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Abstract

Background: We aim to develop an explainable deep learning (DL) network for the prediction 

of all-cause mortality (ACM) directly from positron emission tomography (PET) myocardial 

perfusion imaging (MPI) flow and perfusion polar map data and evaluate it using prospective 

testing.

Methods: A total of 4,735 consecutive patients referred for stress and rest 82Rb PET between 

2010–2018 were followed-up for ACM for 4.15 [2.24–6.3] years. DL network utilized polar maps 

of stress and rest perfusion, myocardial blood flow, myocardial flow reserve (MFR), and spill-over 

fraction combined with cardiac volumes, singular indices, and sex. Patients scanned from 2010–

2016 were used for training and validation. The network was tested in a set of 1,135 patients 

scanned from 2017–2018 to simulate prospective clinical implementation.

Results: In prospective testing, the area under the receiver operating characteristic curve for 

ACM prediction by DL (0.82[95% CI: 0.77–0.86]) was higher than ischemia (0.60[95% CI: 0.54–

0.66], p<0.001), MFR (0.70[95% CI: 0.64–0.76], p<0.001) or a comprehensive logistic regression 

model (0.75[95% CI: 0.69–0.80], p < 0.05). The highest quartile of patients by DL had an annual 

ACM rate of 11.87% and had a 16.8[95% CI: 6.12–46.3%, p<0.001]-fold increase in the risk 

of death compared to the lowest quartile patients. DL showed a 21.6% overall reclassification 

improvement as compared to established measures of ischemia.
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Conclusion: The DL model trained directly on polar maps allows improved patient risk 

stratification in comparison to established methods for PET flow or perfusion assessments.

Keywords

Artificial intelligence; all-cause mortality; deep learning; myocardial flow reserve; positron 
emission tomography; risk stratification

INTRODUCTION

Positron emission tomography (PET) myocardial perfusion imaging (MPI) provides 

a non-invasive assessment of myocardial blood flow (MBF) in addition to regional 

myocardial perfusion and left ventricular (LV) function1, 2. PET quantification of MBF 

and myocardial flow reserve (MFR) allows robust diagnosis of obstructive coronary artery 

disease (CAD)3 and serves as a powerful risk stratification tool to guide management of 

patients with suspected or known atherosclerotic coronary artery disease4, 5, 6, 7, 8, 9. This 

noninvasive quantitative assessment of coronary vasodilator function provides incremental 

risk stratification over the combination of comprehensive clinical assessment, LV systolic 

function, and semiquantitative measures of myocardial ischemia and scar for identification 

of patients at risk of cardiac mortality4. However, it is challenging to optimally integrate 

the multiparametric imaging information derived from cardiac PET images (i.e., regional 

perfusion, MBF, and function data) for risk assessment at the point of care.

The recent introduction of highly efficient, image-based artificial intelligence (AI) methods 

is revolutionizing medical image processing10. AI has been used to improve risk 

stratification11, 12 and deep learning has been used to provide automated predictions for 

presence of obstructive CAD13. These advances enable automatic image analysis and 

integration of rich multidimensional PET datasets for enhanced risk stratification. In this 

study, we developed a novel explainable deep-learning (DL) network for the prediction 

of all-cause mortality (ACM) directly from quantitative MBF, myocardial perfusion, and 

function PET imaging data and tested it in a prospective regimen.

METHODS

Study Population

To the extent allowed by data sharing agreements and institutional review boards (IRB) 

protocols, the data and code from this manuscript will be shared upon written request. 

We included 4,761 consecutive patients referred for rest/pharmacologic stress MPI with 
82Rubidium (82Rb) PET on clinical grounds at Cedars-Sinai Medical Center from 2010–

2018. 26 patients were excluded due to errors in acquisition or corruption of data. For 

patients with multiple studies during the study period, only the first exam was considered. 

Studies collected between 2010–2016 were used for training and model optimization. 

Studies between 2017–2018 were held out for prospective testing. In this set, we excluded 

patients who underwent early revascularization (percutaneous coronary intervention or 

coronary artery bypass surgery) within 90-days from the index PET scan. Clinical and 

demographic data were prospectively collected on the day of the PET scan. The first author 
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had full access to all the data in the study and takes responsibility for its integrity and data 

analysis. IRB approval was obtained and the study complies with the Declaration of Helsinki 

and was approved by the institutional review board at Cedars-Sinai Medical Center.

Image Acquisition

All patients underwent same-day rest-stress gated 82Rb PET MPI on a hybrid Biograph 64 

(n=4,729, Siemens Healthcare, Erlangen, Germany) PET/CT scanner or GE Discovery 710 

(n=6, GE Healthcare, Wakesha, Wisconsin) scanner. A 6-minute rest list-mode acquisition 

was started immediately before the injection of weight-based 925–1,850 MBq (25–50 mCi) 

of 82Rb for each rest and stress study. The estimated total radiation dose to the patient 

of 82Rb for the entire rest/stress study was 1.5–3 mSv. Pharmacologic stress was then 

performed using intravenous regadenoson (n = 4,298), adenosine (n = 423), dobutamine 

(n = 9) or dipyridamole (n = 5). A 6-minute stress list-mode acquisition was started 

concurrently with the 82Rb injection. Adenosine infusion lasted 7-minutes with 82Rb 

injected at 1.5-minutes into the adenosine administration with concurrent initiation of the 

dynamic acquisition. A low-dose helical CT was acquired prior to the PET acquisition for 

attenuation correction.

Semiquantitative Assessment of Regional Myocardial Perfusion

Semiquantitative expert interpretation was performed during clinical reporting, in 

accordance with societal guidelines, by experienced board-certified nuclear cardiologists 

with knowledge of all available data including stress and rest perfusion, gated functional 

data, and clinical information14. The regional myocardium perfusion assessment was 

performed according to a five-point scale (0=normal to 4=absence of detectable tracer 

uptake) and 17-segment model14. Segmental scoring was guided by quantitative analysis 

(QPET, Cedars-Sinai, Los Angeles, CA) and with knowledge of clinical information. 

Summed stress, rest and difference myocardial perfusion scores (SSS, SRS and SDS) were 

generated. Perfusion stress and rest defect were defined as SSS and SRS respectively. SDS 

reflecting ischemic burden was calculated as the difference between the summed stress and 

rest scores. SDS was converted to percent myocardium ischemic by dividing summed scores 

by 68 for studies and multiplying by 10015. Moderate-to-severe ischemia was defined as 

≥10% of the left ventricular myocardium16.

Automated Image Segmentation

LV contours were positioned automatically as previously described17. For MBF and 

perfusion analyses, LV contours were determined from the attenuation-corrected high-

resolution summed dynamic image data, skipping first 2-minutes for improved valve-plane 

definition.

Myocardial blood flow quantification

Quality control was performed by a trained technician at the time of image acquisition. 

Rest/stress MBF and MFR calculated with a 1-tissue compartment kinetic model were 

obtained with clinical software (QPET, Cedars-Sinai, Los Angeles, California)17, 18. MBF 

and spillover fraction from blood to myocardium were computed by numeric optimization. 
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Stress and rest flow values in mL/g/min were computed for each sample on the polar map. 

MFR was computed as the ratio of stress over MBF.

Deep learning input data and architecture

The overview of the DL approach is shown in the Figure 1. DL was trained using the stress 

and rest polar maps of myocardial perfusion, MBF, MFR and spill-over fraction(SOF) polar 

maps obtained from QPET, combined with the following imaging numerical variables: sex, 

shape indexes19, and LV end-systolic and diastolic volumes. Sex was extracted automatically 

from digital imaging and communications in medicine (DICOM) image headers. Cardiac 

volumes and shape indexes were quantified automatically from stress end-systolic and 

diastolic images. Shape index was defined as the ratio of the maximum 3D short- and 

long- axis dimensions of the left ventricle19. The DL network consisted of convolutional 

layers followed by a flattening and fully-connected layers. Polar images were input to 

the convolutional layers which extracts latent spatial information from neighboring pixels 

in adjacent layers. The normalized numerical imaging variables were concatenated to 

the first fully connected layer. Extraction of information from the image header and 

image quantification can be incorporated into the DL pipeline to ensure fully-automated 

predictions as demonstrated in our previous work13. The output of the DL network was 

the prediction of ACM following sigmoid activation expressed as annualized mortality 

risk. Additional details of the model architecture are shown in Supplemental Figure 1. To 

elucidate the potential added value of flow for ACM prediction, another DL model including 

only perfusion images was trained and evaluated. DL was developed using Python 3.7.3 and 

PyTorch 1.4.0. Multivariate logistic regression analysis was performed for comparison to the 

DL model, which included age, sex, MFR, stress and rest TPD, MBF, SOF, cardiac volumes 

and shape indexes.

Individual attention maps and polar map rankings

We incorporated attention maps in the architecture using gradient-weighted class activation 

mapping (Grad-CAM)20. The algorithm uses the gradients of a prediction flowing into the 

final convolutional layer to produce an attention map highlighting regions of importance to 

the network for a prediction. To determine the importance of input polar maps, SHapley 

Additive exPlanations21 values per image input were obtained, which assigns each feature 

an importance value for a particular prediction. These values were converted to percentage 

contribution per image input using Grad-CAM attention. The output attenion maps and polar 

map rankings facilitate the explainability of DL predictions for an individual patient.

Clinical follow-up

The cohort was followed for early revascularization and ACM. Follow-up for ACM was 

obtained using internal hospital records, Social Security Death Index (SSDI), National 

Death Index (NDI), and California Non-comprehensive Death information until December, 

2020. Information regarding early revascularization were collected from hospital records and 

adjudicated by site physicians, according to standard criteria22.
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Internal model testing

Image datasets of 3,521 patients scanned between 2010–2016, were randomly divided 

into 10 distinct folds, using a 90% -training and 10% -testing stratified split to perform 

10-fold internal repeated testing (Supplemental Figure 2), similar to our previous work13. 

This method of testing conservatively maximizes data available for training while ensuring 

evaluation of the entire dataset and maintaining an equal proportion of ACM cases in each 

set. Further details are provided in the supplement. To elucidate the potential added value 

of age for ACM prediction, another DL model including age was trained and evaluated. 

The logistic regression model was developed using the same set of patients used for internal 

repeated testing.

Prospective Testing

To evaluate the performance of DL applied to new real world data, we used a cohort of 

patients scanned between 2017–2018 as a prospective testing set. The logistic regression 

model was tested in the same dataset.

Thresholds for comparisons of DL

Patients were divided into corresponding low-/high-risk DL subgroups by idenitifying 

thresholds, set to match the same proportion of patients as the established respective clinical 

thresholds for ischemia (≥10%)23, 24 and MFR (≥1.8)25.

Statistical Analysis

Categorical variables are presented as frequencies (percentages) and continuous variables 

as medians (interquartile range). Variables were compared using a Pearson χ2 statistic 

for categorical variables and a Wilcoxon rank-sum or Kruskal-Wallis test for continuous 

variables. We assessed the distribution of data with the Shapiro-Wilk test. Prediction 

of ACM by ischemia, MFR, and DL were evaluated using the analysis and pairwise 

comparisons of the areas under the receiver operating characteristic curve (AUC) according 

to DeLong et al.26. The results of ACM prediction by DL were visualized with 

Kaplan-Meier survival curves. Risk discrimination was assessed by time-dependent net 

reclassification improvement (NRI) at 2-years as described by Pencina et al.27. Confidence 

intervals were calculated using bootstrapping. Additionally, comparisons of mortality rate 

between groups of low- and high-risk DL, MFR and ischemia were performed using the 

“partiallyoverlapping” package of R (version 2.0).

A two-tailed p-value <0.05 was considered statistically significant. All analyses including 

survival were performed using “nricens” package (version 1.6) and “survival” package 

(version 3.2–13) in R (version 4.0.3, R Foundation, Vienna, Austria) within R studio version 

1.4.1717 (RStudio, Boston, MA).

RESULTS

Patient Characteristics

Patient characteristics are shown in Table 1. Women represented about 40% of the cohort. 

Cardiovascular risk factors were prevalent in both groups including diabetes (35% and 32%), 
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hypertension (79% and 77%) and dyslipidemia (66% and 72%). About a quarter of the 

patients had a history of prior CAD. Total of 4,723 consecutive patients referred for rest and 

stress 82Rb PET between 2010–2018 were followed for ACM for a median of 4.1 [IQR: 2.2–

6.3] years. Of these, 3,521 patients (792 deaths, years 2010–2016) were used for training 

and optimization of the algorithm. After excluding early revascularization, the prospective 

testing set consisted of 1,135 patients (85 deaths, years 2017–2018).

Predictive Performance

In the prospective testing set, we compared the performance of DL with traditional clinical 

measures and a comprehensive logistic regression model. ACM prediction by DL (0.82[95% 

CI: 0.77–0.86]) was higher than the ischemia, derived from SDS (0.60[95% CI: 0.54–0.66], 

p<0.001), MFR (0.70[95% CI: 0.64–0.76], p<0.001) or logistic regression (0.75[95% CI: 

0.69–0.80], p<0.05) (Figure 2). Adding age to the pure image driven DL model did not 

significantly improve the prediction of ACM (0.83[95% CI: 0.79–0.87]). We have also 

performed separate analyses within predefined subpopulations. These include patients with 

and without perfusion abnormalities (SSS=0 versus SSS>1), as well as a gender specific 

analysis (Figure 3). Across these populations the DL model maintained the high diagnostic 

performance (all AUC >0.77). A separate DL model trained with only perfusion images 

had an inferior predictive performance (0.76[95% CI: 0.71–0.81], p<0.001) compared to the 

comprehensive DL model which included flow images.

Survival Analysis

Kaplan-Meier curves for patients with low and high DL scores matched with ischemia 

thresholds (<10% and ≥10%) (corresponding DL threshold:0.645), are shown in Figure 

4. Deep learning led to improved risk reclassification of patients who experienced ACM 

(20%[95% CI: 34.7–6.7%, p<0.01]) and patients who did not experience ACM (1.6%[95% 

CI: 3.6 – −0.3%, p=0.06]), with an overall net reclassification improvement of 21.6%[95% 

CI: 36.7–8.2%, p<0.01]. The risk associated with high DL risk (14.3 events/ 100 patient 

years) which was present in 102 patients was similar to the risk associated with having 

>23% myocardial ischemia (13.5 events/ 100 patient years) which was present in 9 patients. 

Kaplan-Meier curves for patients with low and high DL scores matched with low and high 

MFR (≥1.8 and <1.8) (corresponding DL threshold was 0.531), are shown in Figure 5. 

Here again, DL led to improved risk reclassification of patients who experienced ACM 

(22.4%[95% CI: 38.9–7.2%, p<0.01]) and patients who did not experience ACM (1.8%[95% 

CI: 4.2 – −0.6%, p = 0.07]), with overall net reclassification improvement of 24.2%[95% 

CI: 38.9–8.2%, p=0.036]. Additionally, annualized mortality for the low- and high-score 

groups based on DL and ischemia and DL and MFR are shown in Supplemental Figure 

3. The highest quartile of patients by DL had an annual ACM rate of 11.87% and had a 

16.8-fold [95% CI: 6.12–46.3%, p<0.001] increase in the risk of death, compared to the 

lowest quartile patients which had an annual ACM rate of 0.7% (Supplemental Figure 4). 

The highest quartile of patients by MFR had a 4.5-fold [95% CI: 2.35–8.7%, p<0.001] and 

by Ischemia had a 2.77-fold [95% CI: 1.5–5.11%, p<0.001] compared to the respective 

lowest quartile patients.
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Individualized risk inference by the algorithm

Results were generated in approximately 1-second per-patient during testing. All results 

were generated in batch mode. For each patient, DL highlighted regions associated 

with ACM risk directly on PET polar maps using Grad-CAM, along with a continuous 

probability of ACM risk and patient specific contribution of each polar map to the outcome 

prediction. In the overall prospective testing population, MFR map was most commonly the 

highest contributing polar map, towards risk prediction by DL (Table 2). Case example is 

shown in Supplemental Figure 5 with individual risk prediction, attention map and polar 

maps ranked by importance in contribution towards risk.

DISCUSSION

We demonstrated that an explainable DL model, combining multiparametric PET imaging 

data, has superior accuracy for mortality prediction compared to established measures of 

myocardial perfusion or flow. The model attained high accuracy in prospective testing on a 

separate dataset by objectively integrating absolute flow data and relative perfusion maps, 

along with other imaging parameters, a task which is challenging to accomplish at the 

point of care. Importantly, our DL model was derived directly from polar maps, without 

the need for derivation and selection of multiple quantitative measurements and without the 

need for using normal limits. DL also incorporates methods to introduce “explainability” 

in prognostic predictions by highlighting regions contributing to DL score on polar maps 

and ranking the relative contribution from different inputs for a specific patient. This would 

allow physicians to understand and improve confidence in the DL results, which may 

potentially help to overcome the perception of AI as a “black box”.

PET MPI provides robust risk stratification by assessing both relative and absolute 

myocardial perfusion. In our study, DL demonstrated improved risk stratification compared 

to either imaging marker alone or a comprehensive logistic regression model. Our approach 

showed a 16.8-fold increased rate of death in patients in the highest quartile compared to 

the lowest quartile of DL risk. Compared to standard measurements of ischemia burden, 

the model tested in a separate sample improved overall patient risk reclassification by 

over 21.6%. Likewise, the DL model led to a 24.2% risk re-reclassification over MFR 

measurements. While risk estimation by DL is beneficial to patients in both low- and high-

risk groups of ischemia and MFR, it is better suited for identification of high-risk patients. 

Importantly, as seen in Figure 3, our approach maintained high predictive performance for 

PET MPI scans with visually normal perfusion, and performed equally well for men and 

women. Overall, these results suggest that a DL model incorporating regional perfusion, 

flow and other imaging characteristics has the potential to significantly improve risk 

stratification and enable dissemination of advanced PET MPI analysis outside experienced 

centers.

The complex interplay of various perfusion, flow and functional imaging estimates from 

PET has been extensively studied, but the optimal method for integrating multiple measures 

remains elusive. Ziadi et al. demonstrated that MFR provides independent and incremental 

prediction for major adverse cardiac events when combined with visually assessed regional 

perfusion6. Similarly, Murthy et al. found improved classification of the risk of cardiac death 
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by incorporating MFR and ischemia2. Gould et al. established that coronary flow capacity, 

which integrates regional stress flow and MFR into one variable, can identify patients at 

high risk of cardiovascular events28 and also proposed the use of longitudinal flow and 

the base to apex perfusion gradient29 in addition to global flow measures. Gupta et al. 

demonstrated that integrating MFR and maximal MBF with customized thresholds could 

aid in stratifying cardiovascular mortality30. Importantly, the above studies did not separate 

data for model development and testing; therefore, the benefit of these parameters may be 

overestimated. In contrast, we employed rigorous temporal data separation for development 

and evaluation. In our approach, by supplying perfusion, flow, and flow reserve polar 

images directly to the DL model, we leverage the totality of imaging data Incorporating 

numerical image derived data such as sex in the DL model, adds information missing from 

polar map data, improving the reliability of the predictions. Similar approaches have been 

applied to integrate body mass index and sex into DL models13, 31.This approach allows 

the DL model to implicitly account for complex interactions between flow, perfusion, and 

function, without the need to derive or establish custom image parameters. Additionally, DL 

is inherently capable of handling non-linear associations between variables and outcomes 

which may be particularly relevant to 82Rb MBF measurements given its low extraction 

fraction. In our study, the MFR polar maps and stress perfusion were the most important 

contributors to predictions on a population level. However, on a per-patient basis, the 

importance of DL inputs can vary, suggesting that objective methods to integrate all 

parameters are critical when predicting patient-specific risk.

This DL model was developed to predict risk of ACM and indicate which imaging 

feature is driving the prediction, which we speculate might be important to guide 

management decisions. While several observational studies have suggested that ischemia, 

assessed by regional myocardial perfusion, may identify patients who benefit from 

revascularization16, 25, 32, this was not the case in the ISCHEMIA trial33. However, 

other parameters provided by PET may help with prediction of revascularization benefit. 

For instance, Taqueti et al. have previously shown that global MFR modified the 

effect of revascularization, such that only patients with low MFR appeared to benefit 

from revascularization7. In a large cohort, Patel et al. reported potential benefit from 

revascularization in patients with MFR<1.85. Likewise, observational studies have shown 

that measures of coronary flow capacity identified patients with reduced mortality after 

revascularization28. A DL approach, similar to the one presented here, could potentially 

be used to integrate all available PET imaging data to optimally select patients who might 

benefit from revascularization.

AI has the potential to address the lack of integrative tools for flow, perfusion and functional 

PET imaging data, but for integration into clinical practice, predictions need to be explained 

to physicians to enable clinical oversight, ensure the validity of the inference, and provide 

a framework for management decisions. By identifying areas of polar maps contributing 

to risk predictions and ranking the polar maps according to their contribution to prediction 

of outcomes, our DL model may allow physicians to better understand the key drivers 

of the individual risk. This may also allow physicians to identify potential errors in risk 

predictions by DL or areas that require additional scrutiny on the clinical interpretation. By 

informing the clinician which unique prognostic imaging markers are driving the overall 
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risk score for a given patient (flow reserve, flow, or perfusion), the proposed tool could 

potentially aid clinical decision making including individualized allocation to therapy. 

Previously such considerations were addressed by establishing high-risk thresholds and 

considering a limited number of variables. This multiparametric independent data then had 

to be weighed during interpretation by the reading physician for establishing the diagnosis 

and recommendation28, 30. The proposed explainable AI approach has the potential to 

inform and aid the physician in a quantitative and objective fashion.

STUDY LIMITATIONS

Our study has limitations. It is a post-hoc analysis of single-center data. Thus, we were not 

able to perform external testing of the developed model, but instead conducted prospective 

testing. Our finding requires confirmation in larger, external datasets. The model was 

developed and tested for 82Rb perfusion data only studies; the generalizability of our 

findings to other PET MPI tracers remains to be evaluated. Additionally, we included 

patients who received a variety of pharmacologic stress agents without correction for 

differences in change in peak blood flow. While a more homogenous population may 

improve prediction performance, this suggests the model is broadly generalizable. We used 

all-cause death and not cardiac mortality as the end point; however, identifying underlying 

cause of death is often of limited reliability34 and would result in fewer events. We excluded 

patients who underwent early revascularization, since revascularization can alter myocardial 

perfusion patterns and the subsequent association with cardiac outcomes. Since myocardial 

perfusion is a major driver of decision to pursue revascularization, including these patients 

would likely bias the results towards improved risk stratification by DL. Future studies 

should also aim to evaluate whether inclusion of clinical, biomarker and multimodality 

imaging data could further enhance risk stratification.

CONCLUSIONS

The study demonstrated that a deep learning model trained directly with quantitative 

myocardial blood flow and conventional perfusion polar map image, derived from PET 

images, improved risk stratification and reclassification compared to conventional prognostic 

approaches. We also showed that it is possible to highlight specific polar map image regions 

associated with increased clinical risk and rank polar maps according to their prognostic 

importance for the specific patient. This provides an explanation of the patient-specific risk 

estimation at the point of care and may help with translation of AI tools into practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-standard Abbreviations and Acronyms

ACM all-cause mortality

AI artificial intelligence

DL deep learning

MBF myocardial blood flow

MFR myocardial flow reserve

MPI myocardial perfusion imaging

PET positron emission tomography
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CLINICAL PERSPECTIVE:

Explainable AI could be incorporated during routine clinical care, automatically 

providing mortality risk predictions and explaining them with attention maps and patient 

specific contribution of each input polar map. Future prospective studies may assess 

if explainable AI leads to improvement in clinical interpretation, and subsequently 

improves patient management and clinical outcomes.
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Figure 1: Deep learning for mortality prediction from PET MPI
The stress and rest raw perfusion and flow polar maps derived from the MPI slices and 

flow images, were input to the DL. Shape indices, cardiac volumes and sex were added 

as well. The population was divided into training and testing set based on year of scan. 

The patient specific outputs of the network are the annualized mortality risk and attention 

map with polar map rankings. Compared to the widely used 10% ischemia threshold, DL 

was matched by proportion and outperformed ischemia assessments shown by Kaplan-Meier 

survival graphs.

DL: deep learning, MPI: myocardial perfusion imaging, PET: positron emission tomography
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Figure 2: Per-patient AUC (left) and bar plot with AUC values (right) for the prediction of ACM 
in the prospective testing set by DL, MFR and ischemia
Prediction by DL had a significantly larger area under receiver-operating characteristic 

curve than measures of percent myocardial ischemia, MFR and logistic regression in the 

prospective testing set.

AUC: area under curve, DL: deep learning, MFR: myocardial flow reserve
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Figure 3: Predictive performance of DL for prediction of ACM in different subgroups
Prediction by DL was similar for patients with normal SSS (= 0) and abnormal SSS 

(left). The prediction of ACM for females and males was similar as well (right) ensuring 

generalizability.

DL: deep learning, SSS: summed stress score, ACM: all-cause mortality, AUC: area under 

curve
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Figure 4: Kaplan-Meier Survival estimates in the prospective testing set for high (red) and low 
(blue) ischemia matched to DL
Compared to the widely used 10% ischemia threshold, DL was matched by proportion and 

outperformed ischemia assessments.

ACM: all-cause mortality, DL: deep learning, NRI: net reclassification improvement
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Figure 5: Kaplan-Meier Survival estimates in the prospective testing set for low (red) and high 
(blue) MFR matched to DL
Compared to the MFR threshold of 1.8, DL was matched by proportion and outperformed 

MFR assessments.

ACM: all-cause mortality, DL: deep learning, NRI: net reclassification improvement, MFR: 

myocardial flow reserve
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Table 1:

Patient Characteristics of the training and prospective testing datasets

Characteristic Training dataset,
N = 3,521

Prospective
testing dataset,

n = 1,135
p-values

Age (years) 71 [64 – 79] 71 [65 – 78] 0.908

Females, n(%) 1,443 (41) 473 (42) 0.681

BMI (kg/m2) 27 [24 – 31] 27 [24 – 32] 0.511

Hypertension, n(%) 2,765 (79) 869 (77) 0.164

Diabetes mellitus, n(%) 1,215 (35) 364 (32) 0.132

Smoking, n(%) 250 (7) 98 (9) 0.087

Family history of CAD, n(%) 493 (14) 254 (22) <0.001

Prior PCI, n(%) 851 (24) 270 (24) 0.9

Dyslipidemia, n(%) 2,335 (66) 813 (72) <0.001

Chest pain, n(%) 1,892 (54) 586 (52) 0.216

Dyspnea, n(%) 1,047 (30) 420 (37) <0.001

Both chest pain and dyspnea, n(%) 521 (15) 231 (20) <0.001

Statins, n(%) 2,140 (61) 712 (63) 0.24

Beta-blockers, n(%) 1,771 (50) 507 (45) <0.001

Stress-induced equivocal ECG changes, n(%) 132 (4) 74 (7) <0.001

Stress-induced ischemic ECG changes, n(%) 102 (3) 33 (3) 0.985

Stress MBF, ml/g/min 2.5 [1.9–3.2] 2.6 [1.9–3.2] 0.118

Rest MBF, ml/g/min 1.1 [0.9–1.4] 1.1 [0.8–1.3] <0.001

MFR 2.3 [1.7–2.9] 2.5 [1.9–3.1] <0.001

Ischemia >10%, n(%) 403 (11.4) 102 (9) 0.021

Stress EF (%) 68.5 [56.6–76.1] 69.2 [59.6–76.8] 0.009

Rest EF (%) 64.7 [53.5–72.2] 65.9 [56.1–72.9] 0.008

Stress ED shape index 0.7 [0.6–0.7] 0.7 [0.6–0.7] 0.099

Annualized event rate 6% 3.7% <0.001

Categorical value is expressed as n(%). Continuous values are expressed as median[interquartile range]. Variables were compared using a Pearson 

χ2 statistic for categorical variables and Kruskal-Wallis test for continuous variables.

BMI: body mass index, CAD: coronary artery disease, ECG: electrocardiogram, ED: end diastolic, EF: ejection fraction, IQR: interquartile range, 
MBF: myocardial blood flow, MFR: myocardial flow reserve, PCTA: Percutaneous transluminal coronary angioplasty
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Table 2:

Percentage of highest contributing polar maps ranking for individual predictions among subsets of testing 

population

Population╲ Polar maps MFR Stress Perfusion Stress Flow Rest Perfusion

Prospective testing, n=1,135 73% 18% 7% 4%

Prior CAD,
n=360

82% 10% 6% 1%

No prior CAD,
n=775

73% 18% 6% 3%

Men,
n=662

75% 15% 5% 3%

Women,
n=473

70% 23% 5% 3%

Indicates percentage of patients with specific polar maps ranked highest (top 4 rankings) for individual prediction for prospective testing and, 
population with and without prior CAD, men and women.

CAD: coronary artery disease, MFR: myocardial flow reserve
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