Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1988 Nov;47(11):881–885. doi: 10.1136/ard.47.11.881

Neovascularisation and its role in the osteoarthritic process.

R A Brown 1, J B Weiss 1
PMCID: PMC1003625  PMID: 2462856

Abstract

In osteoarthritis angiogenesis is involved in the reinitiation of cartilage growth and mineralisation. A number of heparin binding protein growth factors have been proposed as angiogenic factors, but none of them is specific for microvessel cells. Another factor which is specific for microvessel cells, is of low molecular weight and non-profit has been called endothelial cell stimulating angiogenic factor (ESAF). ESAF has been found in significantly increased amounts in sera and synovial fluids of osteoarthritic patients and dogs. In addition to its angiogenic activity ESAF is able to activate neutral prometalloproteinases and to reactive the active enzyme-inhibitor complex. The implication of these observations in the pathogenesis of osteoarthritis is discussed.

Full text

PDF
884

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S. Y., Griffiths S. Formation of calcium phosphate crystals in normal and osteoarthritic cartilage. Ann Rheum Dis. 1983 Aug;42 (Suppl 1):45–48. doi: 10.1136/ard.42.suppl_1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ali S. Y. New knowledge of osteoarthrosis. J Clin Pathol Suppl (R Coll Pathol) 1978;12:191–199. [PMC free article] [PubMed] [Google Scholar]
  3. Anderson C. E., Parker J. Invasion and resorption in enchondral ossification. An electron microscopic study. J Bone Joint Surg Am. 1966 Jul;48(5):899–914. [PubMed] [Google Scholar]
  4. Arsenault A. L. Microvascular organization at the epiphyseal-metaphyseal junction of growing rats. J Bone Miner Res. 1987 Apr;2(2):143–149. doi: 10.1002/jbmr.5650020210. [DOI] [PubMed] [Google Scholar]
  5. Ausprunk D. H., Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res. 1977 Jul;14(1):53–65. doi: 10.1016/0026-2862(77)90141-8. [DOI] [PubMed] [Google Scholar]
  6. Brighton C. T. The growth plate. Orthop Clin North Am. 1984 Oct;15(4):571–595. [PubMed] [Google Scholar]
  7. Brown R. A., Tomlinson I. W., Hill C. R., Weiss J. B., Phillips P., Kumar S. Relationship of angiogenesis factor in synovial fluid to various joint diseases. Ann Rheum Dis. 1983 Jun;42(3):301–307. doi: 10.1136/ard.42.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown R. A., Weiss J. B., Tomlinson I. W., Phillips P., Kumar S. Angiogenic factor from synovial fluid resembling that from tumours. Lancet. 1980 Mar 29;1(8170):682–685. [PubMed] [Google Scholar]
  9. Bullough P. G. The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis. Clin Orthop Relat Res. 1981 May;(156):61–66. [PubMed] [Google Scholar]
  10. Bullough P., Goodfellow J., Greenwald A. S., O'Connor J. Incongruent surfaces in the human hip joint. Nature. 1968 Mar 30;217(5135):1290–1290. doi: 10.1038/2171290a0. [DOI] [PubMed] [Google Scholar]
  11. Byers P. D., Contepomi C. A., Farkas T. A. Post-mortem study of the hip joint. II. Histological basis for limited and progressive cartilage alterations. Ann Rheum Dis. 1976 Apr;35(2):114–121. doi: 10.1136/ard.35.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dean D. D., Muniz O. E., Berman I., Pita J. C., Carreno M. R., Woessner J. F., Jr, Howell D. S. Localization of collagenase in the growth plate of rachitic rats. J Clin Invest. 1985 Aug;76(2):716–722. doi: 10.1172/JCI112026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ehrlich M. G., Houle P. A., Vigliani G., Mankin H. J. Correlation between articular cartilage collagenase activity and osteoarthritis. Arthritis Rheum. 1978 Sep-Oct;21(7):761–766. doi: 10.1002/art.1780210704. [DOI] [PubMed] [Google Scholar]
  14. Eisenstein R., Kuettner K. E., Neapolitan C., Soble L. W., Sorgente N. The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am J Pathol. 1975 Nov;81(2):337–348. [PMC free article] [PubMed] [Google Scholar]
  15. Eisenstein R., Sorgente N., Soble L. W., Miller A., Kuettner K. E. The resistance of certain tissues to invasion: penetrability of explanted tissues by vascularized mesenchyme. Am J Pathol. 1973 Dec;73(3):765–774. [PMC free article] [PubMed] [Google Scholar]
  16. Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
  17. Folkman J., Merler E., Abernathy C., Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 1971 Feb 1;133(2):275–288. doi: 10.1084/jem.133.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fràter-Schröder M., Risau W., Hallmann R., Gautschi P., Böhlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5277–5281. doi: 10.1073/pnas.84.15.5277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gilbertson E. M. Development of periarticular osteophytes in experimentally induced osteoarthritis in the dog. A study using microradiographic, microangiographic, and fluorescent bone-labelling techniques. Ann Rheum Dis. 1975 Feb;34(1):12–25. doi: 10.1136/ard.34.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herron G. S., Banda M. J., Clark E. J., Gavrilovic J., Werb Z. Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem. 1986 Feb 25;261(6):2814–2818. [PubMed] [Google Scholar]
  21. Hiti-Harper J., Wohl H., Harper E. Platelet factor 4: an inhibitor of collagenase. Science. 1978 Mar 3;199(4332):991–992. doi: 10.1126/science.203038. [DOI] [PubMed] [Google Scholar]
  22. Howell D. S., Woessner J. F., Jr, Jimenez S., Seda H., Schumacher H. R., Jr A view on the pathogenesis of osteoarthritis. Bull Rheum Dis. 1978;29(8):996–1001. [PubMed] [Google Scholar]
  23. Hunziker E. B., Schenk R. K., Cruz-Orive L. M. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg Am. 1987 Feb;69(2):162–173. [PubMed] [Google Scholar]
  24. Klagsbrun M., Sasse J., Sullivan R., Smith J. A. Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2448–2452. doi: 10.1073/pnas.83.8.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuettner K. E., Hiti J., Eisenstein R., Harper E. Collagenase inhibition by cationic proteins derived from cartilage and aorta. Biochem Biophys Res Commun. 1976 Sep 7;72(1):40–46. doi: 10.1016/0006-291x(76)90957-8. [DOI] [PubMed] [Google Scholar]
  26. Lane L. B., Villacin A., Bullough P. G. The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br. 1977 Aug;59(3):272–278. doi: 10.1302/0301-620X.59B3.893504. [DOI] [PubMed] [Google Scholar]
  27. Leibovich S. J., Polverini P. J., Shepard H. M., Wiseman D. M., Shively V., Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 1987 Oct 15;329(6140):630–632. doi: 10.1038/329630a0. [DOI] [PubMed] [Google Scholar]
  28. Moscatelli D. A., Rifkin D. B., Jaffe E. A. Production of latent collagenase by human umbilical vein endothelial cells in response to angiogenic preparations. Exp Cell Res. 1985 Feb;156(2):379–390. doi: 10.1016/0014-4827(85)90545-2. [DOI] [PubMed] [Google Scholar]
  29. Schenk R. K., Wiener J., Spiro D. Fine structural aspects of vascular invasion of the tibial epiphyseal plate of growing rats. Acta Anat (Basel) 1968;69(1):1–17. doi: 10.1159/000143059. [DOI] [PubMed] [Google Scholar]
  30. Schor A. M., Schor S. L., Weiss J. B., Brown R. A., Kumar S., Phillips P. Stimulation by a low-molecular-weight angiogenic factor of capillary endothelial cells in culture. Br J Cancer. 1980 May;41(5):790–799. doi: 10.1038/bjc.1980.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stephens R. W., Ghosh P., Taylor T. K. The pathogenesis of osteoarthrosis. Med Hypotheses. 1979 Jul;5(7):809–816. doi: 10.1016/0306-9877(79)90041-0. [DOI] [PubMed] [Google Scholar]
  32. Weiss J. B., Brown R. A., Kumar S., Phillips P. An angiogenic factor isolated from tumours: a potent low-molecular-weight compound. Br J Cancer. 1979 Sep;40(3):493–496. doi: 10.1038/bjc.1979.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weiss J. B., Hill C. R., Davis R. J., McLaughlin B., Sedowofia K. A., Brown R. A. Activation of a procollagenase by low-molecular-weight angiogenesis factor. Biosci Rep. 1983 Feb;3(2):171–177. doi: 10.1007/BF01121948. [DOI] [PubMed] [Google Scholar]
  34. Welgus H. G., Jeffrey J. J., Eisen A. Z., Roswit W. T., Stricklin G. P. Human skin fibroblast collagenase: interaction with substrate and inhibitor. Coll Relat Res. 1985 Mar;5(2):167–179. doi: 10.1016/s0174-173x(85)80038-8. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES