.org/10.1371/journal.ppat.1011190.t001
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Table 2. Mechanisms of antifungal resistance in Candida auris.

Amino acid substitutions

(if applicable)

Impact on MIC (if

known)

Clades Mechanism of action (if known) References

Triazole resistance

Gene mutations leads to the formation of 4, 4-dimethyl cholesta-8,

14, 24-trienol, instead of ergosterolERG11 VF125AL 8–16-fold increase III [22,31,38,39]

K143R 8–16-fold increase I (subclade c),

II, IV

[22,31,38,39]

Y132F 8–16-fold increase I (subclade b),

IV

[22,31,38,39]

F444L 4-fold increase IV [40]

L43H, Q357K, G459S II, IV [38]

I466M�, Y501H� No impact on FLU,

VRC MIC

[41]

TAC1B A640V 16-fold increase I (subclade c) controls CDR1 expression [35,37]

S611P 4-fold increase IV [40]

A657V I (subclade b) [35,37]

F862, N866del IV [35,37]

R495G^ I [35,37]

F214S^ II, IV [35]

S192N, A583S I, II [35]

A15T, S195C I [35]

P595L I [35]

P595H IV [35]

K247E, A651T, M653V IV [35]

MRR1A N647T 4-fold increase in

FLU, VRC MICs

III, IV controls MDR1 expression [34,36,42]

Gene deletions

TAC1B 2–4-fold decrease FLU

MICs;

4–8-fold decrease in

VRC MICs

III, IV controls CDR1 expression [36]

CDR1 64–128-fold decrease

in FLU MICs

I increases drug efflux [32,33]

Aneuploidy/copy number variations

Increased ERG11 copy

number (2–3 copies)

Y132F

K143R

VF125AL

K143R, Y132F

I

II

III

IV

[37,44,45,47]

[46,47]

[43,47]

[46,47]

Echinocandin resistance

FKS1 mutations

Hot spot 1 S639F/Y I, III decreases the sensitivity of β-(1,3)-D-glucan

synthase to drug

[39,48–51]

S639P IV [52]

F635del, F635L/Y, S639T,

D642Y

I (subclade c) [53–56]

Hot spot 2 R1354S 6-fold increase [50]

AMB resistance

Gene mutations

ERG6 YY98V� �32-fold increase I (subclade b) leads to the generation of cholesta-type sterol

instead of ergosterol

[56]

FLO8 utg5_821828 (C/T) [57]

Gene overexpression

(Continued)
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acquisition of FLU resistance in C. auris due to adaptive aneuploidy was demonstrated where

an extra copy of chromosome V was gained in the presence, but lost in the absence, of FLU

[45]. A similar in vitro acquisition of azole resistance in an evolving population derived from a

single C. auris parent strain was explained by aneuploidy occurring in the form of segmental

duplications, coexisting alongside aneuploidy-independent mechanisms [37]. In addition,

Narayanan and colleagues recently demonstrated a novel mechanism of antifungal resistance

involving generation of a mitotically stable supernumerary chromosome, which leads to an

increase in the copy number of a set of genes in C. auris [46].

Echinocandins inhibit the activity of 1,3-β-D-glucan synthase, an enzyme encoded by the

FKS1 and FKS2 genes, which is important for synthesis of a primary fungal cell wall polymer.

About 2% to 10% of clinical C. auris strains exhibit echinocandin resistance, which usually

emerges during treatment [13]. The most commonly observed mutations associated with echi-

nocandin resistance in C. auris are located in the FKS1 hot spot regions (Table 2), although

their direct role in echinocandin susceptibility has not yet been assessed [39,48–56]. Interest-

ingly, in a C. auris outbreak study, an isolate was found to be resistant to both echinocandins

and 5-flucytosine (5-FC) [43]. Echinocandin resistance in this strain was associated with a ser-

ine to tyrosine amino acid substitution in the gene FKS1, while resistance to 5-FC was associ-

ated with a phenylalanine to isoleucine substitution in the gene FUR1 (Table 2) [49].

AMB has broad-spectrum activity against pathogenic fungi and exerts its antifungal effect

by directly binding to ergosterol. While AMB resistance is rare in fungi, there have been

reports suggesting a higher prevalence (approximately 30%) of AMB resistance in clinical C.

auris strains, based on tentative CDC breakpoints. Recent studies have shown that mutations

in ERG6 (encoding C-24 sterol methyltransferase) are associated with C. auris AMB resistance

(Table 2) [56,59]. In vitro exposure of an AMB-resistant C. auris strain to AMB also resulted in

increased expression of ERG1, ERG2, ERG6, and ERG13 (Table 2) [23]. Wasi and colleagues

analyzed changes in the transcript levels of C. auris ABC transporters by qRT-PCR after short-

term exposure to AMB and terbinafine [58]. Interestingly, the CDR6 ortholog CAUR_04233

exhibited greater than 8-fold higher expression compared to that of other ABC transporters in

response to AMB. The CDR6 ortholog CAUR_04233 was also strongly up-regulated following

terbinafine treatment (Table 2) [58]. However, because the majority of the AMB-resistant

strains lack mutations in ergosterol biosynthesis pathway genes, alternative resistance mecha-

nisms are likely. Escandón and colleagues identified SNPs in AMB-resistant isolates in a tran-

scription factor similar to FLO8 in Candida albicans (Table 2) [57]. Although these findings do

Table 2. (Continued)

Amino acid substitutions

(if applicable)

Impact on MIC (if

known)

Clades Mechanism of action (if known) References

ERG1, ERG2, ERG6, ERG13 [23]

5-Flucytosine resistance

Gene mutation

FUR1 F211I [49]

Terbinafine resistance

Upregulation of a CDR6 ortholog [58]

del, deletion; FLU, fluconazole; MIC, minimum inhibitory concentration; VRC, voriconazole.

� Tested by substitutions in S. cerevisiae.
^ Identified by in vitro evolution experiments.

https://doi.org/10.1371/journal.ppat.1011190.t002
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not provide definitive proof of involvement of these proteins in AMB resistance, they do pro-

vide a future direction for research into AMB resistance in C. auris.
For most human fungal pathogens, such as C. albicans, the level of antifungal resistance

remains low. However, clinical outcomes are poor, leading to high mortality rates due to treat-

ment failure [14]. The immune status of the patient, along with other host factors and pharma-

cologic issues, including interaction of drug and the fungus, can directly or indirectly affect

therapeutic responses [60]. This contradictory relationship between low clinical resistance and

an overall clinical outcome of therapeutic failure could be attributed to antifungal tolerance

[61]. Antifungal tolerance/trailing growth is usually characteristic of susceptible strains that

tend to grow slowly at inhibitory drug concentrations [62,63]. Azole tolerance in C. auris is

enhanced as mother cells age, requires the molecular chaperone HSP90, and has been associ-

ated with gene duplication as well as overexpression of ERG11 and CDR1 [33,47]. Based on

these studies, C. auris shows increased tolerance to azoles and could be more tolerant to echi-

nocandins as well [33,47]. It is pertinent to mention here that C. auris in vitro evolution exper-

iments have used MIC measurements to define antifungal resistance. However, information

about the range of drug tolerance in clinical strains and how tolerance changes over time is

still lacking [37,45]. Because the degree of tolerance and resistance varies depending on the

intrinsic allele diversity of each isolate and phenotypic heterogeneity, it is important to under-

stand the contribution of the genetic background of the species [63–65]. Recently, Burrack and

colleagues evolved a set of 17 clinical isolates of C. auris belonging to different clades to deter-

mine whether resistance is stable in the absence of drug, the frequency of drug tolerance, and

how genetic background affects strain evolutionary outcome [44]. Interestingly, they found

that drug tolerance can occur in C. auris and shows variation among clinical isolates similar to

that observed for other Candida species. This study also suggested that antifungal tolerance

acquired by C. auris over time could ultimately lead to resistance [44,63,66].

Although antifungal resistance remains a key feature of most C. auris infections, relatively

little is known about resistance mechanisms in C. auris compared to those of other human

fungal pathogens and many important questions remain outstanding. How do resistance

mechanisms differ among C. auris strains belonging to different genetic clades? Why is multi-

drug resistance more prevalent in C. auris compared to other pathogenic fungi? Are there

completely novel mechanisms that make C. auris unique in its ability to tolerate antifungals?

Future studies that address these questions are most likely to have the greatest impact on our

understanding of C. auris drug resistance mechanisms.

How did C. auris prevail during the COVID-19 pandemic?

Since its first report in late 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2), the virus responsible for Coronavirus Disease 2019 (COVID-19), has rapidly spread,

causing a global health emergency that resulted in the official announcement of a massive pan-

demic by WHO in 2020 [67,68]. COVID-19 has exacerbated several preexisting conditions,

leading to an increase in bacterial, fungal, and viral coinfections and superinfections in hospi-

talized patients [69]. Fungal infections pose a greater challenge, as a consequence of high mor-

tality rates, limited diagnostics, and increased antifungal resistance, and severe clinical

COVID-19 further increases the risk of invasive fungal infections [69]. C. auris is one such

fungal pathogen that causes outbreaks in COVID-19 ICUs and hospitals worldwide [69]. C.

auris patients shed viable yeast cells continuously from their skin, leading to the contamination

of hospital environments, especially ICUs. Both C. auris and SARS-CoV-2 have been found in

the hospital setting, including on IV poles, bedrails, hospital floors, windows, and air condi-

tioner ducts [69]. COVID-19 patients become potentially more susceptible to C. auris
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colonization and infection as they develop acute respiratory distress syndrome requiring ICU

admission, mechanical ventilation, and/or extracorporeal membrane oxygenation [69].

Importantly, C. auris and SARS CoV-2 share several common risk factors, including chronic

kidney disease, diabetes mellitus, as well as the administration of broad-spectrum antibiotics

and systemic steroids.

COVID-19-associated C. auris infections have been reported in over 10 countries, includ-

ing Mexico, Brazil, Lebanon, India, Italy, Iran, Spain, Turkey, Greece, Pakistan, Qatar, Colom-

bia, and the US [70–83]. An initial study from India reported a 60% case-fatality rate for

COVID-19 patients, of which two-thirds had a C. auris coinfection [78]. Another study from

Mexico showed a high mortality rate of 83% in COVID-19 patients with C. auris bloodstream

infections [79]. A study from the US reported the isolation of 3 C. auris bloodstream infections

and 1 urinary tract infection in 4 patients with COVID-19 [80]. Magnasco and colleagues

screened 118 patients admitted to COVID-19 ICUs in Italy and found 5.1% (6 patients) to be

colonized/infected with C. auris. Of these 6 patients, 4 developed C. auris candidemia [81].

Brazil also reported their first 2 cases of C. auris in December 2020, both in patients from the

same COVID-19 ICU [82]. Similarly, Lebanon reported its first isolation of C. auris from 14

patients, all of whom were admitted to 4 separate critical care units [83]. Half of these patients

were infected with COVID-19 prior to isolation of the C. auris [83].

While it is crucial to rapidly identify and isolate patients colonized with C. auris, the pan-

demic has made it challenging to do so, due to overburdened, resource-limited, and over-

whelmed hospital settings. Unfortunately, the COVID-19 pandemic has provided ideal

conditions for C. auris outbreaks in hospital ICUs. As a consequence, more effective antifungal

therapies are in even greater demand.

How to strategize therapeutics: New drugs or drug combinations?

Based on frequency of resistance profiles and the available literature, the echinocandin drug

micafungin has been recommended as the first-line treatment for C. auris infections in adults

[84]. However, the cost and limited availability of this treatment in most countries is a major

concern. AMB is also recommended as a first-line treatment for neonates and infants [84].

Given the challenges of resistance, novel antifungals are needed in order to effectively treat

C. auris infections. Several new antifungal agents with potential therapeutic effects against C.

auris have been developed that are undergoing Phase II or Phase III clinical trials. Ibrexafun-

gerp is the first representative of a novel class of glucan synthase inhibitors, known as triterpe-

noids, and is the most promising. It possesses potent activity against C. auris strains, including

echinocandin-resistant isolates, in vitro leading to cellular deformation and pore formation, as

well as inhibition of cell division [85]. Rezafungin is a novel long-lasting echinocandin that

exhibits potent activity against C. auris isolates both in vitro and in vivo in a neutropenic

mouse model [85]. However, this drug shows reduced activity against echinocandin-resistant

C. auris isolates. Another new antifungal compound, MYC-053 (sodium 5-[1-(3,5-dichloro-

2-hydroxyphenyl) methylideneamino]-6-methyl-1,2,3,4-tetrahydro-2,4-pyrimidinedionate),

synthesized by TGV-Therapeutics (Wilmington, DE), is a representative of a novel class of

antifungal agents [86]. MYC-053 functions by simultaneously inhibiting both intracellular

nucleic acid synthesis and targeting the synthesis of chitin, a key cell wall component [86].

This small molecule compound shows strong fungicidal activity against azole- and echinocan-

din-resistant isolates and has potential activity against biofilms [86]. Fosmanogepix is another

novel antifungal that targets the enzyme Gwt1, which is necessary for localization of phospha-

tidylinositol-anchored proteins to the fungal cell wall [85]. This drug exhibits potent activity

against resistant C. auris isolates and has also shown strong in vivo efficacy in a murine-
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invasive candidiasis model. Finally, VT-1598 is a new tetrazole that selectively inhibits fungal

Cyp51A (lanosterol demethylase). In a neutropenic mouse model of C. auris infection, treat-

ment with VT-1598 resulted in a significant increase in survival and a reduction in both brain

and kidney fungal burden [85].

Several additional potential therapeutics for the treatment of C. auris infections have been

identified through high-throughput screening of drug repurposing libraries, including the

organoselenium compound ebselen, alexidine dihydrochloride, and the antiparasitic drugs

miltefosine and iodoquinol [87]. Given the number of therapeutics currently under develop-

ment and in the pipeline, several of which could potentially be used in combination with cur-

rent therapies, the probability of successfully treating life-threatening C. auris infections is

likely to be significantly improved in the future.
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stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems.

Photochem Photobiol Sci. 2019; 18:681–716. https://doi.org/10.1039/c8pp90061b PMID: 30810560

21. Candida auris: Antifungal susceptibility testing and interpretation. Centers for Disease Control and Pre-

vention, Atlanta, GA; 2020.

22. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous

emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequenc-

ing and epidemiological analyses. Clin Infect Dis. 2017; 64:134–140.

23. Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, et al. Genomic insights into multi-

drug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun.

2018; 9:5346.

24. Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF. Potential fifth clade of Candida

auris, Iran, 2018. Emerg Infect Dis. 2019; 25:1780–1781.

25. Spruijtenburg B, Badali H, Abastabar M, Mirhendi H, Khodavaisy S, Sharifisooraki J, et al. Confirmation

of fifth Candida auris clade by whole genome sequencing. Emerg Microbes Infect. 2022; 11:2405–2411.

26. Muñoz JF, Welsh RM, Shea T, Batra D, Gade L, Howard D, et al. Clade-specific chromosomal rear-

rangements and loss of subtelomeric adhesins in Candida auris. Genetics. 2021; 218:iyab029.

27. Narayanan A, Vadnala RN, Ganguly P, Selvakumar P, Rudramurthy SM, Prasad R, et al. Functional

and comparative analysis of centromeres reveals clade-specific genome rearrangements in Candida

auris and a chromosome number change in related species. mBio. 2021; 12:e00905–e00921.

28. Iguchi S, Itakura Y, Yoshida A, Kamada K, Mizushima R, Arai Y, et al. Candida auris: A pathogen diffi-

cult to identify, treat, and eradicate and its characteristics in Japanese strains. J Infect Chemother.

2019; 25:743–749.

29. Szekely A, Borman AM, Johnson EM. Candida auris isolates of the Southern Asian and South African

lineages exhibit different phenotypic and antifungal susceptibility profiles in vitro. J Clin Microbiol. 2019;

57:e02055–e02018.

30. Rybak JM, Sharma C, Doorley LA, Barker KS, Palmer GE, Rogers PD. Delineation of the direct contri-

bution of Candida auris ERG11 mutations to clinical triazole resistance. Microbiol Spectr. 2021; 9:

e0158521.

31. Chow NA, Muñoz JF, Gade L, Berkow EL, Li X, Welsh RM, et al. Tracing the evolutionary history and

global expansion of Candida auris using population genomic analyses. mBio. 2020; 11:e03364–

e03319.

32. Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE, Rogers PD. Abrogation of triazole resis-

tance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother. 2019;

63:e00057–e00019.

33. Kim SH, Iyer KR, Pardeshi L, Muñoz JF, Robbins N, Cuomo CA, et al. Genetic analysis of Candida

auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. mBio.

2019; 10:e02529–e02518.

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011190 March 23, 2023 9 / 12

https://doi.org/10.1039/c8pp90061b
http://www.ncbi.nlm.nih.gov/pubmed/30810560
https://doi.org/10.1371/journal.ppat.1011190


34. Iyer KR, Camara K, Daniel-Ivad M, Trilles R, Pimentel-Elardo SM, Fossen JL, et al. An oxindole efflux

inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nat Commun.

2020; 11:6429.

35. Rybak JM, Muñoz JF, Barker KS, Parker JE, Esquivel BD, Berkow EL, et al. Mutations in TAC1B: a

novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio. 2020; 11:e00365–

e00320.
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