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Prediction of cardiovascular disease 
risk based on major contributing 
features
Mengxiao Peng 1, Fan Hou 1, Zhixiang Cheng 1, Tongtong Shen 1, Kaixian Liu 1, Cai Zhao 1* & 
Wen Zheng 1,2*

The risk of cardiovascular disease (CVD) is a serious health threat to human society worldwide. The 
use of machine learning methods to predict the risk of CVD is of great relevance to identify high-
risk patients and take timely interventions. In this study, we propose the XGBH machine learning 
model, which is a CVD risk prediction model based on key contributing features. In this paper, the 
generalisation of the model was enhanced by adding retrospective data of 14,832 Chinese Shanxi 
CVD patients to the kaggle dataset. The XGBH risk prediction model proposed in this paper was 
validated to be highly accurate (AUC = 0.81) compared to the baseline risk score (AUC = 0.65), and the 
accuracy of the model for CVD risk prediction was improved with the inclusion of the conventional 
biometric BMI variable. To increase the clinical application of the model, a simpler diagnostic model 
was designed in this paper, which requires only three characteristics from the patient (age, value of 
systolic blood pressure and whether cholesterol is normal or not) to enable early intervention in the 
treatment of high-risk patients with a slight reduction in accuracy (AUC = 0.79). Ultimately, a CVD risk 
score model with few features and high accuracy will be established based on the main contributing 
features. Of course, further prospective studies, as well as studies with other populations, are needed 
to assess the actual clinical effectiveness of the XGBH risk prediction model.

Cardiovascular diseases(CVD) are a group of heart and vascular diseases, namely coronary, cerebrovascular, and 
rheumatic heart. It has been reported that more than 17.9 million patients die each year worldwide due to heart 
and vascular  diseases1. According to the Global Burden of Disease Report  20192, the number of CVD prevalence 
is steadily increasing, reaching 523 million in 2019, with up to 18.6 million deaths, accounting for one-third of 
the total  deaths3. Domestic and international experience shows that early detection and effective intervention 
management of high-risk populations is a clear technical route and cost-effective prevention and control program 
that can extend national life expectancy, improve national health and quality of life, and reduce the burden of 
disease. It has been found that accurate prediction of cardiovascular disease (CVD) requires a variety of informa-
tion, including not only patient history, but also genomic data, symptoms, lifestyle and risk  factors4. Therefore, 
we need to investigate the relationship between risk factors and disease, and use data analysis as a theoretical 
support to find the intrinsic patterns to achieve accurate prediction of disease occurrence.

In the face of increasing mortality from cardiovascular disease, many institutions have conducted prospec-
tive studies on CVD. Typical examples of existing CVD risk prediction models are the PCE cardiovascular risk 
assessment formula recommended by the American Heart Association/American Heart Association (ACC/
AHA)5, the European Systematic Coronary Risk Assessment  Study6, the QRISK cardiovascular risk assessment 
model published by the QResearch database based disease risk study in the United  Kingdom7,8, and the Gu The 
China-PAR model constructed by a research group led by Professor Dongfeng Gu using data from InterASIA 
(International Cooperative Study of Cardiovascular Diseases in Asia) and China MUCA (1998) (Multicenter 
Cooperative Study of Cardiovascular Epidemiology in China)9, Fátima Sánchez-Cabo PhD et al. based on stand-
ardized tests (blood tests and questionnaires ) of a few minimally invasive, routine, quantitative variables of 
the EN-PESA  model10, among others. These institutions have introduced risk assessment tools for a variety of 
diseases such as cardiovascular disease, coronary heart disease, stroke, and heart failure. However, the existing 
CVD risk assessment models have an implicit assumption that each risk factor is linearly related to the probability 
of CVD  prevalence11, which may oversimplify this relationship because it includes a large number of risk factors 
with nonlinear interactions. Due to their restrictive modeling assumptions and limited number of predictors, 
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these models all exhibit strong geographic and population specificity, and existing algorithms usually do not 
predict CVD risk  correctly12, especially for certain  subgroups13.

In recent years, with high-performance computers, machine learning (ML) has made significant progress 
in healthcare and medical  research14. Machine learning models can establish complex nonlinear relationships 
between risk factors and diseases by minimizing the error between predicted and true  outcomes15,16. In the field 
of cardiovascular disease prediction, more typical are Mezzatesta et al.17, who used nonlinear SVC for CVD risk 
prediction in patients in the United States and Italy. Unnikrishnan et al.18 who developed SVM-based risk assess-
ment models for predicting the sensitivity and specificity of CVD using eight metrics, and Weng et al.19 used 
four machine learning algorithms including random forest, logistic regression, gradient augmentation machine, 
and neural network to compare with the established American College of Cardiology guidelines. Although the 
accuracy of the above models is high, they can impose more burden on patients in clinical settings due to the 
large number of selected metrics. Therefore, the aim of this paper is to establish a CVD risk score model with 
fewer features and high accuracy.

In general, the contributions of this paper are described as follows:

• The XGBH model proposed in this paper can save memory space and show better predictive performance by 
introducing a histogram algorithm. At the same time,the data of 14,832 Chinese cardiovascular patients are 
introduced to expand the dataset.Finally,the XGBH model is compared with four previous machine learning 
models to demonstrate the superiority of the model.

• In this paper, by ranking the importance of features on the dataset, a CVD risk prediction model with few 
features and high accuracy is developed, and the practical value of the four models is evaluated by using 
decision curves, and finally only three features are needed to make a more accurate risk assessment of CVD.

• Finally, this paper develops a nomogram of cardiovascular disease risk scores. The risk of cardiovascular 
disease is calculated based on the three screened characteristics, thus enabling the prediction of the prob-
ability of a patient’s disease.

In the Results section we describe the baseline features of the dataset in this paper, showing the performance 
of the proposed model and the evaluation of the model after feature filtering. In the Methods section the source 
of the dataset and details of the XGBH model are described, as well as a description of the feature filtering 
methods used in the paper.

Results
Characteristics of the study population. The baseline characteristics of the study population are shown 
in Table 1. Overall, the mean (SD) age of the subjects at baseline was 53.34 (6.77) years, of which 24,470 (35%) 
were male, 52,385 (74.8%) had normal cholesterol, 59,479 (85%) had normal glucagon, 6169 (8.8%) were smok-
ers, 3764 (5.4%) were alcoholics, and 56,261 (80.4%) had an exercise habit.

Quantitative variables that obey the normal distribution are described by mean ± standard deviation, and 
quantitative variables that do not obey the normal distribution are described by median ± interquartile range. The 
categorical variables are described as quantity and proportion. Statistical differences were determined using the 

Table 1.  Baseline characteristics of patients.

Variables

Overall Normal CVD

P-valuen = 70,000 n = 35,021 n = 34,979

Age 53 (7) 52 (7) 55 (6) < 0.001

Gender = male (%) 24470 (35.0) 12107 (34.6) 12363 (35.3) 0.033

Height 165 [159,170] 165 [159,170] 165 [159,170] 0.001

Weight 74.21 (14.40) 71.59 (13.31) 76.82 (14.96) < 0.001

Ap_hi 120 [120,140] 120 [110,120] 130 [120,140] < 0.001

Ap_lo 80 [80,90] 80 [70,80] 80 [80,90] < 0.001

Cholesterol (%) < 0.001

      1 52385 (74.8) 29330 (83.7) 23055 (65.9)

      2 9549 (13.6) 3799 (10.8) 5750 ( (16.4)

      3 8066 (11.5) 1892 (5.4) 6174 (17.7)

Gluc (%) < 0.001

      1 59479 (85.0) 30894 (88.2) 28585 (81.7)

      2 5190 (7.4) 2112 (6.0) 3078 (8.8)

      3 5331 (7.6) 2015 (5.8) 3316 (9.5)

Smoke = 1 (%) 6169 (8.8) 3240 (9.3) 2929 (8.4) < 0.001

Alco = 1 (%) 3764 (5.4) 1941 (5.5) 1823 (5.2) 0.055

Active = 1 (%) 56261 (80.4) 28643 (81.8) 27618 (79.0) < 0.001
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t-test with Welch correction or the Mann-Whitney U test, the Wilcoxon signed-rank test, or the Kruskal-Wallis 
test. The analysis was performed using RStudio version 7.2 (RStudio, New York, USA).

XGBH model validation. In training the model we use 80% of the kaggle competition dataset and 80% of 
the Shanxi Baiqiuen Hospital dataset as the training set and the rest of the data as the test set to cross-validate 
the performance of the model.In this paper, the XGBH model is compared with four machine learning models: 
logistic regression, linear classification support vector machine, random forest and eXtreme Gradient Boosting 
(XGBoost), and the classification model is adjusted according to the parameters of the classification algorithm. 
Table 2 provides the quantitative evaluation results of five machine learning models, logistic regression, linear 
classification support vector machine, random forest, XGBoost, and XGBH, in terms of AUC, recall, precision, 
and F1 score.First, as shown in Table 2 with Fig. 1, the XGBH prediction model outperformed the other four 
baseline models in terms of AUC, recall, precision, and F1 score, regardless of whether the BMI feature was 
included.In the test group without BMI, the AUC and precision of the XGBH model reached 0.8059 and 0.7578, 
respectively, indicating that the XGBH model has higher accuracy in predicting CVD risk.We then tried to add 
a new feature BMI to the prediction model, as shown in Table 2. After adding the BMI feature, there is a small 
decrease in accuracy, but the rest of the metrics have increased, showing higher predictive power than before. 
The running time also improved, with XGBoost running time of 4.263 s and XGBH running time of 3.742 s.

Feature screening and model evaluation. In this paper, we use the PermutationImportance method 
to analyze the feature importance, which is the contribution of each feature to the prediction, of four models, 
LogisticRegression, Random Forest, XGBoost, and XGBH, respectively. This is done by randomly arranging the 
values of a feature column in the dataset to obtain unordered feature values to train the model. Feature impor-
tance is identified by observing the degree of influence of feature values on model performance. The feature 
importance of the target variable is calculated using the PermutationImportance method, and then the feature 

Table 2.  Performance of all prediction models under various feature. Values for AUC denoete 
the mean ± confidence interval (CI). AUC, the area under a receiver operating characteristic cure; 
Precesion = TP/(TP + FP) , Recall = TP/(TP + FN) where TP stands for true positive, TN for ture negative, 
FP for false positive, and FN for false negative; F1score = 2(precision ∗ recall)/(precision+ recal).

Dataset Model AUC Recall Precision F1 score

Without BMI

LinearSVC 0.6511 − (0.6432–0.6589) 0.6006 0.6636 0.6306

LogisticRegression 0.6965 ± (0.6889–0.7041) 0.6566 0.7094 0.6820

Random Forest 0.7129 ± (0.7055–0.72044) 0.6967 0.7170 0.7067

XGBoost 0.8018 ± (0.7945–0.8090) 0.6860 0.7552 0.7190

XGBH 0.8059 ± (0.7987–0.8131) 0.7027 0.7578 0.7293

With BMI

LinearSVC 0.6559 ± (0.6480–0.6637) 0.6126 0.6662 0.6383

LogisticRegression 0.7123 ± (0.7049–0.7198) 0.6749 0.7256 0.6994

Random Forest 0.7147 ± (0.7072–0.7222) 0.7025 0.7170 0.7097

XGBoost 0.8027 ± (0.7955–0.8099) 0.6866 0.7532 0.7184

XGBH 0.8069 ± (0.7997–0.8140) 0.7043 0.7572 0.7298

Figure 1.  Performance of all prediction models under various feature.
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importance weights are ranked. The descending order indicates the importance weight of each feature, and 
the feature weight table is drawn as shown in Table 3, from which it can be seen that the models with higher 
prediction accuracy have closer feature importance ranking. Among them, the two models with the best predic-
tion accuracy, XGBoost, and XGBH, have the same top five important features, namely, systolic blood pressure 
(Ap_hi), cholesterol (Chol), age, diastolic blood pressure (Ap_lo), and body mass index (BMI). Also, systolic 
blood pressure (Ap_hi) showed the highest feature weight among all predicted results, indicating that it is the 
most predictive feature.

The previous feature importance analysis drove us to build a prediction model based on a small number 
of important features instead of a model based on all features. According to the order of feature weights of the 
XGBH model in the Table 3, the presence or absence of cardiovascular disease is the target feature, and four 
model models are used to make predictions based on different numbers of features and plot the ROC curve, as 
shown in Fig. 2. As can be seen from the Fig. 2, When using the top 5 features (ap_hi, chol, age, ap_lo, BMI) 
for prediction, the XGBH model works optimally with an AUC of 0.803 (95% CI: 0.795 to 0.0.810), then using 
the top 3 (ap_hi, chol, age) features in terms of influence for prediction, the XGBH model predicts still had 
an optimal AUC of 0.799 (95% CI: 0.793 to 0.807). The results show that when the XGBH model uses the top 
5 features for prediction, it can achieve the best results among the four models, and when reducing from five 
features to three features, the AUC only decreases from 0.803 to 0.7999, indicating that ap_lo, BMI provides 
less contribution to the increase of model accuracy. All things considered, we used only three questions (1. the 
value of systolic blood pressure? 2. is cholesterol normal? 3. what is the age?) of the questionnaire will allow for 
an accurate CVD risk assessment.

To consider the clinical benefits of XGBH and compare the application effects of different features in diagnos-
ing cardiovascular diseases, this paper uses Net Benefit as the vertical coordinate and High-Risk Threshold as the 
horizontal coordinate and draws the DCA curves of 1 feature and 3 features combined to diagnose cardiovascular 
diseases, as shown in the Fig. 3. The value of the High-Risk Threshold is set to (0, 1); None and All represent 
two extreme cases, None means that all people do not suffer from cardiovascular disease, and Net Benefit is 0 
regardless of the value of the High-Risk Threshold; All means that all people suffer from cardiovascular disease, 
and Net Benefit changes with the High-Risk Threshold. From the figure, we can see that the Net Benefit is greater 
than 0 when the High-Risk Threshold is 0.15–0.85, which is clinically significant. And the smaller the value of 
the High-Risk Threshold between 0.15 and 0.85, the higher the Net Benefit, the greater the clinical significance.

To further show the diagnostic value of the combination of the three characteristics for the diagnosis of 
cardiovascular disease, we assumed that there were 1000 patients to get the predicted number of people suffer-
ing from cardiovascular disease using the XGBH method and compared with the actual number to get the risk 
stratification. We plotted the CIC curve, and from the Fig. 4 we can see that the predicted and actual values are 
closer when the High Risk Threshold is greater than 0.4. the predicted cardiovascular disease using the XGBH 
method is generally consistent with the actual.

Scorecard model. Although feature importance assessment of machine learning models can build a simple 
model using a small number of high importance features, the model can only determine if there is a patient with 
cardiovascular disease, and the risk of disease is not accurately predicted. Based on the nomograms, the score 
of each predictor can be obtained, and the sum of the scores of all points is the total score of that patient, and 
the predicted probability corresponding to the total score is the predicted probability of having cardiovascular 
disease in that patient. In this paper, the XGBH model was constructed using three features and visualized by 
a nomogram. The length of the line segment as shown in Fig. 5 reflects the contribution of the factor to the 
outcome event, and from the nomogram, it can be seen that the features with the highest to lowest impact on 
cardiovascular disease are: ap_hi, age, and cholesterol. and the higher the ap_hi value, the older the age, the 
higher the risk of cardiovascular disease.

Table 3.  Feature importance of each prediction. The value of weight plus or minus represents the half of 95% 
confidence interval length. The larger the feature weight, the greater the feature predictability, and the negative 
weight represents an inhibitory effect on prediction.

Model LogisticRegression Random Forest XGBoost XGBH

1 Ap_hi (0.1383 ± 0.0070) Ap_hi (0.1326 ± 0.0028) Ap_hi (0.13750 ± .0065) Ap_hi (0.1406 ± 0.0047)

2 Weght (0.1218 ± 0.0056) Chol (0.0302 ± 0.0052) Chol (0.0321 ± 0.0050) Chol (0.0358 ± 0.0034)

3 BMI (0.0473 ± 0.0030) Age (0.0239 ± 0.0058) Age (0.0268 ± 0.0030) Age (0.0276 ± 0.0043)

4 Height (0.0434 ± 0.0050) Active (0.0024 ± 0.0016) Ap_lo (0.0059 ± 0.0007) Ap_lo (0.0063 ± 0.0007)

5 Age (0.0319 ± 0.0079) Ap_lo (0.0023 ± 0.0026) BMI (0.0045 ± 0.0026) BMI (0.0036 ± 0.0023)

6 Chol (0.0012 ± 0.0008) Smoke (0.0008 ± 0.0017) Active (0.0020 ± 0.0011) Active (0.0034 ± 0.0017)

7 Smoke (0 ± 0.0000) Gender (0.0002 ± 0.0043) Height (0.0018 ± 0.0015) Gender (0.0016 ± 0.0010)

8 Alco ( − 0.0000 ± 0.0001) Alco ( − 0.0000 ± 0.0008) Gender (0.0014 ± 0.0009) Gluc (0.0015 ± 0.0011)

9 Active ( − 0.0001 ± 0.0004) Gluc ( − 0.0012 ± 0.0014) Smoke (0.0012 ± 0.0009) Smoke (0.0012 ± 0.0005)

10 Gluc ( − 0.0001 ± 0.0003) BMI ( − 0.0092 ± 0.0022) Weight (0.0010 ± 0.0024) Weight (0.0010 ± 0.0007)

11 Gender ( − 0.0002 ± 0.0003) Height ( − 0.0100 ± 0.0049) Aclo (0.0003 ± 0.0003) Height (0.0010 ± 0.0012)

12 Ap_lo ( − 0.0003 ± 0.0006) Weight ( − 0.0125 ± 0.0023) Gluc (0.0002 ± 0.0005) Aclo (0.0004 ± 0.0006)
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We plotted calibration curves for evaluating the effect of the nomograms. As shown in the Fig. 6, the Y-axis 
is the actual probability of developing cardiovascular disease, the X-axis is the probability of developing cardio-
vascular disease predicted by the model, the diagonal dashed line (Ideal line) indicates the prediction of the ideal 
model, and the light blue solid line indicates the performance of the nomograms, where the closer to the diagonal 
dashed line indicates the better prediction performance. The Bais-corrected line represents the performance of 
the XGBH model trained by repeated self-sampling, which corrects the overfitting situation. When the predicted 
probability is less than 0.46, the predicted value risk is greater than the actual risk; when it is greater than 0.46 and 
less than 0.8, it indicates that the predicted value risk is less than the actual risk; when the predicted probability 
is greater than 0.8, the predicted value risk is greater than the actual risk. Overall, both the calibration curve and 
the clinical decision curve indicate that the XGBH model built using the three characteristics has high clinical 
application in predicting the occurrence of cardiovascular disease.

Figure 2.  ROC curve, compare the AUC of the four models with different characteristics.

Figure 3.  DCA curves for the combined diagnosis of cardiovascular disease with three features.
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Conclusion
In summary, this study shows that the XGBH model proposed in this paper requires only three characteristics (1. 
systolic blood pressure 2. normal cholesterol 3. age) to provide a more accurate risk assessment for CVD. It also 
outperforms the previous baseline model in terms of model performance and computing time. In conclusion, 
the method proposed in this paper is more accurate than the existing XGBoost model and is more suitable for 
predicting CVD risk in a wider range of patients by providing only three indicators of the patient for accurate 
prediction.

Figure 4.  Clinical impact curves.

Figure 5.  Representation of the XGBH static nomogram.

Figure 6.  Calibration curve for XGBH.
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Discussion
In this work we propose an XGBH model for cardiovascular disease risk prediction based on the main con-
tributing features. The XGBH model in this paper reduces the number of samples and features without loss of 
accuracy by introducing the histogram idea. The XGBH model compensates for the disadvantages of XGBoost 
in terms of longer training time and larger memory consumption in use, and shows better prediction perfor-
mance. Our proposed model achieves the best results in all four evaluation metrics compared to the other four 
machine learning models logistic regression, linear classification support vector machine, random forest and 
XGBoost, with AUC,Precision reaching 0.8059 and 0.7578 respectively. The XGBH model predicts the likelihood 
of CVD occurrence by applying the ML algorithm to treatment data from 70,000 patients in Europe and Asia. 
The strength of this paper’s study is that with increasing health awareness, most people undergo health screen-
ing every 1-2 years, which has contributed to the availability of treatment data for patients. As the prediction 
model is based on retrospective patient data only, we can use the ML algorithm for simpler and more effective 
CVD prediction. This approach avoids the additional cost and burden of collecting baseline data compared to 
traditional CVD prediction models.

Predictive analyses of the risk of disease in cardiovascular patients have been performed in several previous 
studies, but these were all studies of European patient data, which resulted in models that did not accurately pre-
dict in Asian cardiovascular patients due to geographical differences and differences in characteristic information. 
In contrast, in this study we used a hospital dataset containing data from the real Bethune Hospital in Shanxi, 
China, including 1913 inpatients with a total of 14,832 medical records, so the results can be more widely applied. 
Also, the importance of missing values or non-response is not usually assessed when developing conventional 
cardiovascular disease risk prediction  tools20. This study suggests that the inclusion of conventional biometric 
variables such as BMI, in particular, will also improve the accuracy of CVD risk prediction.

We further analysed the features affecting CVD prediction in more depth, and by comparing the feature 
importance of the four machine learning models we found that the models with higher prediction accuracy 
were ranked more closely in terms of feature importance. The two models with the best prediction accuracy, 
XGBoost and XGBH, had the same top five important features, and systolic blood pressure (Ap_hi) showed the 
greatest feature weighting in all prediction results, indicating that systolic blood pressure was the most predic-
tive feature for CVD.

Several limitations of this study should be mentioned. Firstly, the cardiovascular disease risk prediction study 
did not include some long text information, which is important for healthcare professionals when diagnosing a 
patient’s condition, and this could be extracted using techniques such as natural language processing (NLP) to 
extract useful information from the long text data, which would allow for more accurate prediction models to be 
constructed and further improve the predictive performance of the models.Secondly, no cholesterol thresholds 
were disclosed and therefore we were unable to accurately assess the effect of specific cholesterol values on car-
diovascular disease. Third, the outliers ap_ho and ap_hi that appeared in the original dataset were not addressed, 
as attempts to remove the outliers reduced the accuracy of the model. Fourth, the feasibility and acceptability 
of the new three-question risk assessment model proposed in this paper has not been further investigated in 
clinical practice.

Moreover, the current study uses a range of machine learning algorithms, which shows an interesting variation 
in the importance of different risk factors depending on the modelling technique. Decision tree-based models 
are very similar to each other, and gradient boosters outperform random forests. Neural networks and logistic 
regression place more emphasis on categorical variables and CVD-related medical conditions, clustering patients 
with similar characteristics across groups. This may help to further explore various predictive risk factors and 
the development of new risk prediction methods and algorithms in the future.

In conclusion, we believe that the work in this paper allows for accurate CVD prediction based on a small 
number of characteristics of European and Asian patients. These results may have many implications for the 
subsequent treatment of patients. Our predictive model could form the basis of a selective screening process for 
CVD diagnosis to prevent the development of CVD and its associated adverse health outcomes. Future prospec-
tive studies and research with other populations are needed to assess the clinical impact of the model.

Methods
Data. The dataset used in this study contains a total of 70,000 samples. They are 14,832 data of Shanxi Bet-
hune Hospital and 55,168 datasets of cardiovascular diseases of kaggle competition, respectively.In this paper, we 
collected the same data format as the kaggle competition. Each sample has 12 dimensions of features, including 
four objective features (age, height, weight, gender), four inspection features (Ap_hi,Ap_lo,Chol,Gluc), three 
subjective features (Smoke,Aclo,Active) and one target feature (Cardio).The dataset contains 35,021 health sam-
ples, accounting for 49.97% of the total, and 34,979 disease samples, accounting for 50.03% of the total.The 
hospital dataset was derived from the data of cardiovascular disease patients stored in Bethune Hospital in 
Shanxi, China during 2017–2020. The hospital data contains 1913 inpatients, 8179 sick samples and 6653 healthy 
samples, for a total of 14,832 medical data.

Our hospital dataset is focused on inpatients and includes both structured and unstructured data.Structured 
data includes laboratory data and basic patient information, such as age, gender and lifestyle. Unstructured text 
data include patient’s self-report of condition, physician’s questioning and diagnosis results.Since the hospital 
dataset is entirely Asian, using only this part of the data may result in less accurate prediction of CVD risk in 
European populations.We therefore added 55,168 kaggle competition cardiovascular disease datasets to the 
hospital dataset.Objective characteristics include height and weight characteristics, so a new characteristic of 
BMI was constructed. The detailed characteristic information is shown in Table 4.
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The study protocol was approved by the Shanxi Bethune Hospital (Shanxi Academy of Medical Sciences) 
Medical Ethics Committee (approval number: YXLL-2022-094), and the methods used in this study were con-
ducted in accordance with the approved guidelines. Participants were informed of the objectives and methods 
of the study, informed consent was obtained from the participants or their guardians by written signature or 
thumbprint, and they could withdraw from the study at any time without giving any reason.

XGBH model. XGBH is a fast high-performance gradient enhancement framework, a tree-based learning 
 algorithm21. In this paper, by comparing four machine learning models (logistic  regression22, linear support vec-
tor  machine23, random  forest24, and  XGBoost25), the best performing XGBoost model was chosen as the base 
model. XGBH introduces a histogram algorithm (Histogram)26 based on XGBoost, and since in previous stud-
ies, XGBoost used a pre sorting method to deal with node splitting, so that the calculated split points are more 
accurate. However, the training time is long and the memory usage is large in the process of use. The basic idea of 
the Histogram algorithm is to split the continuous data of each feature into k boxes, i.e. each box is divided into 
a certain number of data, thus the original continuous data becomes discrete box data. The k discrete boxes are 
then used to construct a histogram of the k features. As a result, the original need to traverse all the sample points 
to find the segmentation points becomes a search between boxes, speeding up the rate and reducing memory. 
And using the histogram to discretize the values of the features will not lose accuracy but will have the effect of 
regularization, improving the generalization ability of the algorithm. The specific implementation process is as 
Algorithm 1: 

Table 4.  Characteristics of the dataset. BMI = Height / (Weight * Weight).

Variable type Feature Value type Feature meaning

Objective

Age Int (years) Count in years

Height Int (cm) Count in centimeters

Weight Float (kg) Count in kilograms

BMI Float (kg/m2) Body mass index

Gender Categorical code 1: women, 2: men

Examination

Ap_hi Int (mmHg) Systolic blood pressure

Ap_lo Int (mmHg) Diastolic blood pressure

Chol Categorical code Cholesterol 1: normal, 2: above normal, 3: well above normal

Gluc Categorical code Glucagons 1: normal, 2: above normal, 3: well above normal

Subjective

Smoke Binary Whether patient smokes or not

Aclo Binary Alcohol intake

Active Binary Physical activity

Target variable Cardio Binary Presence or absence of cardiovascular disease
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From the algorithm:the histogram optimisation algorithm needs to pre-transform the feature values into bin 
values before training,make a segmentation function on the values of the features,divide the values of all samples 
on that feature into a certain segment (bin), and finally discrete the values of the features.

Where H[f.bins[i]].g is the sum of the gradients of the samples in each bin,H[f.bins[i]].n is the number of 
samples in each bin, SL , SR , SP represents the gradient sum on the left side of the current bin, the gradient sum 
on the right side,and the total gradient sum, nL , nR , and nP represent the number of samples on the left side,the 
right side and the total number of samples.

Feature screening and model evaluation. As AI-based predictive models are often black-box models, 
using them for prediction is often limited by the difficulty of analyzing the causal relationship between risk fac-
tors and disease occurrence. Ideally, models are used to provide actionable recommendations for prevention, 
and the interpretation of what needs to be improved to change an adverse state or identify early risk determines 
the model’s usefulness. In clinical practice, existing methods require patients to test for more indicators, which 
increases the burden of use and inconvenience to patients due to the number of indicators required and the 
complexity of sampling. Interpretable analysis of machine learning models can capture the most influential few 
features, from which simpler predictive models can be constructed. Therefore, we need to use machine learning 
models to assess the importance of features in the dataset and to filter them. The basic idea of feature importance 
 assessment26 is to calculate the degree of decline in the model performance score by randomly ranking a certain 
feature, with the more fluctuating values playing a more important role. The specific method is as Algorithm 2.

Ŷrepresents the target vector predicted after training. Finally, the importance of each feature can be obtained 
through the ordered F Ijwhich is helpful for our subsequent experiments.

This paper’s performance in predicting CVD and datasets is quantitatively evaluated by area under the ROC 
curve (AUC), recall, precision, and F1score. These metrics will help to identify where the model fails to predict 
correctly. Some terms help us to calculate these metrics. They include True Positive (TP), which indicates that 
a positive is correctly identified as a positive. Negative (TN) indicates that a negative is correctly identified as a 
negative. False Positive (FP) indicates that a negative is incorrectly identified as a positive, and False Negative 
(FN), See Formula 1, 2, 3 for details.

In this paper, using the benign sample group as negative and the malignant sample group as positive, with 
False Positive Rate as the horizontal coordinate and True Positive Rate as the vertical coordinate, ROC was plot-
ted by SPSS software under four models (LogisticRegression, Random Forest, XGBoost, XGBH) curves, and 
the AUCs of 1 feature, 3 features, and 5 features for predicting cardiovascular disease were analyzed. In order 
to consider the clinical benefits of XGBH and compare the application of different kinds of features to diagnose 
cardiovascular diseases, the DCA curves of 1 feature and 3 features combined to diagnose cardiovascular diseases 
were plotted to evaluate the practical value of the models.

Ethical approval and informed consent. Ethics approval was granted by the Shanxi Bethune Hospi-
tal (Shanxi Academy of Medical Sciences) Medical Ethics Committee (approval number: YXLL-2022-094). 
Informed consent was obtained from all individual participants included in the study.

Data availability
Some of the data analyzed during the this study are included in the Supplementary Information File and the full 
data are available upon reasonable request by contacting the corresponding author.

(1)Recall = Sensitivity =
TP

TP+ FN

(2)Precision = PPV =
TP

TP+ FP

(3)F1-score =
2TP

2TP+ FP+ FN
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