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Osteoporosis is a signifcant global health concern that can be difcult to detect early due to a lack of symptoms. At present, the
examination of osteoporosis depends mainly on methods containing dual-energyX-ray, quantitative CT, etc., which are high costs
in terms of equipment and human time. Terefore, a more efcient and economical method is urgently needed for diagnosing
osteoporosis. With the development of deep learning, automatic diagnosis models for various diseases have been proposed.
However, the establishment of these models generally requires images with only lesion areas, and annotating the lesion areas is
time-consuming. To address this challenge, we propose a joint learning framework for osteoporosis diagnosis that combines
localization, segmentation, and classifcation to enhance diagnostic accuracy. Our method includes a boundary heat map re-
gression branch for thinning segmentation and a gated convolution module for adjusting context features in the classifcation
module. We also integrate segmentation and classifcation features and propose a feature fusion module to adjust the weight of
diferent levels of vertebrae. We trained our model on a self-built dataset and achieved an overall accuracy rate of 93.3% for the
three label categories (normal, osteopenia, and osteoporosis) in the testing datasets. Te area under the curve for the normal
category is 0.973; for the osteopenia category, it is 0.965; and for the osteoporosis category, it is 0.985. Our method provides
a promising alternative for the diagnosis of osteoporosis at present.

1. Introduction

Osteoporosis (OP) is a disease characterized by impaired
bone microstructure and decreased bone mineral density
(BMD). With the acceleration of population aging, OP has
become an increasingly serious global health problem [1].
Fragile fracture is the most serious complication of OP [2].
OP causes more than 8.9 million brittle fractures each year
worldwide [3]. In the US, fragile fractures are more than four
times more common than stroke, acute myocardial in-
farction, and breast cancer [4]. In several developed coun-
tries, osteoporotic fractures account for longer

hospitalization time than these diseases according to
a meeting of the World Health Organization [5]. By 2025,
the number of fragility fractures is expected to increase from
3.5 million in 2010 to 4.5 million, a 28% increase [6].
Terefore, reliable technology for the early detection and
prevention of OP is urgently needed.

Currently, although dual-energyX-ray absorptiometry
(DXA) is the gold standard for measuring bone mineral
density for the diagnosis of OP, it is not widely used as
a screening tool for OP owing to its high cost and limited
availability of equipment [7]. To overcome these limitations,
a variety of osteoporosis screening tools have emerged.
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Quantitative ultrasound (QUS) is one of them, which has
developed into an alternative method for DXA screening of
osteoporosis. Its benefts include being portable and eco-
nomical; however, it may be unavailable in all primary
medical settings [8]. In addition, a variety of clinical risk
assessment tools have been developed to predict osteopo-
rosis, including the fracture risk assessment tool (FRAX), the
QFracture algorithm, the Garvan Fracture Risk Calculator,
and the osteoporosis self-assessment tool [9]. Unfortunately,
these tools are based on a combination of known risks to
calculate the risk of fracture in patients and have poor
efciency.

Artifcial intelligence and machine learning algorithms
have recently been used in the diagnosis and prediction of
osteoporosis [10]. Te existing methods have achieved some
success in solving the problem of binary classifcation (os-
teoporosis and nonosteoporosis) of which the main purpose
is to identify whether the patient has osteoporosis [11].
However, these methods also have some obvious short-
comings: (1) the existing artifcial intelligence algorithms
treat segmentation and classifcation as two separate tasks,
ignoring the information fusion and complementarity be-
tween the two tasks; (2) taking the average of two lumbar
cancellous bone mineral density measurements (commonly
the frst and second lumbar) is widely acknowledged as the
best diagnostic criterion for osteoporosis in lumbar QCT
[12]. In current models, these data inputs tend to be CT
images of a single vertebral body, disregarding the in-
formation fusion and complementarity between multiple
vertebral images; (3) the problem of class imbalance in the
collected data is prevalent due to the lack of standard public
datasets; (4) most methods treat osteoporosis as a binary
problem, regardless of the urgent need and a strong incentive
to turn the binary into a trinomial (osteoporosis, osteopenia,
and normal) problem. Although the three classifcations are
more difcult, osteopenia can bring some predictability to
the prevention and treatment of osteoporosis. In this paper,
we address the challenges above in the diagnosis of osteo-
porosis to facilitate the timely detection of the condition and
propose an instance-based and class-based multilevel joint
learning framework for bone state classifcation. Te in-
novation of this method lies in the following steps. Firstly, we
locate a vertebral body and remove redundant information
from the image. Secondly, by constructing the boundary heat
map regression auxiliary branch, the vertebral edge is refned,
and the segmentation performance is improved on the
segmentation branch of the shared encoder. In addition, low-
level and high-level features from the segmentation branch
and the auxiliary branch, including the shape and boundary
of the vertebral body, are fused with feature layers from the
diagnostic classifer. Finally, considering the diferent efects
of diferent vertebral bodies on the classifcation results of
bone state, we design a feature fusion module to adaptively
learn feature fusion weights. Te proposed method is novel
because it solves the challenges of high dimensionality,
multimodality, and multiclassifcation associated with oste-
oporosis diagnosis, and these challenges have not been re-
solved in earlier methods. Te contributions of the research
are as follows:

(i) A joint learning framework is proposed to segment
vertebral bodies from CT images and classify bone
states (normal, osteopenia, and osteoporosis)

(ii) An instance-based and class-based data sampling
balancing strategy is introduced to solve the
problem of poor model prediction caused by im-
balanced data between training datasets

(iii) A boundary heat map regression branch is pro-
posed, which uses the Gaussian function to do “soft
labeling,” accelerating network convergence and
improving the performance of vertebral segmen-
tation in joint learning and single-task learning
environments

(iv) Te efectiveness of segmentation features in
guiding a deep classifcation network is verifed by
hierarchically fusing the features of the decoder and
classifer related to two segmentation tasks

(v) A feature fusion module is proposed to adaptively
learn the feature weights of vertebrae 1 and 2 and
balance the infuence of two vertebrae images on
classifcation results

To our knowledge, there are many studies [13–16] on the
classifcation of bone status using vertebral images, but there
are few studies on multitask joint learning and detection of
bone status based on soft tissue window images at the central
level of lumbar 1 and lumbar 2 vertebrae. Experimental
results show that multitask joint learning can improve the
accuracy of disease classifcation.

2. Related Works

In this section, we briefy review the related research on bone
state classifcation, categorizing them into three subareas to
introduce the current research on the bone state in the
medical image, i.e., vertebral positioning, vertebral CT image
segmentation, and vertebral medical CT image classifcation.

2.1. Vertebral Positioning. With the development of deep
learning, convolutional neural networks are increasingly
used for positioning tasks. However, most of these works
describe vertebral recognition as a centroid point detection
task. Chen et al. used the advanced features of convolutional
neural networks to represent vertebrae from 3D CT volume
and eliminated the detection of misplaced centroids based
on a random forest classifer [17]. Dong et al. iterated the
centroid probability map of a convolutional neural network
using a message-passing scheme according to the re-
lationship between the centroids of the vertebrae and used
sparse regularization to optimize the localization results to
obtain a pixel-level probability of each vertebral centroid
[18]. However, it may be more meaningful to directly
identify the labels and bounding boxes of vertebrae (rather
than the probability map of the centroid point). Zhao et al.
proposed a category-consistentself-calibration recognition
system to accurately predict the bounding boxes of all
vertebrae, improving the discrimination ability of vertebrae
categories and the self-awareness of false positive detection
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[19]. All of these methods identify the vertebrae from the
coronal plane, whereas what we want is to get a small image
from the transverse view that only contains the vertebrae.

2.2. Vertebral Segmentation. Recently, machine learning is
increasingly used in the recognition and segmentation of
vertebral bodies. Michael Kelm et al. used iterative variants
of edge-space learning to fnd the bounding boxes of in-
tervertebral discs and utilized Markov-based random felds
and graphical cutting to initialize and guide the segmen-
tation of the vertebrae [20]. Zukić et al. employed the
AdaBoost-based Viola–Jones object detection framework to
fnd the bounding boxes of the vertebrae and then split them
by expanding the mesh from the center of each vertebra [21].
Chu et al. applied random forest regression to detect the
vertebral center and used these to defne target regions for
the segmentation of the vertebrae with random forest voxel
classifcation [22]. Although these methods can fnd certain
vertebral bodies with specifc appearances, they still need to
set some parameters empirically and fail to deal with
complex pathological cases. However, many recent seg-
mentation methods are based on deep learning, using
convolutional neural networks instead of the traditional
explicit modeling of spine shape and appearance. For ex-
ample, Sekuboyina et al. used a multiclass convolutional
neural network for pixel labeling, segmented the lumbar
spine on a 2D facet slice, and estimated the bounding boxes
of the waist region using a simple multilayer perceptron to
identify regions of interest in the graph [23]. Janssens et al.
depended on two continuous networks to realize this task.
First, they used a regression convolutional neural network to
estimate the bounding box of the lumbar region and then
used a classifcation convolutional neural network to per-
form voxel labeling in the bounding box to segment the
vertebral body [24]. Mushtaq et al. used ResNet-UNet to
semantically segment the lost vertebral body, achieving 0.97
DSC and 0.86 IOU [25].

2.3. Vertebral Medical Image Classifcation. In the study of
establishing the osteoporosis model, Yoo et al. established
a support vector machine model using age, height, weight,
body mass index, hypertension, hyperlipidemia, and other
factors to identify osteoporosis in postmenopausal women.
Compared with traditional osteoporosis self-assessment
tools, they found that the support vector machine model
is more accurate [26]. Pedrassani de Lira et al. established
a J48 decision number model to identify osteoporosis
through multiple indicators such as age, previous fracture,
number of previous fractures, and previous spinal fractures
[27]. Tafraouti et al. extracted features from X-ray images
and used a support vector machine model to identify os-
teoporosis, which can well distinguish osteoporosis patients
from normal people [28]. Kilic and Hosgormez studied the
identifcation of osteoporosis based on a random subspace
method and random forest ensemble model. Jang et al. used
a deep learning method to identify osteoporosis [29]. In the
internal and external test sets, the area under curve (AUC) of
osteoporosis screening was 0.91 (95% confdence interval

(CI), 0.90–0.92) and 0.88 (95% confdence interval (CI),
0.85–0.90), respectively. Te experimental results illustrate
that the use of chest radiographs based on deep learning
models may be used for opportunistic automatic screening
of osteoporosis patients in the clinical environment [30]. In
the latest study, Xue et al. conducted a study in which they
labeled the L1–L4 vertebral body in CT images and divided it
into three categories based on bone mineral density: oste-
oporosis, osteopenia, and normal. Te study achieved a high
level of accuracy, with a prediction accuracy of 83.4% and
a recall rate of 90.0% [31]. Dzierżak and Omiotek have
developed a novel method for diagnosing osteoporosis
through the use of spine CT imaging and deep convolutional
neural networks. To address the issue of a small sample size,
they utilized a large dataset to pretrain their model, which
resulted in the successful classifcation of osteoporosis and
normal cases. Tis approach showed promising results for
the accurate diagnosis of osteoporosis using CT scans [32].
In these methods, both the traditional machine learning
algorithm and the current popular deep learning algorithm
use the image containing only the region of interest as the
data source. Te step-by-step preprocessing process is te-
dious, time-consuming, and inefcient. Terefore, the in-
tegration of positioning, segmentation, and classifcation
into a network should help to improve efciency, and no
research has shown that explicit or implicit features related
to the frst 3/4 of the vertebral body can be efectively and
interpretably used in deep classifcation networks.

3. Proposed Methods

3.1. Overview. Our proposed method aims to classify ver-
tebral images within a joint framework to enable a more
fexible diagnosis of osteoporotic lesions. To achieve this
goal, as shown in Figure 1, we propose an instance-based and
class-based end-to-end multitask joint learning framework.
It mainly has a strategy to solve class imbalance and four
deep learning modules, including vertebral positioning
module, vertebral segmentation module, cascade feature
extraction module combined with gated attention, and
feature fusion module. As shown in Figure 2, a new mul-
tilayer and multilevel joint learning framework is in-
troduced, which integrates positioning, segmentation, and
classifcation. Firstly, realizing the accurate location of the
target lesion (coronal vertebral body), removing the re-
dundant information of the image through the reduction of
resolution (from 512× 512 to 224× 224). Secondly, the
boundary heat map auxiliary branch is employed to refne
the edge to improve the performance of segmentation;
meanwhile, segmentation features are cascaded with the
classifcation features to improve the accuracy of classif-
cation. Finally, we propose a feature fusion module, which
adaptively assigns feature weights to fuse the features of
lumbar L1 and lumbar L2. Diferent magnitudes of losses in
multitask learning tend to bring about negative efects on
other tasks when the model tends to ft a certain task; to
balance this problem, we use the gradient update method to
assign weights to each loss, exploiting neural networks to
update the weight parameters.
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3.2. Instance and Class-Based Sampling Methods. In the
actual clinical scene, the data collected by image acquisition
will be unbalanced owing to the inherent difculty of col-
lecting labels of rare diseases or other unusual cases.
Terefore, when training on extremely unbalanced data, the
model may have a high probability of being afected by the

number of diferent categories, resulting in the underftting
of some categories which may be ignored. At present, the
methods to solve the data imbalance include data resampling
[33], adaptive loss function [34], and curriculum learning
[35]. Inspired by the paper [36, 37], methods are introduced
to solve the problem of extreme imbalance of our category

Vertebral
Segmentation

Vertebral
Positioning

Feature
Extractor

Feature Fusion
(L1&L2) ClassifcationCrop

(512→224)

I(512 × 512 piexs)
IL1

IL2

ROI

Figure 1: Joint framework scheme, including vertebral positioning module and vertebral segmentation module, combined with gated
attention cascade feature extraction module and feature fusion module (L1 and L2).
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images. It combines unbalanced (instance-based) and bal-
anced (class-based) sampling of data, where we extend the
method to our three-category practical problems.

We defne the training set as
D � (xi, yi), i � 1, 2, . . . , N , where xi is the sample, yi is
the sample category. Assuming that for multiclassifcation
problems with K categories, each category has Mk samples,
and N represents the total number of samples, where


K
K�1 Mk � N, the general sampling strategies can be de-

scribed as

pj �
M

n
j


k
k�1M

n
j

, (1)

where pj is the probability of sampling from the j th cat-
egory. If we set n � 0, the probability of sampling from each
category is equal to 1/K. Tis is the class-based sampling
method.

If we set n � 1, then it is equivalent to selecting the
sample by the proportion of a category of samples to all
samples, which is instance-based sampling. Here, we in-
troduce a mixed sampling method based on instance and
class, which is suitable for data imbalance. We denote the
training dataset and sampling strategy by the symbol (D, S).
Instance-based sampling and class-based sampling are
represented by SI and SC, respectively, so this mixture can be
described as

x
∧

� λxI +(1 − λ)xC,

y
∧

� λyI +(1 − λ)yC,

(2)

where λ ∼ beta(α, β), α> 0, β> 0, λ ∈ [0, 1], (xI, yI) ∈ (D

, SI), (xC, yC) ∈ (D, SC). x
∧
and y
∧
represent random convex

combinations of data and label inputs. Here, we set β � 1. As
shown in Figure 3, as α grows, examples from minority
classes are combined with a greater weight to avoid over-
ftting of minority classes. Here, we set α � 0.1 to induce
a more balanced distribution of training samples by creating
synthetic data points around spatial regions where minority
classes provide fewer data density.

3.3. Vertebral Positioning Module Based on YOLOv3. Te
basic step of vertebral CT image classifcation is to extract
robust features from CT images, given W and H of the
original images are 512 pixels. To remove redundant fea-
tures, we use the YOLOv3 [38] to locate the vertebral body in
the image with size 512× 512× 3 as input to YOLOv3. Te
image feature is extracted by DarkNet-53, and then the
target classifcation and position regression are performed
on the acquired feature map with the help of the FPNs
(feature pyramid networks) structure.

In this study, we will obtain the position of the prediction
box in the original image px, py, pw, ph, in YOLOv3, a set of
anchor frames is composed of nine initial frames of diferent
sizes. Assuming that the center coordinates, width, and
height of an anchor frame are expressed as ax, ay, aw, ah,

px, py, pw, ph can be obtained by reverse calculation of the
regression parameter tx, ty, tw, th by the output network.
Details of the calculation formula are as follows:

px � σ tx(  + ax,

py � σ ty  + ay,

pw � awe
tw ,

ph � ahe
th ,

(3)

where σ(·) represents the sigmoid transformation of the
variable, aiming at controlling the ofset of the center point
between 0 and 1.

Temain purpose of employing YOLOv3 is to obtain the
center coordinates px and py of the prediction box and
utilize this position as the center cutting position of the
vertebral body to obtain a 224× 224 image containing the
complete vertebral body as the input of the subsequent
convolution module. In this way, we can remove tens of
thousands of useless features and improve the efciency of
the model.

3.4. Boundary Regression Auxiliary Branches. We suggest
dividing the segmentation task into two tasks: vertebral
segmentation and contour determination. Tus, our net-
work is mainly composed of a weight-sharing encoder and
two decoders composed of the segmentation branch and
boundary regression branch. In the encoder, we improve the
original U-Net [39] by applying residual blocks to replace
the original two efective convolutions. In the decoder stage,
we cascade the penultimate features from the boundary
regression branch with the penultimate features of the
segmentation branch, helping the network to better perceive
and refne the vertebral contour. Since vertebrae in CT
images may show up hyperosteogeny or other conditions, it
is necessary to reconstruct edges by constructing auxiliary
tasks, which provide more explicit and implicit topological
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priors for the coding layer and enable them to assist with the
segmentation branches to obtain more accurate
target masks.

Te problem of boundary inaccuracy is rooted in the
similarity of information in the corresponding receptive feld
of pixels. When similar features belong to the interior or
exterior of the segmented region, this similarity will be
advantageous, inversely similar information lies in the
segmented boundary will undoubtedly increase the un-
certainty of the edge. In terms of the boundary regression
auxiliary branch in the segmentation module, we propose to
divide the edge based on the region and graph from the
whole image, combining it with the spatial proximity and
pixel value similarity. In this paper, the accurate boundary of
vertebral segmentation should be the inner boundary. We
combine the convolutional neural network with the level set,
taking the segmentation result obtained by the neural net-
work as the prior knowledge of level set segmentation; then
we construct a gray level constraint term on the original level
set function and improve the edge indicator function to deal
with uneven intensity in the image.

3.4.1. Improve the Edge Indicator Function. Getreuer [40]
proposed the famous Chan–Vese (CV) model in 2001. Tis
method uses a region-based segmentation strategy to divide
the image into two homogeneous regions, the inner and
outer regions, using active contoured lines to fnd the image
to be segmented and the original image with the minimum
diference to minimize the energy function.

Given the input image I(x, y), the energy function based
on the CV is shown as follows:

E C, C1, C2(  � μ
Ω

gδ(ϕ)|∇ϕ|dx dy

+ υ
Ω

gH(− ϕ)dx dy

+ λ1
Ω1

I − C1



2dx dy

+ λ2
Ω2

I − C2



2dx dy,

(4)

where C1 and C2 describe the average gray levels of
equivalent parts inside and outside the contour, respectively,
Ω1 and Ω2 represent the inner and outer regions of the
contour, λ1, λ2, μ, υ are constants,
g � (1/1 + |∇G(x, y, σ)∗ I(x, y)|) is the edge indicator
function which can be used to prevent the curve from ex-
ceeding the target area, G is the Gaussian calculation sub, σ is
the standard deviation, and δ and H represent Dirac and
Heaviside functions, respectively. Te position of contour C

and unknowns C1(ϕ) and C2(ϕ) are fnally obtained
through optimization formula (4).

Te evolution of the CV model is constrained by global
gray-level information. However, most images, especially
medical images, have uneven intensity. To solve this
problem, we improve the function g and construct gray-level
information constraint terms to constrain the evolution

direction. Bilateral fltering is a method that combines the
spatial proximity of images with the similarity of pixel
values. Based on Gaussian fltering, bilateral fltering in-
troduces the gray value of pixels for the local weighted
average. When smoothing the speckle noise of images, bi-
lateral fltering can better maintain the edge features.

In the frst step, the Gaussian function Gsr(x, y, σ) is
used to construct bilateral flters to obtain smooth images:

Gsr(x, y, σ) � Gσs ∗Gσr,

Gσs � e
− (x− k)2+(y− l)2/2σ2s( ),

Gσr � e
− ‖I(x,y)− f(k,l)‖2/2σ2r( ).

(5)

Image I(x, y) is fltered using bilateral flter operator
g(x, y) � Gsr(x, y, σ) · I(x, y), where σr is the standard
deviation used to control the smoothness, i, j, k, l are the
weight coefcients.

In the second step, the optimal threshold T is calculated
based on the fltered image using the adaptive threshold
principle. Te maximized interclass variance value of T is
shown in the following equation:

]2 � w0 × w1 × u0 − u1( , (6)

where w0 represents the ratio of pixels in the target area to
the image, u0 represents the corresponding average gray
level, w1 is the proportion of background pixels, and u1 is the
average gray level of background pixels. Ten, the new edge
indicator function gr can be described as

gT �
1

1 + ]2 ∇Gsr(x, y, σ)∗ I(x, y)



. (7)

3.4.2. Auxiliary Branch. We advocate the segmentation
results of convolutional neural networks as prior knowledge,
namely, the initial contour of the level set, and the curve
contour evolved through the level set is used to guide the
neural network to optimize toward the edge of the
vertebral body.

Te specifc expression of the gray level constraint Q is
described as

Q � c
1 + Γ
2

−
1 − Γ
2

 H(ϕ),

Γ �

− 1, I ∈ Ilow, Ihigh ,

1, I ∉ Ilow, Ihigh ,

⎧⎪⎪⎨

⎪⎪⎩

Ilow � η − w · σ,

Ihigh � η + w · σ,

(8)

where Ihigh is the upper limit of the vertebral gray value
obtained by using the convolutional neural network model,
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Ilow is the lower limit of vertebral gray value, σ is the average
of vertebral gray value, η is the variance of vertebral gray
value, and w is a constant.

Te function of the gray level information constraint
term is to make the level set curve evolve inside the vertebral
body to approximate the inner edge contour. When the gray
value of the pixel is within the upper and lower limits of the
initial vertebral gray value, the energy value of the point is
negative, otherwise positive. Te edge result obtained by the
neural network is used to replace x and y on the initial
contour plane. Gradient descent is used to minimize the
energy function, and the formula form of the fnal evolution
equation after adding the gray constraint function is shown
as follows:

zϕ
zt

� δ(ϕ)

μdiv gT

∇ϕ
|∇ϕ|

  − gTυ

− λ1 I(x, y) − C1 
2

+ c

1 + Γ
2

−
1 − Γ
2

  + λ2 I(x, y) − C2 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C1(ϕ) �
ΩI(x, y)H(ϕ)dx dy

ΩH(ϕ)dx dy
,

C2(ϕ) �
ΩI(x, y)[1 − H(ϕ)]dx dy

Ω[1 − H(ϕ)]dx dy
,

ϕ0 � ϕ(0, I(x, y)).

(9)

In the label aspect of the auxiliary branch, we use the
Canny operator to detect the edge of the binary image label.
Canny is built on a two-dimensional convolution. To im-
prove the calculation speed of the Canny operator, two-
dimensional convolution can be decomposed into one-
dimensional flters, and then a convolution operation
with the image A(x, y) is carried out, respectively:
Ex � (zG/zx) · A(x, y), Ey � (zG/zy) · A(x, y). Ten, the
gradient amplitude A(x, y) and gradient a(x, y) direction
can be expressed as

A(x, y) �

������������������

Ex
2
(x, y) + Ey

2
(x, y)



,

a(x, y) � arctan
Ey(x, y)

Ex(x, y)
.

(10)

Te size of the Gaussian window is adjusted by changing
the standard deviation σ of the Gaussian function, that is
A(x, y) � max(

�������
E2

x + E2
y


). We frst apply nonmaximum

suppression, and then segment images through the dual-
threshold method. When the gradient of some pixel is
greater than the limit threshold, it will be considered as an
edge pixel.

Ten, we construct a soft label heat map in the form of
Heatsum based on the processed images:

Heatsum G x1, y1, σ( , G x2, y2, σ( (  � 1 − 1 − G x1, y1, σ( (  1 − G x2, y2, σ( ( ,

Gbd � Gaussheat(zG),

� Heatsum G x1, y1, σ( , . . . G xn, yn, σ( ( ,∀G xn,yn,σ( ) ∈ zG,

(11)

where ○ represents the Hadamard product; it is noted that
Gbd is normalized between [0, 1].

Here, the boundary regression branch is utilized to refne
the segmented edges. We treat this branch as a regression
task through mean square error rather than a whole work
consisting of a boundary segmentation task together with
the segmentation branch.

3.5. Cascading Classifcation Module. In the classifcation
module, we use ResNet-101 as a basic feature extractor.
ResNet [41] is a traditional deep convolutional neural
network where the residual structure is used in the shallow
network. Te corresponding structure is illustrated in
Figure 4(b). By adding the input value xwith the output unit,
the residual gains better performance in convergence after
the operation of ReLU active. Tese steps can be

approximated as an identical mapping of equal input and
output, which efectively solves the problems of network
learning ability decline, gradient disappearance, and gra-
dient explosion when the number of convolutional neural
network layers increases.

Inspired by the gating attention [42] and residual
structure, we designed a gating residual module as shown in
Figure 4 to replace the frst convolution module in ResNet-
101 from conv2_x to conv5_x. Te specifc network pa-
rameters can be found in Figure 5. Te gated residual model
can be described as follows.

Assuming that x ∈ RC×H×W is the activation feature of
the convolutional neural network, where H and W are the
height and width of the image, and C is the number of
channels of the image, in general, the gating attention
performs the following transformation.

Computational Intelligence and Neuroscience 7
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Figure 4: Gated residual module. (a) Gct layer. (b) Residual layer.

Output Size Architecture

112 × 112 7 × 7, 64, stride 2

56 × 56

3 × 3, maxpool, stride 2

1 × 1, 64, stride 1

28 × 28

1 × 1, 512, stride 1

14 × 14

1 × 1, 1024, stride 1

Layer Name

Conv1

Conv 2_x

Conv 3_x

Conv 4_x

Conv 5_x 7 × 7

1 × 1, 2048, stride 1

1 × 1
Average pool, 2048-d

Fc, softmax

1 × 1, 64
3 × 3, 64
1 × 1, 256

1 × 1, 64
3 × 3, 64
1 × 1, 256

× 1+ ×2

1 × 1, 128
3 × 3, 128
1 × 1, 512

1 × 1, 128
3 × 3, 128
1 × 1, 512

× 1+ ×3

1 × 1, 256
3 × 3, 256
1 × 1, 1024

1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 1+ ×22

1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 1+
1 × 1, 512
3 × 3, 512
1 × 1, 2048

×2

Figure 5: Feature extraction module network structure diagram. Te convolution block framed in red is replaced by a gating residual
module.
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x
∧

� F(x|α, c, β), α, c, β ∈ RC
. (12)

Among them, a, β, and c are trainable parameters. Te
embedding weight a is mainly responsible for adjusting the
embedding output, and the gatingweight c and the bias weight β
are responsible for adjusting the gating activation.

Tey determine the behavior of gated attention in each
channel.

For the specifc process, assuming the given embedding
weight as α � [α1, α2 . . . , αc], modules can be defned as

sc � αc xc

����
����2

� αc 

H

i�1


W

j�1
x

i,j
c 

2⎡⎢⎢⎣ ⎤⎥⎥⎦ + ∈
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/2

,

(13)

sc

∧
�

��
C

√
sc

‖S‖2

�

��
C

√
sc


C
c�1 sc

2  + n 
1/2 ,

(14)

where ∈ is a small constant, which is mainly used to avoid the
derivation of zeros. Equation (14) is used to normalize channels,
and n represents a small constant.

��
C

√
is used for normalization

the ratio of sc, preventing the condition of small sc whenC is too
large, αc is a trainable parameter used for controlling the weight
of each channel. When αc is close to 0, the channel will not
participate in channel normalization.

Ten, we suppose the selection weight c � [c1, c2 . . . , cc]

and the gating ofset β � [β1, β2 . . . , βc], the gating function
can be depicted as follows:

xc

∧
� xc 1 + tanh cc

∧ sc + βc(  . (15)

Each primitive channel xc is adapted by the corre-
sponding gate, c and β are trainable weights and deviations
which is used to control the activation of the gate. Final-
ly,xc

∧
� [x1
∧

, x2
∧

. . . , xc

∧
] will be entered into the residual

module to obtain the feature map y � [y1, y2 . . . , yc] of the
gating attention after the convolution operation. Supposing
the feature map concatenated from the segmentation
module S � [S1, S2 . . . , Sc], we can perform the following
operations on the classifcation network feature
y � [y1, y2 . . . , yc] and the segmentation module feature to
obtain the fnal feature map yc

∧
.

yc

∧
� Conv1×1 Concat yc, Sc( ( i�1,2...c. (16)

Two 1× 2048-dimensional feature vectors of vertebrae
can be obtained by fattening the feature map.

3.6. Feature Fusion Module. As mentioned above, the de-
tection of bone status is based on the average of lumbar L1
and lumbar L2. To explain the diferent efects of diferent
lumbar vertebrae on classifcation, we learn W1 and W2
adaptively for each vertebra, which satisfes W1 + W2 � 1;
W1 and W2 represent the fusion weights, respectively.

Xfuse � Concat W1 × X1, W2 × X2( . (17)

Specifcally, we calculate W1 and W2 (W1 + W2 � 1) by
Ffuse(X1) and Ffuse(X2), respectively, where F represents the
perception of two layers, that is, two fully connected layers.
Te following softmax layer can be used to eliminate the
infuence of diferent feature dimensions. After gaining the
feature Xfuse, the prediction of bone state P(M|IN) can be
given by the fully connected layer and softmax function.

P M|IN(  � softmax fc Xfuse, num − classes( ( . (18)

3.7. Cascading Classifcation Models. To balance the impact
of diferent dimensions of multiple tasks in the training
process we introduce the trade-of parameters λ1, λ2, λ3, λ4
and λ5 to balance these four tasks. Te total loss function of
multitask learning can be defned as

Lmul � λ1LIOC + λ2Lcla + λ3Lconf + λ4Lseg + λ5Lseg + λ6Lcla

� λ1LIOC pi
I
, t  + λ2Lsobj p

c1
i , qcla1  + λ3Lobj p

c2
i , q  + λ4Ldice S pi

s
( , G( 

+λ5Lmse pi
b
, G

n
bd  + λ6Lcrossentropy p

c3
i , qcla2 ,

(19)

where pI
i , pc2

i , ps
i , ps

i , pb
i , pc3

i , respectively, represent the pre-
dicted results of the positioning branch, category branch,
confdence branch, and segmentation branch of the positioning
module for a given input image, the boundary heatmap re-
gression branch, and the classifcation network. S represents the
Sigmoid function, t represents the prediction box result, and
qcla1 is the result of the category in the positioning module. q

represents the probability that a vertebral body exists, Gn
bd

represents the normalized result of Gbd, and qcla2 is the expected
result of the classifcation network.

4. Experimental Results

4.1. Dataset and Preprocessing. To assess the efectiveness
and beneft of the joint learning framework in bone state
classifcation, we conducted experiments in a dataset
obtained from the Nantong First People’s Hospital from
May 2021 to May 2022, consisting of CT images of
1048 routine-dose cases. All images were collected by
Ingenuity Core 128 CT (Philips Health Care, Holland),
the tube voltage was 120 kV, the inpatient tube current
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modulation technique was used, and the iDose 4 was
used to reconstruct the cross-sectional image of the
mediastinal window (standard B standard reconstruction
algorithm). Te reconstruction layer thickness and layer
interval were both 2 mm. Te longitudinal window im-
ages of the lumbar 1 and lumbar 2 center planes of each
subject were selected for BMD measurement and deep
learning model construction. Te QCT pro4 software
(Mindways, CA, USA) was used to set the same size of the
region of interest (ROI) in the central cancellous bone
area of the lumbar 1 and lumbar 2 vertebral bodies,
avoiding the cortical bone and the visible vascular area.
Te software automatically calculated the BMD values of
the lumbar 1 and lumbar 2 vertebral bodies and used
their mean values as the BMD values of the individual
subjects (BMD individuals). According to the standard
recommended by the “expert consensus on imaging and
bone mineral density diagnosis of osteoporosis” BMD
individuals > 120 mg/cm3 are normal bone mass, 80 mg/
cm3 ≤BMD individuals ≤ 120mg/cm3 are osteopenia,
and BMD individuals < 80mg/cm3 are osteoporosis.

We divide the dataset into training data (50%), val-
idation data (10%), and test data (40%); the class dis-
tribution of training, validation, and testing datasets is
shown in Figure 6. Tese three datasets do not have any
overlapping images, and the CT images of each category
in the three datasets are placed in strict proportions.
Ten, all images are resized to 512 × 512 and each image is
normalized from [0, 255] to [0, 1] before being fed into
the network.

To increase the amount of training data and improve the
generalization ability and robustness of the model, we en-
hance the image data employing fipping, rotating, and
scaling on the basis of the original data balancing strategy
based on an instance and actual class.

4.2. Implementation of Framework. To implement the joint
learning framework, we implemented the model based on
Python 3.6.12, using the PyTorch framework and two
NVIDIA GeForce 3090Ti GPUs. We apply the SGD opti-
mizer to train the joint learning framework for 300 epochs
with a learning rate of (10e − 1–10e − 5) and add six adaptive
parameters to the SGD optimizer to weigh the loss of
multitask learning.

4.3. Measurements and Baselines

4.3.1. Measurements. Based on previous work[49–52], ac-
curacy, sensitivity, specifcity, and F1-score were used to
evaluate the performance of classifcation. Te accuracy rate
is the ratio of the number of samples correctly classifed by
the classifer to the total number of samples. Te sensitivity
refects the proportion of positive cases correctly judged by
the classifer to the total positive samples. Te specifcity
indicates the proportion of negative cases correctly judged
by the classifer to the total negative samples. F1-score is the
sum of accuracy and sensitivity. In this paper, the three-
category problem is transformed into a two-category

problem to evaluate; that is, the category studied at this
time is a positive sample and the other categories are
negative samples.

(i) Accuracy: Acc � (TP + FN/TP + TN + FP + FN)

(ii) Sensitivity: Pre � (TP/TP + FN)

(iii) Specifcity: Spe � (TN/FP + TN)

(iv) F1-score: F1 � (2 × P × R/P +R), P � (TP/TP + FP)

, R � (TP/TP + FN)

P denotes the model prediction and T denotes the true
label. Positive samples are predicted as positive samples (true
positive, TP), positive samples are predicted as negative
samples (false negative, FN), negative samples are predicted
as positive samples (false positive, FP), and negative samples
are predicted as negative samples (true negative, TN).

Based on previous works [53–55], we use the intersection
over union (IOU) and dice coefcient (Dice) to evaluate the
efectiveness of our model segmentation task and use the
average precision (AP) to evaluate the efectiveness of the
positioning task.

(i) Intersection over union: IOU � (TP/TP + FP + FN)

(ii) Dice coefcient: Dice � (2TP/2TP + FP + FN)

4.3.2. Baselines. To demonstrate the performance of our
federated framework model, we compared our work with
popular machine learning and deep learning methods, in-
cluding AlexNet [43], VGG-19 [44], GoogLeNet [45],
ResNet [41], DenseNet [46], ShufeNet [47], and
EfcientNet [48].

4.4. Results. We use ten-foldcross-validation to calculate the
average results and show the performance of the joint
framework in Table 1. We set the learning rate of
10e − 1–10e − 5 to evaluate the classifcation performance of
the joint framework in diferent situations. We used normal

0

50

100

150

200

250

300

training datasets validation datasets testing datasets

Osteopenia
Normal
Osteoporosis

Figure 6: Data distribution of datasets.
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(osteopenia and osteoporosis) as a positive sample and other
categories as negative samples, achieving an accuracy of
0.971, a sensitivity of 0.964, a specifcity of 0.976, and an F1-
score of 0.964. We achieved 0.933 in accuracy, 0.970 in
sensitivity, 0.836 in specifcity, and 0.954 F1-score when
osteopenia was used as a positive sample and other cate-
gories (normal and osteoporosis) as a negative sample.
When we used osteoporosis as a positive sample and other
categories (normal and osteopenia) as negative samples, we
achieved an accuracy of 0.957, a sensitivity of 0.962,
a specifcity of 0.922, and an F1-score of 0.975. Te best
performance is obtained by the learning rate of 10e − 3,
indicating that the classifcation problem of bone state CT
images can be efectively solved by adjusting the
hyperparameters.

In addition, we compare the best results of joint learning
with the most advanced baselines. Te comparison results are
reported in Table 2, where the best comparable performance is
represented in bold. For the input images of other classifcation
methods, we use CT images (512× 512) generated by labels
manually drawn by physicians that contain only regions of
interest. To better intuitively compare the classifcation per-
formance of the model, we use the confusion matrix for visual
analysis. As shown in Figure 7, joint learning in dealing with
the task of identifying low-dose achieves good performance
with only 5 cases misclassifed as normal, 2 cases misclassifed
as osteoporosis, and 8 cases misclassifed as low doses; in the
task of identifying osteoporosis, only 3 cases were misclassifed
as low dose. Tis result fully indicates the nonexistence of
overftting and underftting states; this result further illustrates
that there is no bias to a certain category which increases
accuracy results.

Te histogram of accuracy and F1-score can be found in
Figure 8. Intuitively, the accuracy rate has increased.
Compared with the highest accuracy rate among advanced
baseline methods, the accuracy rate of joint learning has
increased by 6.2% in the osteopenia category, 3.3% in the
normal category, and 0.1% in the osteoporosis category.
Notably, when compared to the overall accuracy of advanced

baseline methods, the overall accuracy of joint learning was
improved by 3.8% which proved the efectiveness of joint
learning strategies once again.

4.5. Further Discussion

4.5.1. Roc Curve. To better demonstrate the classifcation
ability of our proposed joint learning framework, we use the
operating characteristic curve (ROC) and the area under
curve (AUC) of receivers as further evaluation indicators.
Taking the experimental results with a learning rate of 0.01 as
an example, we draw the ROC curves of three categories in
Figure 9, AUC for each category is also depicted in the fgure.
It can be found that the AUC in the osteopenia state is 0.965,
the AUC value in the Normal state is 0.973, and the AUC
value in the osteoporosis state is 0.985. Tese values prove
the efectiveness of joint learning in bone CT image
classifcation tasks.

4.5.2. Training Convergence. For model training, we use the
accuracy and loss curve and the training process to imply the
training trend of accuracy and model cost. Te accuracy and
loss curves of the joint learning framework with a learning
rate of 0.01 are shown in Figure 10, which refects that the
model’s performance achieved satisfactory results at the 150th
epoch and became stable. Tese two curves show the con-
vergence of themodel and assess its stability in bone CTimage
classifcation. In addition, the total training time of the joint
learning framework on our dataset is about 10 hours, and each
epoch takes 2minutes. In short, training convergence and
time reveal the computational efciency of our network.

4.5.3. Model Visualization. We further use gradient
weighted class activation mapping (Grad-CAM) to visualize
the decision information of the feature extraction module.
Figure 11 shows that the feature extraction modules for
diferent categories (normal, osteopenia, and osteoporosis)
focus on diferent regions, and the model automatically
focuses on the corresponding regions. Compared with the

Table 1: Comparison of joint framework performance at diferent learning rates.

Learning rate Accuracy Sensitivity Specifcity F1-score

0.1
Normal 0.876 0.910 0.813 0.862

Osteopenia 0.816 0.818 0.810 0.865
Osteoporosis 0.935 0.951 0.823 0.963

0.01
Normal 0.936 0.955 0.923 0.925

Osteopenia 0.898 0.905 0.880 0.927
Osteoporosis 0.962 0.983 0.829 0.978

0.001
Normal 0.971 0.964 0.976 0.964

Osteopenia 0.933 0.970 0.836 0.954
Osteoporosis 0.957 0.962 0.922 0.975

0.0001
Normal 0.880 0.964 0.825 0.866

Osteopenia 0.811 0.848 0.716 0.866
Osteoporosis 0.921 0.921 0.922 0.953

0.00001
Normal 0.900 0.941 0.873 0.882

Osteopenia 0.864 0.868 0.853 0.902
Osteoporosis 0.964 0.981 0.843 0.980

Te bold value indicates that this is the best model results.
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Table 2: Comparison with the state-of-the-art baselines on dataset.

Models Accuracy Sensitivity Specifcity F1-score

AlexNet (2012) [43]
Normal 0.868 0.785 0.785 0.878

Osteopenia 0.799 0.793 0.793 0.687
Osteoporosis 0.931 0.882 0.882 0.756

VGG-19 (2014) [44]
Normal 0.856 0.994 0.765 0.847

Osteopenia 0.756 0.795 0.655 0.825
Osteoporosis 0.900 0.894 0.941 0.939

GoogLeNet (2015) [45]
Normal 0.899 0.976 0.849 0.886

Osteopenia 0.811 0.871 0.655 0.869
Osteoporosis 0.911 0.902 0.980 0.947

ResNet-50 (2016) [41]
Normal 0.911 0.874 0.936 0.888

Osteopenia 0.868 0.894 0.802 0.907
Osteoporosis 0.956 0.995 0.986 0.976

ResNet-101 (2016) [41]
Normal 0.938 0.958 0.924 0.925

Osteopenia 0.871 0.917 0.750 0.911
Osteoporosis 0.933 0.940 0.882 0.961

DenseNet-121 (2017) [46]
Normal 0.897 0.982 0.840 0.884

Osteopenia 0.849 0.841 0.871 0.889
Osteoporosis 0.952 0.967 0.843 0.972

ShufeNet (2018) [47]
Normal 0.926 0.970 0.896 0.913

Osteopenia 0.856 0.911 0.716 0.902
Osteoporosis 0.931 0.924 0.980 0.959

EfcientNet (2019) [48]
Normal 0.926 0.976 0.892 0.913

Osteopenia 0.871 0.904 0.784 0.910
Osteoporosis 0.945 0.943 0.961 0.968

Joint framework (ours)
Normal 0.971 0.964 0.976 0.964

Osteopenia 0.933 0.970 0.836 0.954
Osteoporosis 0.957 0.962 0.922 0.975

Te bold value indicates that this is the best model results.
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Figure 7: Continued.
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correctly classifed decision information, we also list some
cases of misclassifcation in Figure 12. Te focus area of the
wrong case has changed signifcantly compared with the
correct case in Figure 11, which may be used as an expla-
nation for the neural network decision error.

Meanwhile, we calculated that the AP value of all
testing datasets in the positioning task is 95%, the av-
erage IOU in the segmentation task is 0.972 ± 0.125, and
the average Dice is 0.983 ± 0.036, which shows that we
have good efciency in selecting features in the
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Figure 7: (a)–(h) Te confusion matrix for each baseline method. (i) Te confusion matrix for this method. (a) AlexNet. (b) VGG-19.
(c) GoogLeNet. (d) ResNet-50. (e) ResNet-101. (f ) DenseNet-121. (g) ShufeNet. (h) EfcientNet. (i) Joint framework.
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Figure 8: Te classifcation performance comparison of each baseline method. (a) Normal-accuracy. (b) Osteopenia-accuracy.
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positioning and segmentation tasks, but in some cases,
these features have no good efect on classifcation.

4.5.4. Ablation Experiments. In this section, we conduct an
ablation study (learning rate is 10e − 3) of our method to
prove the efective impact of segmentation feature and
classifcation feature layered fusion (LF), gated convolution
(GC) module, and feature fusion module (FF).

We use the three modules separately and combine them
randomly and calculate the overall accuracy of each ex-
periment to evaluate whether the model is improved. Te
quantitative result can be found in Table 3. In Figure 13, it
can be clearly seen that the accuracy of the model has been

greatly improved. When we calculate without using the
method of three modules; it is unfortunate to fnd that the
accuracy of the model is only 82.1%. However, when we
perform a hierarchical fusion of segmentation features and
classifcation features, the overall accuracy rate rises to
85.6%, an increase of 3.5%. When we use the gated con-
volutionmodule, we fnd that the accuracy rate has increased
by 2.8%. When we use feature fusion of vertebral bodies at
diferent levels, the overall accuracy rate has increased by
3.3%. When we select any two of them, we fnd that the
overall accuracy rate has increased by 4%, 8.1%, and 10.5%,
respectively. Te seven additional experiments prove the
feasibility and efectiveness of our proposed modular
methods in improving classifcation accuracy.
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Figure 11: Grad-CAM visualization of 9 cases. It can be seen that diferent categories of networks have diferent emphases, which can be
used as an explanation of neural networks. Te frst line of each two lines represents the L1 vertebrae, and the second line represents the
corresponding L2 vertebrae.Te frst two lines represent osteoporosis cases, the middle two lines represent osteopenia cases, and the last two
lines represent normal cases.

Figure 12: Grad-CAM visualization of 3 cases. From left to right are osteoporosis, osteopenia, and normal cases.Te frst line represents the
L1 vertebral body, and the second line represents the L2 vertebral body.
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5. Conclusion

Machine learning can help a great deal in accurately identifying
osteoporosis from CT images. In this study, we propose a joint
learning framework for bone state detection, where we integrate
positioning, segmentation, and classifcation into an end-to-end
multitask joint learning framework. Te framework processes
from the original input to the fnal output, increasing the overall
ft of the model. Te accuracy of classifcation has been im-
proved by modular task fusion, global feature association, and
fusion of diferent vertebral features. We used a CT image
database containing three categories of vertebrae to evaluate this
method. A large number of experiments confrm this method
improves the overall accuracy from 82.1% to 93.3%, which
shows the efectiveness of joint learning in bone state image
classifcation and contributes to solving the problem of clinical
diagnosis of osteoporosis.
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[6] C. Beaudart, L. Lengelé, V. Leclercq et al., “Symptomatic
efcacy of pharmacological treatments for knee osteoarthritis:
a systematic review and a network meta-analysis with a 6-
month time horizon,” Drugs, vol. 80, no. 18, pp. 1947–1959,
2020.

[7] J. S. Kimball, J. P. Johnson, and D. A. Carlson, “Oxidative
stress and osteoporosis,” Journal of Bone and Joint Surgery,
vol. 103, no. 15, pp. 1451–1461, 2021.

[8] J. J. Carey, P. Chih-Hsing Wu, and D. Bergin, “Risk assess-
ment tools for osteoporosis and fractures in 2022,” Best
Practice & Research Clinical Rheumatology, vol. 36, no. 3,
Article ID 101775, 2022.

[9] S. Chavda, B. Chavda, and R. Dube, “Osteoporosis screening
and fracture risk assessment tool: its scope and role in general
clinical practice,” Cureus, vol. 14, no. 7, Article ID e26518,
2022.

[10] N. Yamamoto, S. Sukegawa, A. Kitamura et al., “Deep
learning for osteoporosis classifcation using hip radiographs
and patient clinical covariates,” Biomolecules, vol. 10, no. 11,
p. 1534, 2020.

[11] R. Jang, J. H. Choi, N. Kim, J. S. Chang, P. W. Yoon, and
C. H. Kim, “Prediction of osteoporosis from simple hip ra-
diography using deep learning algorithm,” Scientifc Reports,
vol. 11, no. 1, pp. 19997–19999, 2021.

[12] X. Cheng, K. Zhao, X. Zha et al., “Opportunistic screening
using low-dose CT and the prevalence of osteoporosis in
China: a nationwide, multicenter study,” Journal of Bone and
Mineral Research, vol. 36, no. 3, pp. 427–435, 2021.

[13] B. Zhang, K. Yu, Z. Ning et al., “Deep learning of lumbar spine
X-ray for osteopenia and osteoporosis screening: a multi-
center retrospective cohort study,” Bone, vol. 140, Article ID
115561, 2020.

[14] N. Tecle, J. Teitel, M. R. Morris, N. Sani, D. Mitten, and
W. C. Hammert, “Convolutional neural network for second
metacarpal radiographic osteoporosis screening,” Journal of
Hand Surgery, vol. 45, no. 3, pp. 175–181, 2020.

[15] A. S. Areeckal, N. Jayasheelan, J. Kamath, S. Zawadynski,
M. Kocher, and S. David, “Early diagnosis of osteoporosis
using radiogrammetry and texture analysis from hand and
wrist radiographs in Indian population,” Osteoporosis In-
ternational, vol. 29, no. 3, pp. 665–673, 2018.

[16] J. Smets, E. Shevroja, T. Hugle, W. D. Leslie, and D. Hans,
“Machine learning solutions for osteoporosis—a review,”
Journal of Bone and Mineral Research, vol. 36, no. 5,
pp. 833–851, 2021.

[17] H. Chen, C. Shen, J. Qin et al., “Automatic localization and
identifcation of vertebrae in spine CT via a joint learning
model with deep neural networks,” International Conference

on Medical Image Computing and Computer-Assisted In-
tervention, pp. 515–522, Springer, Cham, Switzerland, 2015.

[18] Y. Dong, T. Xiong, D. Xu et al., “Automatic vertebra labeling
in large-scale 3D CTusing deep image-to-image network with
message passing and sparsity regularization,” International
Conference on Information Processing in Medical Imaging,
pp. 633–644, Springer, Cham, Switzerland, 2017.

[19] S. Zhao, X. Wu, B. Chen, and S. Li, “Automatic vertebrae
recognition from arbitrary spine MRI images by a category-
Consistentself-calibration detection framework,” Medical
Image Analysis, vol. 67, Article ID 101826, 2021.

[20] B. Michael Kelm, M. Wels, S. Kevin Zhou et al., “Spine de-
tection in CTandMR using iterated marginal space learning,”
Medical Image Analysis, vol. 17, no. 8, pp. 1283–1292, 2013.
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