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Abstract

The disconnection hypothesis of schizophrenia proposes that symptoms of the disorder

arise as a result of aberrant functional integration between segregated areas of the brain.

The concept of metastability characterizes the coexistence of competing tendencies for

functional integration and functional segregation in the brain, and is therefore well suited for

the study of schizophrenia. In this study, we investigate metastability as a candidate neuro-

mechanistic biomarker of schizophrenia pathology, including a demonstration of reliability

and face validity. Group-level discrimination, individual-level classification, pathophysiologi-

cal relevance, and explanatory power were assessed using two independent case-control

studies of schizophrenia, the Human Connectome Project Early Psychosis (HCPEP) study

(controls n = 53, non-affective psychosis n = 82) and the Cobre study (controls n = 71, cases

n = 59). In this work we extend Leading Eigenvector Dynamic Analysis (LEiDA) to capture

specific features of dynamic functional connectivity and then implement a novel approach to

estimate metastability. We used non-parametric testing to evaluate group-level differences

and a naïve Bayes classifier to discriminate cases from controls. Our results show that our

new approach is capable of discriminating cases from controls with elevated effect sizes rel-

ative to published literature, reflected in an up to 76% area under the curve (AUC) in out-of-

sample classification analyses. Additionally, our new metric showed explanatory power of

between 81–92% for measures of integration and segregation. Furthermore, our analyses

demonstrated that patients with early psychosis exhibit intermittent disconnectivity of sub-

cortical regions with frontal cortex and cerebellar regions, introducing new insights about the

mechanistic bases of these conditions. Overall, these findings demonstrate reliability and

face validity of metastability as a candidate neuromechanistic biomarker of schizophrenia

pathology.
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Introduction

Schizophrenia affects roughly 1% of the population, is associated with premature mortality

and morbidity, and is accompanied by a large social and financial burden [1]. Originally

described as the fragmentation of previously integrated mental experiences [2], the disorder is

associated with positive symptoms such as delusions, hallucinations, and disordered thoughts,

negative symptoms including amotivation and social withdrawal, and cognitive symptoms

including deficits in executive function [3]. While schizophrenia can be a chronic disorder for

a significant proportion of individuals [3], there is evidence that early diagnosis and treatment

can lead to improved outcomes for patients [4].

The disconnection hypothesis of schizophrenia states that the disorder can be understood

as a failure of functional integration in the brain. Functional integration is closely related with

the functional connectivity, and with the influence of brain dynamics of one region on another

[5, 6]. Failure of functional integration manifests as a disruption of the coordination required

for the normal functioning of distributed brain regions [7]. For example, auditory verbal hallu-

cinations have been associated with aberrant coupling in the speech processing system, speech

production system, and the auditor monitoring system [8]. Additionally, amotivation has been

linked with aberrant connectivity between the caudate nucleus and the cerebellum, leading to

impaired goal achievement behaviour, and with prefrontal areas leading to poor goal-directed

performance [9]. Moreover, disorganized symptoms have been predicted by aberrant connec-

tivity between the cerebellum and the cingulo-opercular and salience networks [10]. Addition-

ally, abnormal functioning of the basal ganglia in schizophrenia has previously been found

with functional magnetic resonance imaging (fMRI) in schizophrenia [9, 11–13]. Indeed, gan-

glia hyperdopaminergia may be attributable to disconnectivity stemming from GABA parval-

bumin interneuron disorder [14].

However, recent studies have highlighted differences in aberrant connectivity between

early- and late-stage schizophrenia. Reduced cerebellum connectivity in early psychosis and

increased connectivity in chronic schizophrenia were associated with both positive and nega-

tive symptom severity, suggesting a compensatory role for the cerebellum [15]. Disconnectiv-

ity between the somatosensory and visual networks was found to be pervasive in early

psychosis, but not the disconnectivity between the default mode, cognitive control, and

salience networks [16]. And finally, subcortical disconnectivity was found in early psychosis

whilst both subcortical and cortico-subcortical disconnectivity was apparent in chronic schizo-

phrenia. Importantly, the polarity of associations between disconnectivity and positive symp-

tom severity were reversed for early and chronic groups, suggesting differences in neural

correlates of psychotic symptoms at different stages of illness, and/or the potential effects of

medication [17]. Hence, biomarkers of schizophrenia in early and established phases may dif-

fer, which may be informative of developing pathophysiology.

Disconnection in schizophrenia has been investigated with static functional connectivity

(FC) [18–21]. However, static FC relies on statistical relationships between fMRI signals

throughout the complete scan, which forces it to discard critical information about the brain’s

dynamics. In contrast, it is reasonable to believe that dynamic approaches–which consider the

temporal dynamics of fMRI signals—may have the potential to discover more precise and

informative biomarkers [16, 22–34]. Unfortunately, the literature provides no empirical stud-

ies investigating if approaches which rely on collective dynamical properties have better classi-

fication ability than those that rely on static FC properties, and whether dynamical approaches

provide relevant insight for biological and cognitive interpretation.

To address this important issue, in this work we analyze the suitability of a specific marker

of brain dynamics: metastability. Metastability is a concept originating from dynamical
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systems theory which provides an explanation for the spontaneous and self-organized emer-

gence and dissolution of spatiotemporal patterns of coordinated activity [35, 36]. In a neuro-

scientific context this reflects a tension established by the competition between trends for

functional specialization and functional integration within and between brain regions [37].

Metastability is nowadays a ubiquitous concept across diverse models of brain functioning

including coordination dynamics [38] and complex systems [39], while its metrics have found

application in both empirical studies and computational modeling [40–49]. There are several

reasons for choosing metastability as a marker of brain dynamics in schizophrenia. First, it

reflects the competitive tension between integration and segregation, and is therefore relevant

for studies based on the disconnection hypothesis. Second, commonly used dynamic metrics

including group-level dwell/duration and occurrence/occupancy were found to differ signifi-

cantly across multiple scanning sessions in healthy young adults, which could potentially blur

state with trait variability [47]. Additionally, in that study, the reconfiguration process was

found to be non-Gaussian, that is, there was memory in the network reconfiguration process.

As such, it is not possible to use first-order Markov methods to calculate state transition proba-

bilities. Moreover, the study concluded that global metastability was the only representative

and stable metric of the 9 dynamic metrics investigated, highlighting its potential as a group-

level biomarker of psychiatric disorders [47].

Building on this previous work, here we investigate how metastability would perform as a

neuromechanistic biomarker of schizophrenia at the group- and individual-level; if this perfor-

mance would carry over to face validation; what this putative biomarker would tell us about

the pathophysiology of schizophrenia; and how well it could explain measures of integration

and segregation.

We introduce a new measure for metastability as the mean variance of instantaneous

phase-locking. Our rationale for this operationalization stems from the theory of Synergetics

[50] and recent generalization of the Haken-Kelso-Bunz (HKB) model to multiple oscillators

[51], which exhibits stable antiphase synchronization [52], and from the observation that dif-

ferences in connectivity were not reflected in differences in the traditional measure for meta-

stability within this study. We found that this novel proxy for metastability distinguished

patients with established schizophrenia from healthy controls at the group-level with moderate

effect size (d = 0.77), delivered performance in the range of published individual-level classifi-

ers for cross-validation, and out-of-sample testing, highlighted dysfunctional connectivity in

basal ganglia in early schizophrenia, showed explanatory power of between 81–92% for mea-

sures of integration and segregation, and so demonstrated face validity of metastability as a

candidate neuromechanistic biomarker schizophrenia pathology.

Results

Derivation of spatiotemporal patterns of phase-locking

We analyzed the resting-state fMRI activity from a total of 670 scanning sessions from the

Human Connectome Project Early Psychosis (HCPEP) and Cobre datasets (see Materials and

methods). In the HCPEP dataset healthy controls (CON, n = 53) and subjects with non-affec-

tive psychosis (NAP, n = 82) participated in 4 scanning sessions on 2 consecutive days. In the

Cobre dataset CON (n = 71) and subjects with schizophrenia (SCHZ, n = 59) participated in 1

scanning session. Each dataset consisted of whole-brain fMRI signals averaged over n = 116

cortical, subcortical, and cerebellar brain regions as defined in the AAL116 anatomical parcel-

lation [53].

We used instantaneous phase-locking (iPL) to measure the interaction between fMRI sig-

nals related to different brain regions. The fMRI time-series of each subject was filtered within
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the narrowband 0.01–0.08 Hz which did not violate the Bedrosian Theorem (see Materials and

methods) [47]. The filtered signal was then transformed into amplitude and phase via the Hil-

bert transform, and the resulting phase time- series was analyzed via the Leading Eigenvector

Dynamic Analysis (LEiDA) [47]. In order to identify recurrent spatiotemporal patterns of

phase-locking–henceforth called ‘LEiDA modes’–we performed k-means clustering on the

phase-locked time-series of each of the datasets that were analyzed (HCPEP CONx4, HCPEP

NAPx4, Cobre CONx1, Cobre SCHZx1, see Materials and methods). This is similar to a previ-

ous study [47], but different from other studies that used LEiDA where k-means clustering

was either performed on concatenated datasets across groups [54–56] or where the centroids

extracted from one group were used to seed the clustering of other groups [57–59]. The

approach in this study considers each dataset as a unique observation of brain activity with

associated variability in the spatiotemporal modes and avoids data leakage which occurs when

dimensionality reduction is performed on the dataset as a whole [60]. We calculated the results

for k = 2–10 clusters, and then chose k = 5 LEiDA modes—denoted as ψ1, ψ2, ψ3, ψ4, ψ5—

according to silhouette values [61] (see S1 Fig), which is consistent with previous studies [47,

54, 58]. Additionally, we calculated the instantaneous magnetization as the ratio of in-phase

regions to antiphase regions, which indicates criticality [62]. Fig 1 shows the diversity of

phase-locking behavior for two individual subjects from the HCPEP dataset.

We found that the 5 modes reflected connectivity within and across known resting-state

networks, subcortical and cerebellar regions. Following Ref. [47], we visualized each mode in

10mm3 voxel space by averaging the eigenvector values over all time instances assigned to a

particular mode. We visualized FC as connectograms by taking the FC matrices for each mode

and retaining regions that were collectively in-phase but in antiphase with the global mode

(see Fig 2).

Using the modes from RUN3 in CON as an illustrative example, we find that Mode ψ1 rep-

resents a global mode where the fMRI signals in all regions are aligned in-phase without anti-

phase connectivity. Mode ψ2 exhibits connectivity within Default Mode Network (DMN),

Limbic network (LBC), and cerebellum (CB), and connectivity between DMN-LBC, DMN-

subcortical (SC), DMN-CB, LBC-SC, LBC-CB. Mode ψ3 shows connectivity within Somato-

motor (SMT), Ventral Attention network (VAT), Frontal Parietal Area (FPA) and CB, and

connectivity between SMT-FPA, SMT-CB, SMT-CB, VAT-FPA, VAT-SC, VAT-CB and

FPA-CB. Mode ψ4 exhibits connectivity within SC and CB, and connectivity between

LCB-FPA, LBC-SC, LBC-CB, FPA-SC, FPA-CB, and SC-CB. Finally, Mode ψ5 shows connec-

tivity within Visual network (VIS), and between VIS-CB.

Characteristics of spatiotemporal modes

Before assessing differences in the modes across the case-control groups, we first controlled if

the modes observed in HCPEP were stable and representative across the four runs. We calcu-

lated run reliability within groups with interclass correlation ICC(1,1) [64] (See Materials and

methods). The modes extracted for CON showed substantial to almost perfect reliability

between runs with median ICC values ψ1 (0.96), ψ2 (0.98), ψ3 (0.64), ψ4 (0.89), and ψ5 (0.77).

The modes extracted for NAP also showed substantial to almost perfect reliability with median

ICC values ψ1 (0.97), ψ2 (0.97), ψ3 (0.96), ψ4 (0.77), and ψ5 (0.82) (see S2 Fig for all ICC matri-

ces). We therefore confirmed that the modes tended to be invariant across multiple acquisi-

tions in both case and control groups in HCPEP.

Concentrating first on HCPEP, we found that there was a strong contribution of basal gan-

glia regions to the leading eigenvector for Mode ψ4 in CON. We therefore assessed if there

were differences in basal ganglia connectivity, measured as contribution to Mode ψ4, between
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the groups. Regional contribution was calculated as the mean value of instantaneous phase-

locking over time for the region of interest (ROI). We first investigated group (CON, NAP),

run (RUN1, RUN2, RUN3, RUN4), and interactions between group and run on bilateral cau-

date, putamen, pallidum, and thalamus. Using a 2x4 non-parametric ANOVA with the

Aligned Rank Transform (ART) [65, 66], we found significant interactions between group and

run (Table 1).

We found significant main effects of run in both groups for multiple ROIs. The effects and

the drivers of these effects are detailed in S1 Data. The largest main effects of run are shown in

Table 1.

Furthermore, we found significant main effects of group in Caudate_L, Caudate_R, Puta-

men_L, Putamen_R, Pallidum_L, Thalamus_L, and Thalamus_R (Table 1). We retained only

group differences that were greater than these run effects. We thus found significant group dif-

ferences in RUN2 for Caudate_L (p<0.001, effect size = 0.435), Caudate_R (p<0.001, effect size

Fig 1. Diversity of phase-locking behavior. A) Time-series of mode eigenvectors from two subjects from the HCPEP dataset. Top panel shows phase-locking

behavior. Middle panel shows instantaneous magnetization which is the ratio of in-phase to antiphase regions. Bottom panel shows the mode assigned to the

timepoint from k-means clustering. Interesting behavior is indicated with numbered circles. B) Blow-outs for points 1 to 5. C) Legend for the numbered

circles. MAG, magnetization; M, mode. Gray dotted line shows where phase-locking is equal to zero.

https://doi.org/10.1371/journal.pone.0282707.g001
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= 0.523), Putamen_L (p<0.001, effect size = 0.351), Putamen_R (p<0.001, effect size = 0.357)

and Thalamus_L (p<0.001, effect size = 0.526).

We therefore inferred that these group differences in basal ganglia contribution in RUN2

are not due to run effects, and indeed reflect group differences in regional contribution to

Mode ψ4. (See Fig 3 and S1 Data for complete results of the statistical testing).

Global and local metastability–group-level neuromechanistic biomarkers

of schizophrenia

To assess the performance of metastability at group-level, we computed and analyzed differ-

ences within and between groups based on the standard estimators for global and local meta-

stability [67] (see S1 Text for the analysis, and S2 Data for complete statistical results). In

contrast to previous studies of metastability in fMRI we choose not to use predefined templates

[68], or intrinsic connectivity networks [41] to define our communities. The non-overlapping

nature of these networks does not allow flexible allegiance of brain regions to different

Fig 2. Spatial patterns of recurrent phase-locked connectivity in RUN3 for controls. A) Phase-locking patterns for the 5 modes in sagittal view. B) Phase-

locking patterns for the 5 modes in axial view. C) Respective FC presented as connectograms color-coded as in Yeo [63] with the addition of dark blue for

subcortical regions, and black for cerebellar regions. In Mode ψ1 all regions are aligned in-phase and so there is no antiphase connectivity. FC computed as the

outer product of the leading eigenvector for each mode. D) Color coded legend for the Yeo resting-state networks, subcortical and cerebellar regions. VIS,

Visual; SMT, Somatomotor; DAT, Dorsal attention; VAT, Ventral attention; LBC, Limbic; FPA, Frontal parietal; DMN, Default mode network; SC,

Subcortical; CB, Cerebellar.

https://doi.org/10.1371/journal.pone.0282707.g002
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communities [69]. Rather, we defined the communities as the recurring spatiotemporal modes

where individual brain areas may participate in more than one community. The number of

brain regions in each community for each of the 10 datasets is shown in S1 Table.

We were somewhat surprised that metastability in Mode ψ4 was not significantly different

between groups in HCPEP given the differences found in basal ganglia connectivity. On reflec-

tion, we realized that the modes were extracted based on phase-locking, whilst metastability

was computed on phase synchrony. In other words, the standard deviation of phase synchrony

only captured the variability of the in-phase synchrony and ignored antiphase synchrony.

Whilst this may seem to be a small methodological difference, it in fact highlights conceptual

differences in the understanding of mechanisms of co-ordination across the brain [70] and the

role of antiphase synchrony in large-scale cortical networks [71]. To rectify this methodologi-

cal difference, we defined a new proxy for metastability as the mean variance of instantaneous

phase-locking, VAR (See Materials and methods).

For the HCPEP dataset we first investigated group (CON, NAP), run (RUN1, RUN2,

RUN3, RUN4), and interactions between group and run, on global VAR. Using a 2x4 non-

parametric ANOVA with the Aligned Rank Transform (ART) [65, 66], we found a significant

interaction between group and run (Table 2).

For the CON group, the effect of run was not significant. For the NAP group however, we

found significant main effects of run, χ2 = 19.16, p<0.001, which were driven by significant

differences in VAR between RUN1 and RUN3 (p = 0.006, effect size = 0.215), and between

RUN1 and RUN4 (p = 0.002, effect size = 0.216).

Additionally, we found significant main effects of group which were driven by differences

in VAR between CON and NAP in RUN1 (p = 0.001, effect size = 0.278) and RUN2 (p = 0.002,

effect size = 0.263). As the effect size between groups in RUN1 and RUN2 were greater than

the largest effect size between any pair of runs (Table 3), we inferred that metastability as mea-

sured with VAR differs between CON and NAP in RUN1 and RUN2. For the Cobre dataset, a

permutation t-test for global VAR found a statistically significant difference between CON and

NAP t(126) = -4.17, p<0.001 for global VAR.

Local metastability in the spatiotemporal modes

While global VAR reflects the average VAR across the modes, it is also of interest to assess the

local VAR within the modes.

Table 1. Effects of group, run, and interactions between group and run, on contributions to mode ψ4 connectivity in the bilateral caudate, putamen, pallidum, and

thalamus.

Region of Interest Main effect of group Main effect of run

(largest)

Interaction Group x Run

Z p effect size Z p effect size F p

Caudate_L 3296 <0.001 0.435 1179 <0.001 0.400 F(3,339) = 4.899 0.002

Caudate_R 3521 <0.001 0.523 656 <0.001 0.382 F(3,339) = 7.718 <0.001

Putamen_L 3079 <0.001 0.351 661 <0.001 0.335 F(3,339) = 7.923 <0.001

Putamen_R 3093 <0.001 0.357 668 <0.001 0.333 F(3,339) = 5.297 0.001

Pallidum_L 2804 0.005 0.245 1008 0.008 0.266 F(3,339) = 3.394 0.018

Pallidum_R 38175 0.054 0.083 F(3,339) = 1.673 0.083

Thalamus_L 3530 <0.001 0.526 1132 0.001 0.360 F(3,339) = 8.105 <0.001

Thalamus_R 3038 <0.001 0.335 635 <0.001 0.349 F(3,339) = 3.032 0.029

Bold font indicates statistical significance following Bonferroni correction for multiple comparisons.

https://doi.org/10.1371/journal.pone.0282707.t001
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For the HCPEP dataset we first investigated group (CON, NAP), run (RUN1, RUN2,

RUN3, RUN4), and interactions between group and run, on global VAR for each mode ψ1, ψ2,

ψ3, ψ4, ψ5. Using a 2x4 non-parametric ANOVA with the Aligned Rank Transform (ART) [65,

66], we found significant interactions between group and run (Table 3).

Fig 3. Group differences in regional contribution to the leading eigenvector for Mode ψ4. Regional contribution was calculated as the mean value of

instantaneous phase-locking over time for a particular anatomical region of interest. Raincloud plots show from left to right scatter plot for the raw data,

boxplots showing the median, upper and lower quartiles, upper and lower extremes, and the distributions of the raw data. iPL, instantaneous phase-locking, � =

0.05, �� = 0.01, ��� = 0.001, ����<0.001. Red � effect size between groups greater than effect size between runs. Blue � effect size between groups less than largest

effect size between runs.

https://doi.org/10.1371/journal.pone.0282707.g003
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In the CON group, we found significant main effects of run in ψ4, χ2 = 11.33, p = 0.010. In

the NAP group, we found significant main effects of run in ψ1, χ2 = 18.88, p<0.001, in ψ2, for

χ2 = 10.60, p = 0.014, in ψ3, χ2 = 20.12, p<0.001, and in ψ4, χ2 = 49.800, p<0.001. The drivers

for these effects and the associated effect sizes are detailed in S3 Data. The largest main effects

of run are shown in Table 3.

Moreover, we found significant main effects of group in modes ψ1, ψ2, ψ3, and ψ4. The effect

sizes of these differences were compared to the largest effect size between any pair of runs for

that mode (Table 3). We thus found significant group differences for ψ1 in RUN1 (p = 0.007,

effect size = 0.234) and RUN2 (p = 0.001, effect size = 0.287), ψ2 in RUN1 (p = 0.003, effect size
= 0.258) and RUN2 (p = 0.001, effect size = 0.279), and in ψ4 in RUN1 (p<0.001, effect size =

0.396, moderate) and RUN2 (p = 0.001, effect size = 0.399, moderate). We found a significant

main effect of group for ψ5, p = 0.002, effect size = 0.134.

We thus inferred that mode VAR differed between CON and NAP in ψ1, ψ2, ψ4, and ψ5 in

RUN1 and RUN2, and in ψ5 in all runs. For Cobre, we found statistically significant differences

in mode VAR in all modes. (specifically, ψ1 t(125) = -3.423, p = 0.003, ψ2 t(128) = -3.309,

p = 0.007, ψ3 t(124) = -3.584, p = 0.002, ψ4 t(125) = -4.302, p<0.001, and ψ5 t(128) = -4.745,

p<0.001). Complete statistical details for global and local VAR statistics can be found in S3

Data. Fig 4 shows the datasets with the most significant differences in mode VAR between

groups.

Relationship with neuropsychological processes

Based on the group-level results, and the results from our basal ganglia analysis, we now high-

light the differences between CON and NAP in HCPEP for Mode ψ4 in RUN2, and CON and

SCHZ in Cobre for Mode ψ4. To do so we compared the connectograms for each node and the

associated behavioral topics from Neurosynth meta-analysis [72]. For the meta-analysis, we

applied reverse inference to gain insights into potential behavior-relevant differences between

cases and controls based on their spatiotemporal modes. Following the approach of [73], we

used t = 130 terms, ranging from umbrella terms (attention and emotion) to specific cognitive

processes (visual attention and episodic memory), behaviors (eating and sleep) and emotional

Table 2. Effects of group, run, and interactions between group and run, on global VAR.

Main effect of group Main effect of run (largest) Interaction Group x Run

Z p effect size Z p effect size F p

Global 1455 0.001 0.278 2492 0.002 0.216 F(3,339) = 8.411 <0.001

Bold font indicates statistical significance.

https://doi.org/10.1371/journal.pone.0282707.t002

Table 3. Effects of group, run, and interactions between group and run, on local VAR in modes ψ1, ψ2, ψ3, ψ4, ψ5.

Mode of Interest Main effect of group Main effect of run (largest) Interaction Group x Run

Z p effect size Z p effect size F p

Mode 1 1434 0.001 0.287 2377 0.002 0.201 F(3,339) = 8.629 <0.001

Mode 2 1453 0.001 0.279 2322 0.025 0.168 F(3,339) = 7.970 <0.001

Mode 3 1548 0.005 0.242 2568 <0.001 0.278 F(3,339) = 6.395 <0.001

Mode 4 1145 <0.001 0.399 2851 <0.001 0.351 F(3,339) = 20.250 <0.001

Mode 5 29266 0.002 0.134 F(3,339) = 2.005 0.113

Bold font indicates statistical significance.

https://doi.org/10.1371/journal.pone.0282707.t003
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states (fear and anxiety). The coordinates reported by Neurosynth were parcellated into 116

cortical, subcortical, and cerebellar regions. The probabilistic measure reported by Neurosynth

can be interpreted as a quantitative representation of how regional fluctuations in activity are

related to psychological processes. We present the comparison in Fig 5.

We see from the meta-analytical terms in HCPEP that there is an absence of anticipation

and reward anticipation in the NAP group compared with the CON group. In Cobre, fear,

emotion, and anxiety are present in the SCHZ group but absent in the CON group.

Global and local metastability–individual-level neuromechanistic

biomarkers of schizophrenia

Our group-level results indicated that differences in VAR across groups were statistically sig-

nificant in some modes, with effect sizes being small to moderate in HCPEP, and moderate to

large in Cobre (S2 Table). We therefore decided to investigate the capability of these differ-

ences to classify subjects into their relevant groups. As VAR in Mode ψ4 showed very large sig-

nificant differences between groups in both HCPAP and Cobre, we decided to use this metric

as an a-priori feature in a machine learning classifier.

Briefly, we chose a naïve Bayes classifier for its simplicity, but still compared its perfor-

mance with other classifiers (as discussed below). We ran the classifier with repeated k-fold

cross validation (k = 10, repetitions = 20) on balanced samples for training and cross-validation

Fig 4. Most significant group differences in local VAR in the modes for HCPEP and Cobre datasets. Raincloud plots show from left to right the raw data,

boxplots showing the median, upper and lower quartiles, upper and lower extremes, and the distributions of the raw data. A) HCPEP RUN1. B) HCPEP

RUN2. C) Cobre dataset. � = 0.05, �� = 0.01, ��� = 0.001, ����<0.001. Red � effect size between groups greater than effect size between runs. Blue � effect size

between groups less than largest effect size between runs.

https://doi.org/10.1371/journal.pone.0282707.g004
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in each dataset (HCPEP: 4 runs, Cobre: 1 run). Other than balancing the samples, we did not

perform any preprocessing steps or tune hyperparameters. We then tested each classifier on an

out-of-sample dataset, that is trained on HCPEP, tested on Cobre, or trained on Cobre, tested

Fig 5. Connectograms and word clouds for Mode ψ4 in RUN2. A) Group-level FC in Mode ψ4 for HCPEP controls. B) Group-level FC in Mode ψ4 for

HCPEP Non-affective psychosis. C) The word cloud presents the top terms derived from Neurosynth using reverse inference for the regions in Mode ψ4 for

HCPEP controls. Word size represents the strength of the probabilistic association of the term to the regions. D) Top terms for Mode ψ4 in HCPEP Non-

affective psychosis. E) Group-wide FC in Mode ψ4 for Cobre controls. F) Group-wide FC in Mode ψ4 for Cobre Schizophrenia. G) Top terms for Mode ψ4 in

Cobre controls. H) Top terms for Mode ψ4 in Cobre Schizophrenia. I) Color coded legend for the Yeo resting-state networks, subcortical and cerebellar

regions. VIS, Visual; SMT, Somatomotor; DAT, Dorsal attention; VAT, Ventral attention; LBC, Limbic; FPA, Frontal parietal; DMN, Default mode network;

SC, Subcortical; CB, Cerebellar.

https://doi.org/10.1371/journal.pone.0282707.g005
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on HCPEP (Table 4). HCPEP RUN2 performed best as measured by AUC when used as the

training sample for out-of-sample testing in Cobre, and as the out-of-sample test for the classi-

fier trained in Cobre. This implies that VAR in RUN2 captures best the feature that discrimi-

nates CON from NAP and SCHZ.

Although VAR in Mode ψ4 was significantly different between groups in both RUN1 and

RUN2, the superior performance of the classifier when trained in RUN2 may be explained by

the effect sizes of basal ganglia decoupling in that run. Caudate_L (0.435), bilateral Putamen

(0.351, 0.357), and Thalamus_L (0.526) showed medium effect sizes only in RUN2 (see S1

Data). The poor performance of the classifier when trained in RUN1, RUN3, and RUN4 can

be explained by the non-pervasive decoupling of the basal ganglia.

We found that although the HCPEP classifier performed better than the Cobre classifier in

cross-validation (HCPEP:AUC = 0.73, p<0.001, Cobre:AUC = 0.71, p = 0.007), the Cobre clas-

sifier performed better for out-of-sample testing (HCPEP:AUC = 0.71, p = 0.03, Cobre:

AUC = 0.76, p = 0.039) as illustrated in Fig 6.

The superior performance of the classifier trained in Cobre can be explained by the differ-

ent effect sizes of group-level differences in Mode ψ4 between Cobre and HCPEP. In Cobre the

effect size was -0.756 (see S2 Table), whilst the effect sizes in HCPEP varied across runs

between 0.037 (RUN3) and 0.399 (RUN2) (see S3 Data).

In addition to a down-sampled naïve Bayes classifier, we also considered an up-sampled

naïve Bayes, down-sampled Logistic regression, and a down-sampled Support Vector Machine

models for VAR in mode ψ4. Additionally, we used a down-sampled naïve Bayes classifier for

META in mode ψ4, for VAR in mode ψ4 when calculated using NeuroMark [74] intrinsic con-

nectivity networks, and for internal validation for HCPEP trained in RUN2 and tested in

RUN1. The performance of these additional classifications is shown in Table 5.

As can be seen from Table 5, there was little difference in performance between down-sam-

pling and up-sampling naïve Bayes, logistic regression, and Support Vector Machine classifi-

ers. However, performance dropped significantly when the conventional metric for

metastability, or a non-overlapping intrinsic connectivity network template, NeuroMark, were

used in the classifier.

Table 4. Results of out of sample testing for each HCPEP run.

Train Test AUC B. Accuracy Sensitivity Specificity p-value

RUN1 Cobre 0.37 0.38 0.17 0.60 0.004

RUN2 Cobre 0.71 0.58 0.19 0.96 0.030

RUN3 Cobre 0.59 0.55 0.66 0.43 0.058

RUN4 Cobre 0.57 0.56 0.87 0.25 0.049

Train Test AUC B. Accuracy Sensitivity Specificity p-value

Cobre RUN1 0.74 0.50 0.96 0.04 0.080

Cobre RUN2 0.76 0.57 0.93 0.21 0.039

Cobre RUN3 0.52 0.51 0.96 0.06 0.080

Cobre RUN4 0.40 0.51 0.93 0.09 0.080

Train X-Val AUC B. Accuracy Sensitivity Specificity p-value

RUN1 RUN1 0.68 0.64 0.66 0.60 0.00

RUN2 RUN2 0.65 0.63 0.76 0.44 0.00

RUN3 RUN3 0.56 0.53 0.50 0.57 0.07

RUN4 RUN4 0.54 0.46 0.37 0.61 0.05

Cobre Cobre 0.71 0.62 0.64 0.60 0.01

HCPEP RUN2 was chosen as the training sample for external validation in Cobre, and as the validation sample for classifier trained in Cobre.

https://doi.org/10.1371/journal.pone.0282707.t004
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Relationship between META, VAR, and measures of integration and

segmentation

We have shown that VAR provides superior individual-level classification compared to the

conventional metric for metastability, META. However, the classification ability sheds no light

onto possible mechanistic explanations as to why this is the case. To address this question, we

first need to understand that META and VAR are based on two different order parameters. In

dynamical systems theory, an order parameter captures the collective behavior of an underly-

ing high-dimensional non-linear system [39]. META is based on the Kuramoto order parame-

ter [75] which is the mean phase in a system of weakly coupled oscillators. VAR on the other

Fig 6. naïve Bayes classifier results for discriminating cases from controls using a single a-priori feature VAR in Mode ψ4. A) Results for HCPEP model

trained and cross-validated in RUN2. B) Results for HCPEP model trained and cross-validated in RUN2 and tested in Cobre. C) Results for Cobre model

trained and cross-validated. D) Results for Cobre model trained and cross-validated in Cobre and tested in HCPEP RUN2. AUC/Balanced accuracy/

Sensitivity/Specificity; p value calculated from the binomial distribution. AUC, area under receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0282707.g006
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hand, is based on relative phase which has its origins in Superconducting Quantum Interfer-

ence Device (SQUID) array experiments in the early 1990’s [76]. To compare the relevance of

both order parameters, we plot their time-series for one NAP subject, including measures of

magnetization ratio, proxy for criticality [62] and chimerality or cluster synchronization [67]

in Fig 7.

It can be seen from Fig 7 that taking in-phase and antiphase synchrony into account is

more informative on the dynamics of brain activity than just in-phase synchrony, and the

magnetization ratio is more relevant to mode switching than chimerality.

Metastable dynamics reflect the competitive tension between global integration and func-

tional segregation [77]. Therefore, any metric or signature of metastability should be correlated

with measures of integration and segregation. We calculated the level of global integration and

functional segregation as in [78] and compared across groups. In HCPEP a permutation t-test

for global integration (GINT) found a statistically significant difference between CON and

NAP t(100) = 3.70, p<0.001, and for functional segregation (FSEG) t(109) = -3.14, p = 0.0023.

For Cobre, a statistically significant difference was also found for GINT t(127) = 2.96,

p = 0.0032, and for FSEG t(116) = -3.10, p = 0.0026 (see Fig 8). Additionally, we calculated a

Metastability index K, as segmentation/integration, in the spirit of [77]. We performed linear

regression of the metrics for global integration, functional segregation, and Metastability

Index on META and VAR in HCPEP RUN2 and Cobre. Complete statistical results may be

found in S3 Table. For META in HCPEP the highest explanatory power, R2 adjusted, was 0.07

for NAP for global integration and in Cobre 0.55 for CON for global integration. In contrast,

for VAR in HCPEP the highest explanatory power, R2 adjusted, was 0.91 for NAP for func-

tional segregation and in Cobre 0.92 for SCHZ for functional segregation. The relationship

between META and VAR with these 3 metrics are shown in Fig 8. Based on these results we

can infer that VAR is a true measure of the competitive tension between global integration and

functional segregation, and therefore a valid signature of metastability.

Table 5. Pserformance of additional classifiers in comparison to the classifier used in this study.

Metric Classifier Preprocessing HCPEP X-VAL OOS validation COBRE

AUC Accuracy Sensitivity Specificity p AUC Accuracy Sensitivity Specificity p

VAR nBayes downsampled 0.734 0.674 0.590 0.730 <0.001 0.709 0.575 0.189 0.962 0.030
VAR nBayes upsampled 0.744 0.672 0.591 0.726 <0.001 0.709 0.585 0.208 0.962 0.022

VAR Logistic Reg downsampled 0.734 0.681 0.623 0.719 <0.001 0.709 0.566 0.170 0.962 0.039

VAR SVM (linear) downsampled 0.734 0.675 0.606 0.721 <0.001 0.709 0.575 0.189 0.962 0.030

META nBayes downsampled 0.518 0.490 0.649 0.388 0.078 0.530 0.528 0.491 0.566 0.074

VAR:NM nBayes downsampled 0.606 0.603 0.366 0.756 0.011 0.637 0.557 0.283 0.830 0.049

Cobre X-VAL OOS validation HCPEP

AUC Accuracy Sensitivity Specificity p AUC Accuracy Sensitivity Specificity p

VAR nBayes downsampled 0.710 0.618 0.640 0.600 0.007 0.758 0.566 0.925 0.208 0.039

VAR nBayes upsampled 0.710 0.618 0.638 0.601 0.007 0.758 0.566 0.925 0.208 0.039

VAR Logistic Reg downsampled 0.710 0.623 0.620 0.630 0.005 0.758 0.566 0.925 0.208 0.039

VAR SVM (linear) downsampled 0.710 0.625 0.631 0.662 0.005 0.758 0.575 0.943 0.208 0.030

META nBayes downsampled 0.650 0.630 0.593 0.668 0.003 0.526 0.538 0.396 0.679 0.067

VAR:NM nBayes downsampled 0.656 0.602 0.665 0.544 0.011 0.678 0.613 0.925 0.302 0.007

HCPEP X-VAL RUN2 Internal validation HCPEP RUN1

AUC Accuracy Sensitivity Specificity p AUC Accuracy Sensitivity Specificity p

VAR nBayes downsampled 0.734 0.674 0.590 0.730 <0.001 0.735 0.617 0.744 0.491 0.007

https://doi.org/10.1371/journal.pone.0282707.t005
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We have found that metastability as measured with VAR outperforms the conventional

measure of META. We have shown that the order parameter of relative phase, as captured by

instantaneous phase-locking which reflects in-phase and antiphase synchrony, is more infor-

mative than average phase for understanding the dynamics of brain activity. Finally, we have

demonstrated that VAR explains between 81–92% of the variance in global integration, func-

tional segregation, and the Metastability Index in the HCPEP and Cobre datasets. In summary,

Fig 7. Time-series for the relative phase order and the Kuramoto order parameter for one NAP subject. A) Time-series for the cosine of relative phase or

instantaneous phase-locking for a single subject. B) Time-series for the Kuramoto order parameter or average phase for a single subject. C) Blow-outs showing

how relative phase is more informative than average phase for the dynamics of brain activity in one subject. MAG, magnetization ratio; KOP, Kuramoto order

parameter, CHI, chimerality.

https://doi.org/10.1371/journal.pone.0282707.g007
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Fig 8. Relationship between VAR and META with metrics of global integration, functional segregation, and a metastability index K.

A) HCPEP global integration versus META. B) HCPEP functional segregation versus META. C) HCPEP Metastability Index versus

META. D) Cobre global integration versus META. E) Cobre functional segregation versus META. F) Cobre Metastability Index versus

META. G) HCPEP global integration versus VAR. H) HCPEP functional segregation versus VAR. I) HCPEP Metastability Index versus

VAR. J) Cobre global integration versus VAR. K) Cobre functional segregation versus VAR. L) Cobre Metastability Index versus VAR. R2
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we have shown that antiphase synchrony is not only important for large-scale cortical net-

works [71], but also for characterizing metastability in healthy controls and groups with a diag-

nosis of schizophrenia.

Discussion

In this study we set out to assess the face validity of metastability as a candidate neuromecha-

nistic biomarker of schizophrenia. Our results provide preliminary evidence to support the

premise that metastability measures dysfunctional connectivity in schizophrenia from 4 com-

plementary perspectives.

First, we found statistically significant differences in group-level metastability between

healthy controls and subjects with schizophrenia. Effect sizes were negligible to small (d =

-0.11 to d = 0.36) for early disorder subjects (NAP group) and moderate to large (d = -0.58 to d
= -0.82) for subjects with established schizophrenia (SCHZ group) (see S2 Table). Previous dis-

crimination analysis on the same Cobre dataset using a distance measure between patterns of

instantaneous phase synchrony reported a moderate effect size (d = 0.67) [33], as did another

study using the mean probability of dwell time in a global state (Hedge’s g = 0.73) [56]. In con-

trast, one study reported significantly lower effect sizes (d = 0.06 to d = 0.31) using measures of

metastability in its original form, and using measures of between-network FC (d = 0.04 to

d = 0.52) [68]. Although there are many studies that assess group-level differences in dFC, few

report effect size. Therefore, limited to this small comparison, we consider that metastability,

when calculated as the mean variance of instantaneous phase-locking, performs better than

alternative group-level metrics reported in the literature.

and R2adj results from linear regression. M) HCPEP Group-level differences in global integration. N) HCPEP Group-level differences in

functional segregation. O) Cobre Group-level differences in global integration. P) Cobre Group-level differences in functional

segregation. GINT, global integration; FSEG, functional segregations; K, Metastability Index.

https://doi.org/10.1371/journal.pone.0282707.g008

Fig 9. Simple scheme of basal ganglia connectivity. A) Location of the basal ganglia in an axial cartoon view of the brain. B) Basal ganglia connectivity.

Arrows indicate direction of connectivity. Glutamatergic (Glu) structures are shown in rose, GABAergic nuclei are shown in cyan, and the dopaminergic (DA)

nucleus is shown in green. STN, subthalamic nucleus; SNC, substantia nigra pars compacta; GPe, global pallidus external; GPi, global pallidus internal; SNr,

Substantia nigra; MLR, midbrain locomotor region; diencephalon locomotor region.

https://doi.org/10.1371/journal.pone.0282707.g009
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Second, group-level differences in metastability (as measured with VAR) revealed group-

level differences in dFC for both early and established schizophrenia. Specifically, intermittent

functional disconnectivity was found for bilateral caudate, putamen left, and bilateral thalamus

in early schizophrenia. The caudate and putamen are part of the dorsal striatum which is a key

component in the basal ganglia. Fig 9 shows a very simple scheme of basal ganglia connectivity

with the thalamus and cortex highlighting the substantia nigra pars compacta (SNc) which is

the source of the neurotransmitter dopamine.

Elevated dopamine synthesis and storage have been implicated in the pathophysiology of

schizophrenia [79]. Hyperactivity of the substantia nigra was found to be associated with

decreased prefrontal FC with basal ganglia regions in schizophrenia subjects during a working

memory task [11]. In resting-state fMRI increased functional integration in the caudate and

decreased FC with the prefrontal and cerebellar regions was found in subjects with schizophre-

nia [9]. Interestingly, striatal connectivity indices have been used to identify treatment

response in first episode psychosis subjects, with higher indices associated with non-respond-

ers and lower indices associated with responders [80], which supports the hypothesis that non-

responders do not possess elevated striatal dopamine synthesis capacity [81]. These findings

from the literature provide evidence that that our neuromechanistic biomarker is relevant in

the pathophysiology of schizophrenia.

Third, using metastability as a single a-priori feature achieved classification performance in

the range of previously published studies (see Table 6). Using the Cobre dataset, one study

reported quite high levels of accuracy [82] in comparison to our study, and that of Morgan

et al. [83]. However, it appears that the authors did not remove cases with significant frame-

wise displacement which could explain the discrepancy.

Case positive indicates that either NAP or SCHZ was taken as the positive class for the clas-

sifier. Down-sampled indicates that the lack of balance between classes was rectified with ran-

dom down-sampling. Random sampling indicates that a specific number of samples were

Table 6. Comparison of classifier performance using FC and dFC.

Cross validation

Study Dataset Controls Cases # features AUC B Accuracy Sensitvity Specificity Comments

Lei et al. (2020) FC COBRE 72 68 4,095 0.82 0.69 0.94

Morgan et al. (2021) FC COBRE 73 60 42,778 0.75 0.70 0.62 0.77

Hancock et al. (2022) dFC COBRE 71 59 1 0.71 0.62 0.64 0.60 Case Positive

Downsampled

Morgan et al. (2021) FC Maastricht 53 59 42,778 0.74 0.65 0.77 0.59

Dublin 72 25 42,778 0.82 0.86 0.50 0.97

Rashid et al. (2016) dFC Hartford 135 87 15 0.84 0.83 0.92

Du et al. (2020) dFC BSNIP-1 238 113 >1’000 0.69 0.66 0.73

Hancock et al. (2022) dFC HCPEP 53 82 1 0.73 0.67 0.59 0.73 Case Positive

Downsampled

External validation

Study Dataset Controls Cases # features AUC B Accuracy Sensitvity Specificity

Morgan et al. (2021) FC Maastricht->Dublin 53 59 42,778 0.77 0.56

Dublin->Maastricht 72 25 42,778 0.76 0.69

Hancock et al. (2022) dFC COBRE->HCPEP 53 53 1 0.76 0.57 0.93 0.21 Case Positive

HCPEP->COBRE 53 53 1 0.71 0.58 0.19 0.96 Case Positive

Random Sampling

https://doi.org/10.1371/journal.pone.0282707.t006
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randomly chosen to allow balanced classes for external cross-validation. Blank cells indicate

that the information was not available in the study manuscript.

When considering classification performance in different datasets, it appears that our classi-

fier did not perform as well as the one from Morgan et al. [83] in the Dublin dataset, or with

the one from Rashid et al. [24] in the Hartford dataset. However, in both cases the classes were

not balanced (Dublin, cases:controls = 25:75, Hartford, cases:controls = 87:135) and there was

no evidence that this was taken into consideration when reporting the performance, which

may explain the discrepancy in the results.

We note that our cross-validation performance is comparable to the cross-validation per-

formance in the other studies. Given these comparisons, we consider that our classifier had

similar performance to those reported in the literature for cross-validation.

When we compare external validation of our classifier to that of Morgan et al. [83], we see

that performance is similar with the same caveat pertaining to the Dublin dataset. We there-

fore consider that our cross-dataset analysis based on a single a-priori feature of metastability

(as measured with VAR) performs similarly to one in the literature based on over 40’000 fea-

tures in FC.

It is interesting to note that the HCPEP->Cobre external validation returned very high

specificity whilst the Cobre->HCPEP external validation returned very high sensitivity. This

may be related to the age difference between the participants in the two studies, or it may

reflect that the cases in HCPEP are in the early stages of schizophrenia whilst the cases in

Cobre are in a well-established stage of schizophrenia. It appears that disruptions in connectiv-

ity in early psychosis are not sufficient to distinguish SCHZ from CON. However, disruptions

in SCHZ are sufficient to distinguish NAP from CON. This seems to imply that the disruptions

in early psychosis are a subset of those in established schizophrenia.

Fourth, VAR explains between 81–92% of the variance in metrics for global integration,

functional segregation, and the Metastability Index in both HCPEP RUN2 and Cobre datasets.

Although metrics for integration, segregation, and conventional metastability have been esti-

mated previously [78], the explanatory power of metastability on these global metrics of cere-

bral organization was not investigated. From our study we found that the conventional metric

for metastability, META, explained between 0–0.08% of the variance in these metrics in the

HCPEP RUN2 dataset, and between 0.16–0.55% in the Cobre data (see S3 Table). For HCPEP

this is not surprising as no statistically significant difference was found in global metastability

between CON and NAP in RUN2 (see S2 Data). For CON in Cobre, between 37–55% of the

variance in the metrics was explained by metastability, but only 15–18% in SCHZ (see S3

Table). From these results it appears that antiphase synchrony is more prominent in SCHZ.

Our four complementary perspectives of group-level discrimination, individual-level classi-

fication, pathophysiological relevance, and explanatory power, provide preliminary evidence

for the face validation of metastability, as measured with VAR, as a candidate neuromechanis-

tic biomarker of schizophrenia.

There are several limitations that should be considered when evaluating the findings from

this study. First, we used a novel proxy for metastability. Although the concept of metastability

is generally accepted, its operationalization takes a number of forms from the entropy of spec-

tral density [36], to the variability in spatial coherence [84], and to the most commonly used

form, the standard deviation of the Kuramoto order parameter (phase synchrony) [67]. We

chose the mean variance of instantaneous phase-locking as an alternative proxy for metastabil-

ity based on the theory of Synergetics [50] and recent generalization of the Haken-Kelso-Bunz

(HKB) model to multiple oscillators [51], which exhibits stable antiphase synchronization

[52]. See Fig 10 reproduced with permission from [52]. It should be noted that the generalized
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HKB model reduces to the Kuramoto model when second-order coupling is removed (i.e., Bij

= 0), and so can be seen as an extension of the Kuramoto model as in [85–87].

The generalized HKB model may explain the phase-locking behavior we illustrated in Fig 1

including mono-stability, bi-stability, switching (‘sans switch’) [88], and chimeras [67]. We

have used a phenomenological understanding of the generalized HKB model to propose the

mean variation of instantaneous phase-locking as a new proxy measure for metastability. In

future work we need to perform a more thorough theoretical investigation of the phenomenon

of metastability, complemented with a computational model that predicts empirical findings.

Second, from the perspective of alternative dFC approaches and pipelines, we did not per-

form global signal, white matter or cerebral spinal fluid regression. From a complexity science

perspective [39], one cannot explore any subsystem of a complex system such as the brain in

isolation, and accumulating evidence points to contributions other than neuronal to the fMRI

signal [89–91]. As in [47], we defined communities of oscillators directly from the phase-lock-

ing data and not from intrinsic connectivity networks [41] nor predefined templates [68]. This

allows regions to participate in multiple communities reflecting transient coalitions between

the regions as evidenced by spatial overlap between networks [92, 93].

Third, the switching behavior observed in the phase-locking behavior in Fig 1 may appear

to be artifactual. In LEiDA the leading eigenvector time-series is smoothed through a tech-

nique called “half-switching”. We reproduced the time-series for one subject without this

Fig 10. Attractor landscape for the extended HKB model of multi-adic coordination. A plot of the relative phase potential function landscape for Aij = 2Bij =

1 for each i, j. Note the many valleys (marked with red asterisks) in which an oscillator moving around in this landscape will become trapped. These valleys are

the local minima corresponding to the coordination states. There are two types of valleys in this landscape: in-phase valleys, which have relatively very deep and

wide basins of attraction, and antiphase valleys, which are narrower and shallower, reflecting the fact that the in-phase state is more stable than the antiphase

state. Each of these valleys is separated by a distance ofP, and repeats infinitely on the potential surface in a 2P -periodic pattern. A, B, effective coupling

parameters; i,j, ith and jth oscillator. Reproduced with permission from [52].

https://doi.org/10.1371/journal.pone.0282707.g010
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smoothing and compared the results to the smoothed version. As may be seen in S5 Fig switch-

ing also occurs in the non-smoothed version, but with higher frequency than in the smoothed

version.

However, since this smoothing was applied to all subjects, it does not affect the results, but

may impact the ability to compare results with those obtained with alternative dFC

approaches.

Conclusion

This study claims face validity of metastability as a candidate neuromechanistic biomarker of

schizophrenia based on group-level discrimination, individual-level classification, pathophysi-

ological relevance, and explanatory power, congruent with published literature. Replication

studies with larger sample sizes, method validation, and biomarker qualification need to be

performed before claiming metastability to be a biomarker for clinical use. While diagnostic

biomarkers of schizophrenia—such as metastability—may still have limited clinical utility,

they can provide mechanistic insights for the discovery of prognostic biomarkers that could

support treatment decisions. For example, the ability to identify treatment resistance or transi-

tion likelihood from high risk to first episode psychosis would address a real clinical need.

Developing a deeper understanding of metastability may one day help us to gain sufficient

mechanistic insight into the disconnection phenomenon of schizophrenia, which may lead in

turn into the development of such effective biomarkers.

Materials and methods

Participants

HCPEP. Healthy controls (CON, n = 53) and non-affective psychosis (NAP, n = 82) par-

ticipants were scanned at one of four sites (Indiana University, Beth Israel Deaconess Medical

Center–Massachusetts Mental Health Center, McLean Hospital and Massachusetts General

Hospital) as part of the Human Connectome Project-Early Psychosis (Principal Investigators:

Shenton, Martha; Breier, Alan; U01MH109977-01, HCP-EP;

doi:10.15154/1524263 https://nda.nih.gov/edit_collection.html?id=2914) with funding

from the National Institute of Mental Health (NIMH). A Data Use Certification (DUC) is

required to access the HCPEP on the NIMH Data Archive (NDA).

NAP participants met DSM-5 criteria for schizophrenia, schizophreniform, schizoaffective,

psychosis NOS, delusional disorder, or brief psychotic disorder with onset within the past five

years prior to study entry. Additional inclusion/exclusion criteria may be found in https://

www.humanconnectome.org/storage/app/media/documentation/data_release/HCP-EP_

Release_1.0_Manual.pdf. See Table 7 for group demographics.

Procedures were approved by the Partners Healthcare Human Research Committee/IRB

and complied with the Declaration of Helsinki. Participants provided written informed con-

sent, or in the case of minors, parental written consent and participant assent.

Cobre. Neuroimaging data was obtained from the publicly available repository Cobre

(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) preprocessed with NIAK 0.17—

lightweight release [94, 95]. The neuroimaging data included preprocessed resting-state fMRI

data from healthy controls (CON, n = 72) and schizophrenia patients (SCHZ, n = 72), in

which participants passively stared at a fixation cross. Subject recruitment and evaluation may

be found in [96]. The study was approved by the institutional review board (IRB) of the Uni-

versity of New Mexico (UNM) and all subjects provided written informed consent. Inspection

of the fMRI data for each subject resulted in the exclusion of one subject whose data did not

include all 150 volumes. 13 SCHZ subjects with framewise displacement > 0.7mm were also
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removed. The final dataset therefore used for the Cobre analysis included n = 59 SCHZ cases

and n = 71 HCs. See Table 7 for group demographics and significance of between-group differ-

ences in age and sex.

Image acquisition—HCPEP

All MRI scans were acquired on Siemens MAGNETOM Prisma 3T scanners with a multiband

acceleration factor of 8, and a 32/64channel head coil. Each participant underwent four scans

of resting-state fMRI collected over two experimental sessions on consecutive days (two scans

in each session). The four datasets are referred to as RUN1 to RUN4. During each scan 410

frames were acquired using a multiband sequence at 2 mm isotropic resolution with repetition

time (TR) of 0.72 sec over the space of 4 min 55 secs. The two scans in each session differed

only in the phase encoding direction of anterior-posterior (AP) followed by posterior-anterior

(PA) on both days.

Image acquisition—Cobre

The resting-state fMRI data featured 150 echo planar imaging volumes obtained in 5 min, with

repetition time (TR) = 2 s, echo time = 29 ms, acquisition matrix = 64×64 mm2, flip

angle = 75˚ and voxel size = 3×3×4 mm3. The acquisition is fully described in detail in [96].

Preprocessing

HCPEP. Data were pre-processed with the HCP’s minimal pre-processing pipeline, and

denoising was performed by the ICA-FIX procedure [97–99]. A complete description of the

pre-processing details may be found at the HCP website https://www.humanconnectome.org/

software/hcp-mr-pipelines. Briefly, fMRI data was gradient-nonlinearity distortion corrected,

rigidly realigned to adjust for motion, fieldmap corrected, aligned to the structural images, and

then registered to MNI space with the nonlinear warping calculated from the structural

images. ICA-FIX was then applied on the data to identify and remove motion and other arti-

facts in the time-series.

Cobre. The preprocessing of the fMRI data is fully described in detail in [95, 96].

In brief, preprocessing included slice-timing correction, co-registration to the Montreal

Neurological Institute (MNI) template and resampling of the functional volumes in the MNI

space at a 6 mm isotropic resolution. We resampled the functional volumes in MNI space at a

2 mm isotropic resolution with 3dresample from AFNI [100]. Covariate removal was not

Table 7. Demographic characteristics of participant groups.

Characteristics HCP EP COBRE

HCs (n = 53) NAPs (n = 82) p HCs (n = 71) SCHZs (n = 59) p
Age (years) 24.85 ± 4.15 23.42 ± 3.57 <0.001 35.88 ± 11.74 37.89 ± 13.86 0.39

Sex (male/female) 34/19 55/27 0.78 50/21 49/10 0.15

Site (IU/BIDMC/MGH/MH) 25/5/10/13 51/14/5/12

PANSS 53.42 ± 10.02 48.67 ± 13.75

CAINS 21.48 ± 10.07

IQ (WASI-II) (130 subjects recorded) 116.30 ± 10.96 97.52 ± 17.55 113.64 ± 12.57 102.82 ± 16.72

HCP EP = Human Connectome Project for Early Psychosis; HC = Healthy Controls; NAP = patients with non-affective psychosis; SCHZ = patients with schizophrenia;

PANSS = Positive and Negative Syndrom Scale; CAINS = Clinical Assessment Interview for Negative Symptoms; IQ = intelligence quotient. Significance test used for

Age: Wilcoxon, Sex: Chi-squared

https://doi.org/10.1371/journal.pone.0282707.t007
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performed as subjects with excessive movement were removed and the time-series were later

filtered between 0.01–0.08 Hz to remove low frequency drift and high frequency noise.

Substantial material in the following subsections is recycled from our prior publication

[47].

Parcellation

We parcellated the pre-processed fMRI data by averaging time-courses across all voxels for

each region defined in the anatomical parcellation AAL [53] considering all cortical, subcorti-

cal, and cerebellar regions, N = 116. We chose the AAL parcellation as subcortical and cerebel-

lar regions are relevant in studies with psychiatric cohorts [3, 9, 101–103].

Bandpass filtering

To isolate low-frequency resting-state signal fluctuations, we bandpass filtered the parcellated

fMRI time-series within 0.01–0.08 Hz with a discrete Fourier transform (DST) computed

using a fast Fourier transform (FFT) algorithm in MATLAB 2021b. We applied Carson’s

empirical rule [104, 105] on the analytical signal which was calculated using the Hilbert trans-

form of the real signal [106], to confirm non-violation of the Bedrosian theorem for our band-

passed signals in both datasets (see S3 and S4 Figs).

Functional connectivity through phase-locking

We estimated functional connectivity (FC) with the nonlinear measure of phase-locking

which may be more suitable than linear measures such as Pearson correlation for analyzing

complex brain dynamics. Specifically, nonlinear methods provide insight into interdepen-

dence between brain regions at both short and large time and spatial scales allowing the analy-

sis of complex nonlinear interactions across space and time [107, 108]. From a practical

perspective, unlike correlation or covariance measures, phase synchronization can be esti-

mated at the instantaneous level and does not require time-windowing. When averaged over a

sufficiently long-time window, phase-locking values provide a close approximation to Pearson

correlation, varying within the same range of values [54, 109].

Following [54] we first calculated the analytical signal using the Hilbert transform of the

real signal [106]. Then, the instantaneous phase-locking between each pair of brain regions n
and p was estimated for each time-point t as the cosine difference of the relative phase as

iPLðn; p; tÞ ¼ cosðyðn; tÞ � yðp; tÞÞ ð1Þ

Phase-locking at a given timepoint ranges between -1 (regions in antiphase) and 1 (regions

in-phase). For each subject the resulting iPL was a three-dimensional tensor of size NxNxT
where N is the dimension of the parcellation, and T is the number of timepoints in the scan.

LEiDA–Leading Eigenvector Dynamic Analysis

To reduce the dimensionality of the phase-locking space for our dynamic analysis, we

employed the Leading Eigenvector Dynamic Analysis (LEiDA) [54] method. The leading

eigenvector V1(t) of each iPL(t) is the eigenvector with the largest magnitude eigenvalue and

reflects the dominant FC (through phase-locking) pattern at time t. V1(t) is a Nx1 vector that

captures the main orientation of the fMRI signal phases over all anatomical areas. Each ele-

ment in V1(t) represents the projection of the fMRI phase in each region into the leading

eigenvector. When all elements of V1(t) have the same sign, this means that all fMRI phases are

orientated in the same direction as V1(t) indicating a global mode governing all fMRI signals.
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When the elements of V1(t) have both positive and negative signs, this means that the fMRI sig-

nals have different orientations behaving like opposite anti-nodes in a standing wave. This

allows us to separate the brain regions into two ‘communities’ (or poles) according to their ori-

entation or sign, where the magnitude of each element in V1(t) indicates the strength of belong-

ing to that community [110]. For more details and graphical representation see [55, 57, 58]. The

outer product of V1(t) reveals the FC matrix associated with the leading eigenvector at time t.

Mode extraction

To identify recurring spatiotemporal modes ψ or phase-locking patterns, we clustered the lead-

ing eigenvectors for each of the 10 phase-locked time-series datasets (HCPEP:CON x 4 runs,

HCPEP:NAP x 4 runs, Cobre:CON x 1 run, Cobre:SCHZ x 1 run) with K-means clustering

with 300 replications and up to 400 iterations for 2–10 centroids. This approach is similar to a

previous study [47] but different from other studies that used LEiDA where k-means clustering

was either performed on concatenated datasets across groups [54–56], or where the centroids

extracted from one group were used to cluster other groups [57–59]. This approach considers

each dataset as a unique observation of brain activity with associated variability in the spatio-

temporal modes and avoids data leakage [60]. K-means clustering returns a set of K central

vectors or centroids in the form of Nx1 vectors Vc. As Vc is a mean derived variable, it may not

occur in any individual subject data set. To obtain time courses related to the extracted modes

ψk at each TR we assign the cluster number to which Vc(t) is most similar using the cosine

distance.

Mode representation in voxel space

To obtain a visualization in voxel space of the spatial modes Vc we first reduced the spatial res-

olution of all fMRI volumes from 2mm3 to 10mm3 to obtain a reduced number of brain voxels

(here N = 1821) to be able to compute the eigenvectors of the NxN phase-locking matrices.

The analytic signal of each 10mm3 voxel was computed using the Hilbert transform, and the

leading eigenvectors were obtained at each time point (with size NxT). Subsequently, the

eigenvectors were averaged across all time instances assigned to a particular cluster, obtaining

in this way, for each cluster, a 1xN vector representative of the mean phase-locking pattern

captured in voxel space.

Mode representations as connectograms

We visualized FC as connectograms by taking the FC matrices for each mode and retaining

regions that were collectively in-phase but in antiphase with the global mode.

Neurosynth functional associations

Probabilistic measures of the association between brain coordinates and overlapping terms

from the Cognitive Atlas [111] and the Neurosynth database [72] were obtained as in [73]. The

probabilistic measures were parcellated into 116 AAL regions and may be interpreted as a

quantitative representation of how regional fluctuations in phase-locking are related to psy-

chological processes. The resulting functional association matrix represents the functional

relatedness of 130 terms to 116 brain regions (see S4 Table for a full list of terms).

Metastability

Empirical metastability studies to date have used pre-defined resting-state networks (RSN)

extracted with ICA [41], with network masks [68], or with functional templates [112] to
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represent communities of oscillators for investigation of network synchrony and metastability.

The non-overlapping nature of these networks does not allow flexible allegiance of brain

regions to different communities [69]. In contrast, as in [47] we decided to take a purely data

driven approach, using the recurrent modes extracted with K-means clustering to represent

communities of oscillators. As we decided to retain 5 recurrent modes (see Results), we there-

fore have 5 communities of oscillators ψ1−ψ5. Note that the AAL regions are not constrained

to a single community and so the communities reflect time-varying coalitions among regions.

The number of brain regions in each community for each of the 10 datasets is shown in S1

Table.

Based on phase synchrony. The Kuramoto order parameter in each community ψ of m
regions is given by

RcðtÞ ¼ jhe
iyðm;tÞij; m2c ð2Þ

Metastability was calculated as the standard deviation over time of the Kuramoto order

parameter in each community. The mean value of this measure across communities denoted

as global metastability, represents the overall variability in phase synchrony across

communities.

If we fix time t and estimate the variance of Rψ(t) across all communities ψ1. . .5, we obtain

an instantaneous measure of how chimera-like the system is at time t.

CHIðtÞ ¼ varðjheiyðc;tÞijÞ; c1...5
ð3Þ

where CHI is a measure of chimerality, an indicator of cluster synchronization [67]

Based on phase-locking. The instantaneous phase-locking (iPL) between each pair of

brain regions n and p was estimated for each time-point t as in Eq 1. Metastability, denoted as

VAR to distinguish it from metastability above, was calculated as the mean of the variance of

instantaneous phase-locking over time in each community. The mean value of this measure

across communities denoted as global VAR represents the overall variance in the phase-lock-

ing across communities.

Integration

Global integration was assessed as the connectivity within the time-averaged phase-locking

matrix calculated with Eq 1. The matrix is scanned through all possible thresholds from 0 to 1,

binarized, and the size of the largest connected component is identified using the Brain Con-

nectivity Toolbox [113]. The integral of the size of the largest connected component as a func-

tion of the threshold is taken as an estimate of global integration [78].

Segregation

Segregation refers to the decomposition of a system into functional subcomponents and was

estimated with the modularity index Q of the time-average phase locking matrix calculated

with Eq 1. The Louvain algorithm was used to subdivide the matrix into modules with the

Newman modularity Q taken as an estimate of functional segregations [78].

Statistical analysis

Interclass correlation coefficient. ICC is a relative metric that is used for test-retest reli-

ability in measurement theory [114]. It is generally defined as the proportion of the total mea-

sured variance that can be attributed to within subject variation. As such, ICC coefficients may
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be low when there is little variance between subjects, that is in a homogeneous sample, or

when the within-subject variance is large [115]. In this study we use the ICC forms from [116].

There are many scales for ICC, so for clarity we will use those of Landis and Koch [117]:

low (0 < ICC < 0.2)

fair (0.2< ICC < 0.4)

moderate (0.4< ICC < 0.6

substantial (0.6< ICC < 0.8)

almost perfect (0.8< ICC < 1)

We calculated the run reliability of mode ψ extraction with ICC(1,1) in search of agreement

rather than consistency across runs [64].

Parametric testing. Before performing statistical tests, we checked if the assumptions for

parametric testing were met. In all cases, the assumptions were violated. The results of these

tests can be found for basal ganglia in S5 Table, global metastability in S6 Table, local metasta-

bility in S7 Table, global VAR in S8 Table, local VAR in S2 Table.

Non-parametric ANOVA testing. We used Align rank transform (ART) [65, 66] to per-

form multi-factor non-parametric testing with dependent groups in R (ARtool::art). We then

followed the statistical testing flowchart shown in Fig 11. All results were Bonferroni corrected

for multiple comparisons.

Non-parametric permutation t-tests. We used permutation Welch 2 sample t-tests with

n = 9999 Monte Carlo permutations implemented in R (MKinfer::perm.t.test) as the majority

of distributions were not normally distributed when assessed with a Shapiro test.

Classification of condition based on metastability. Supervised machine learning algorithms

were trained to classify cases and controls for each dataset independently using a single a-priori

feature of metastability as measured by VAR. Classification was performed using a naïve Bayes

non-linear classification model [118] in R implemented with Caret [119]. We used a naïve Bayes

classifier as we had just one feature with no issue of independence. For the HCPEP datasets, we

chose cross-validation over internal validation in a different run to avoid data leakage, as the same

participants would have been present in both the test and validation sets [60].

In all five datasets (4 HCPEP datasets, 1 Cobre dataset), we assessed the generalizability of

the classifier using repeated k-fold cross-validation, k = 10, repetitions = 20. For the out-of-

sample analysis we trained the classifier in HCPEP and tested it in Cobre; and trained the clas-

sifier in Cobre and tested it in HCPEP. For all datasets we used down-sampling to balance the

classes, and for the out-of-sample analysis we randomly down-sampled both datasets to 53 to

allow cross-dataset testing. We report the area under the operating characteristics curve

(AUC), balanced accuracy, sensitivity, and specificity. The statistical significance of balanced

accuracy was assessed with a binomial cumulative distribution function [60].

Software tools. Parcellation, LEiDA, ICC and metastability / VAR derivations were

implemented in MATLAB [120]. Neurosynth functional associations were derived in Python

3.8.5. All other statistical analysis were performed in RStudio Team version 2022.02.3 Build

492 [121].

Supporting information

S1 Fig. Silhouette values for clustering solutions for 1 to 9 clusters with 2–10 modes respec-

tively. (A) HCPEP CON. (B) HCPEP NAP. (C) Cobre CON (D) Cobre SCHZ.

(TIF)
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S2 Fig. Reliability of mode extraction for controls and non-affective psychosis.

(TIF)

S3 Fig. Non-violation of Bedrosian Theorem–HCPEP.

(TIF)

S4 Fig. Non-violation of Bedrosian Theorem–Cobre.

(TIF)

S5 Fig. Effect of smoothing on the leading eigenvector time-series. A) Time-series for the

leading eigenvectors for one subject without smoothing. B) Time-series for the leading eigen-

vector for the same subject with half-switch smoothing. The blue asterixis indicate that half-

Fig 11. Statistical flowchart for non-parametric testing of differences between groups across runs. 1) 2x4 non-parametric ANOVA using Align rank

transform (ART). 2) Friedmann repeated measures test. 3) Paired Wilcoxon test. 4) Friedmann repeated measures test. 5) Paired Wilcoxon test. 6) Independent

Wilcoxon test for each run. 7) Independent Wilcoxon test across all runs.

https://doi.org/10.1371/journal.pone.0282707.g011
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switching occurred.

(TIF)

S1 Table. Number of brain regions in each community across datasets. We used the spatio-

temporal modes to define communities for estimation of metastability.

(XLSX)

S2 Table. Assumption test results for mode VAR in the HCPEP and Cobre datasets. We

assessed the normality of the distribution of VAR in each mode with a Shapiro-Wilk test,

equivalence of variance with a Levine test, and effect size with Cohen’s D test.

(XLSX)

S3 Table. Linear regression statistics for global integration, functional segregation, Meta-

stability Index on META and VAR. We performed linear regression in HCPEP RUN2 and

Cobre for 3 metrics of integration on both META and VAR.

(XLSX)

S4 Table. Neurosynth terms.

(XLSX)

S5 Table. Assumption test results for contribution of basal ganglia regions FC in the

HCPEP dataset. We assessed the normality of the distribution of contribution with a Shapiro-

Wilk test, equivalence of variance with a Levine test, and effect size with Cohen’s D test.

(XLSX)

S6 Table. Assumption test results for global META in the HCPEP and Cobre datasets. We

assessed the normality of the distribution of META with a Shapiro-Wilk test, equivalence of

variance with a Levine test, and effect size with Cohen’s D test.

(XLSX)

S7 Table. Assumption test results for metastability in the modes in the HCPEP and Cobre
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75. Acebrón JA, Bonilla LL, Pérez Vicente CJ, Ritort F, Spigler R. The Kuramoto model: A simple para-

digm for synchronization phenomena. Rev Mod Phys. 2005 Apr 7; 77(1):137–85.

76. Fuchs A, Kelso JAS, Haken H. Phase transitions in the human brain: spatial mode dynamics. Int J

Bifurc Chaos. 1992 Dec 1; 02(04):917–39.

77. Kelso JAS. An Essay on Understanding the Mind. Ecol Psychol Publ Int Soc Ecol Psychol. 2008 Apr 1;

20(2):180–208. https://doi.org/10.1080/10407410801949297 PMID: 19865611
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