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Abstract
ABCG46 of the legume Medicago truncatula is an ABC-type transporter responsible for highly selective translocation of 
the phenylpropanoids, 4-coumarate, and liquiritigenin, over the plasma membrane. To investigate molecular determinants of 
the observed substrate selectivity, we applied a combination of phylogenetic and biochemical analyses, AlphaFold2 structure 
prediction, molecular dynamics simulations, and mutagenesis. We discovered an unusually narrow transient access path to the 
central cavity of MtABCG46 that constitutes an initial filter responsible for the selective translocation of phenylpropanoids 
through a lipid bilayer. Furthermore, we identified remote residue F562 as pivotal for maintaining the stability of this filter. 
The determination of individual amino acids that impact the selective transport of specialized metabolites may provide new 
opportunities associated with ABCGs being of interest, in many biological scenarios.
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Introduction

ATP-binding cassette (ABC) transporters are prominent 
proteins that translocate molecules through biological 
membranes using ATP as a source of energy [1]. Members 
of the ABC family are common in all domains of life, but 
plant genomes are exceptionally rich in genes encoding 

them [2, 3]. Taking into account their structure and phylo-
genetic relationships, most ABC proteins have been clas-
sified into eight subfamilies, designated ABCA-ABCH 
[4]. The particularly numerous plant ABC transporters 
translocate diverse molecules, such as lipids, phytohor-
mones, carboxylates, heavy metals, chlorophyll catabo-
lites, and xenobiotic conjugates, across various biological 
membranes [5]. In this manner, they participate in diverse 
processes, including organ growth, nutrition, development, 
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responses to abiotic stresses, as well as both symbiotic and 
antagonistic relationships [2, 6, 7].

Especially abundant in plants are genes encoding so-
called full-size ABCG transporters. A full-size ABCG 
transporter is a single polypeptide forming two trans-
membrane domains (TMDs), which constitute a mem-
brane-spanning region, and two cytosolic domains called 
nucleotide-binding domains (NBDs). Depending on the 
transporter subfamilies, single TMD has five to ten trans-
membrane α-helices. Full-size members of the G family 
are characteristic for plants and fungi and distinct in their 
reverse organization of domains in the subunits namely 
NBD1-TMD1-NBD2-TMD2 [4, 8]. Moreover, in com-
parison to thoroughly studied ABCB proteins, where 
α-helices-forming TMDs represent a so-called domain 
swap arrangement, ABCG transporters revealed a differ-
ent TMD organization, in which not individual helices but 
the entire TMD rotates as a solid body during the transport 
of molecules [9]. Full-size ABCGs were initially identified 
in Saccharomyces cerevisiae and the clinically relevant 
fungus, Candida albicans. They were described as pleio-
tropic drug resistance (PDR) proteins because they can act 
as efflux pumps, removing diverse molecules from these 
unicellular organisms, including exogenously applied 
drugs used in medical treatments, thus conferring resist-
ance against large sets of chemicals [10]. Consequently, 
PDR proteins have attracted interest of biotechnologists 
and medical scientists. However, despite strenuous efforts, 
we still have limited understanding of molecular bases of 
their action.

Characterized plant full-size ABCGs include proteins 
that can transport several molecules that are not neces-
sarily related but are usually endogenous metabolites. For 
instance, ABCG37 of Arabidopsis thaliana is involved in 
translocation of the auxin precursor, indolyl-3-butyric acid 
(IBA) [11], and the phenolic compound scopoletin [12, 13]. 
Arabidopsis ABCG36/PEN3/PDR8 transports, among oth-
ers, IBA, the Brassicales-specific phytoalexin camalexin, 
heavy metals, and possibly monolignols [14–21]. However, 
despite initially considered as functional homologs of yeast 
multidrug pumps, at least certain plant full-size ABCG pro-
teins appear to be selective toward translocated molecules. 
The specialization is proposed to be a consequence of a 
sophisticated chemodiversity exemplified by specialized 
metabolism that requires tightly controlled distribution of 
metabolites via dedicated transporters [3, 5].

Phenylpropanoids are a large class of specialized plant 
metabolites with many important roles in plant biology, 
medical applications, and industrial uses [22]. ABCG46 
(formerly known as ABCG10) of the legume Medicago 
truncatula, which is required for efficient de novo pro-
duction of the phenylpropanoid-derived phytoalexin 
medicarpin, selectively translocates 4-coumarate and 

liquiritigenin. Notably, structurally similar phenylpro-
panoids like naringenin, isoliquiritigenin, and 7,4′-dihy-
droxyflavone are not transported by MtABCG46 [23, 24].

Despite the recent progress in structural research 
regarding ABCG proteins [25–29], progressing from 
static atomic structures to an understanding of molecular 
mechanisms behind the substrate recognition and transport 
has been challenging [30]. This is partly because of the 
difficulty in obtaining experimental data at atomic detail, 
but also because of the lack of efficient sampling of the 
intricate process of a complete transport cycle. Fortu-
nately, AlphaFold2 [31] has proven utility for addressing 
the first of these problems by providing accurate 3D struc-
tures of proteins from the amino acid sequence, even for 
large transmembrane hydrophobic proteins that are diffi-
cult to crystalize [32]. Structurally, although the complete 
transport process is still elusive, it is accepted that ABCG 
exporters start this process with an inward-facing (IF) con-
formation that allows substrate migration to the central 
cavity. The protein then undergoes large structural rear-
rangements to an outward-facing (OF) conformation, ena-
bling release of the substrate to the extracellular environ-
ment. Binding, hydrolysis, and release of ATP as well as 
substrate recognition followed by its migration contribute 
to the intricacy of the overall transport process [28, 29].

So far, due to its clinical importance—as connected 
to the multidrug resistance—a non-selective transporter 
HsABCG2 is one of the most studied proteins from the 
G subfamily. Obtained HsABCG2 cryo-EM data provide 
some structure–function insights. For instance, it enabled 
for the identification of the short loop after TMD helix 5 
called the valve/plug. The latter is proposed as an impor-
tant structural element regulating conformation-dependent 
substrate release from the central (binding) cavity and pre-
venting substrate reflux [29, 33]. Furthermore, previous 
simulation work has highlighted the valve region as cru-
cial for substrate binding, structurally dividing the protein 
interior into two cavities, which are accessible at different 
stages of the transport process and permeable for at least 
some substrates with energy costs not greater than hydrol-
ysis of an ATP molecule [33–35]. Also, highly conserved 
residues located in TMD helix 2 were found to be vital 
for trapping the substrate within the central cavity [36]. 
However, the molecular details behind the substrate rec-
ognition still remain unclear, as well as whether those are 
analogous within the structurally and functionally diverse 
group of ABCG transporters.

Using a combination of phylogenetic and biochemi-
cal analyses, AlphaFold2 structure prediction, molecular 
dynamics simulations, and mutagenesis, we have identi-
fied a transient access path in MtABCG46 that is directly 
involved in the recognition and passage of 4-coumarate and 
liquiritigenin through the plasma membrane. Moreover, we 
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have identified F562 as a critical residue for the architecture 
of this access path responsible for selective transport.

Materials and methods

Plant material

Nicotiana tabacum Bright Yellow 2 (BY2) suspension cell 
cultures [37] were grown in Murashige and Skoog medium 
supplemented with 2.72 mM  KH2PO4, 0.56 mM myoinosi-
tol, 3 μM thiamine, 0.9 μM 2,4-dichlorophenoxyacetic acid, 
and 87.64 mM sucrose, in the dark at 26 °C on an orbital 
shaker (130 rpm), and diluted 1:5 every week.

Genetic constructs

All genetic constructs were based on the pMDC43 vector, 
carrying a GFP tag sequence [38]. p35S::GFP-MtABCG46 
construct as well as particular mutants of p35S::GFP-
MtABCG46 were generated by GenScript. All plasmid 
constructs were confirmed by DNA sequencing.

Plant transformation

Stably transformed BY2 cells were generated by co-cultiva-
tion of 5-day-old BY2 suspension cells with Agrobacterium 
tumefaciens strain AGL1 [39] carrying the pMDC43 vector 
containing a particular variant of the MtABCG46 sequence 
or the empty pMDC43 vector, as previously described [24].

Confocal microscopy

Five-day-old suspension cell cultures overexpressing GFP-
fused MtABCG46 variants were observed by laser scan-
ning confocal microscopy (with a Leica TCS SP5 AX v.2.7 
instrument). Plasma membranes of sampled cells were 
stained with FM4-64 (ThermoFisher Scientific) accord-
ing to the manufacturers’ protocol, no fixation was applied. 
Obtained pictures were analyzed using Leica LAS AF 
software. Fluorescent signals from GFP and FM4-64 were 
pseudo-colored in green and magenta, respectively. The 
excitation wavelength for GFP and FM4-64 was 488 nm. 
Fluorescence signals were collected at 485–547 nm (GFP) 
and 570–650 nm (FM4-64).

Preparation of plasma membrane vesicles

Microsomal fractions were isolated from 12 g portions of 
BY2 suspension cell cultures as previously described [40]. 
Plasma membrane fractions of the microsomal isolates were 
enriched by partitioning in an aqueous two-phase system, 
also as previously described [41]. The quality of obtained 

microsomes was tested with 9-amino-6-chloro-2-methoxy-
acridine (ACMA; Invitrogen A1324) fluorescence quenching 
assays.

Transport analysis with plasma membrane vesicles

The transport of phenolic compounds uptake was studied 
by the rapid filtration technique with 4-coumarate, liquir-
itigenin, isoliquiritigenin, 7,4′-dihydroxyflavone, and the 
plasma membrane microsomes using nitrocellulose filters 
(0.45 mm pore-size; Millipore). The transport assays were 
performed with microsomes corresponding to 520 ng μL−1 
protein concentration mixed with transport buffer (10 mM 
Tris–HCl, 10 mM EDTA, 10% sucrose, pH 5.0), the selected 
phenolic (750 μM), 100 μg  mL−1 creatine kinase, 10 mM 
creatine-phosphate, and 1 mM of  MgCl2, in the presence 
and absence of 4 mM ATP. After 3 min incubation at 24 °C, 
0.3 mL of each reaction mixture was immediately loaded on 
a prewetted filter and rapidly washed with 10 mL of ice-cold 
transport buffer. The filters were air dried for an hour, and 
then incubated in 80% MetOH with 0.1% formic acid. Phe-
nolic compounds were extracted by adding chloroform:water 
mixture (1:0.25 sample volume) to the sample and cen-
trifugation for 30 min in 13,200 rpm. The dried samples 
were dissolved in 80% methanol and subjected to HPLC/
MS analyses, as described below. For competition assays, 
tested molecules were added, each at 750 μM, together to the 
transport buffer. Experiments were repeated three times with 
independent vesicle preparations unless stated otherwise.

HPLC/MS analysis

Samples were analyzed by liquid chromatography–elec-
trospray ionization–tandem mass spectrometry (LC/ESI/
MS) using a Waters UPLC Acquity system, equipped with 
a C18 RP column, connected to a Bruker micrOTOF-Q II 
mass spectrometer. The mobile phase consisted of a gradi-
ent of 0.5% formic acid (v/v) in water (A) and 0.5% formic 
acid (v/v) in acetonitrile (B). The m/z range of the recorded 
MS spectra was 50–1000. The MS was operated in positive 
and negative ion modes for phenolics and carboxylic acids, 
respectively.

Multiple sequence alignment and data filtering

To select full-size ABCG from multiple groups of plants, we 
subjected One Thousand Plant Transcriptomes (1KP) tran-
script data (https:// db. cngb. org/ onekp/) [42, 43] to tBLASTn 
searches using MtABCG46 as a query sequence with an 
E-value cutoff of 1e−5. Next, 26,889 1KP samples longer 
than 1000 bp were translated into six frames using software 
written in Visual C#. The longest ORFs starting with the 
ATG codon, after excluding the duplicates, were selected 

https://db.cngb.org/onekp/
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and further verified, by a BLASTp search against known 
ABC transporters belonging to different subfamilies was 
conducted. One thousand eight hundred and thirty-nine 1KP 
samples were assigned to a full-size ABCG subfamily with 
over 70% coverage and an E-value of 0.0, and used for the 
subsequent analysis. Multiple sequence alignment (MSA) 
of the full-size ABCG amino acid sequences was performed 
using the MUSCLE algorithm [44] in MEGA X [45]. For 
conservation analysis, complete alignment of predicted 
amino acid sequences of 1576 plant full-size ABCG trans-
porters was submitted to the ConSurf server with default 
settings [46, 47]. We also submitted extracted taxa-specific 
alignments (66, 205, 91, 388, and 725—green alga, bryo-
phyte, pteridophyte, monocots, and core eudicot sequences, 
respectively) to the ConSurf server, and subjected the com-
plete alignment (1576 sequences) to co-evolution analysis 
using the Gremlin server [48, 49] with default settings.

Modeling of the 3D structure

The amino acid sequence of the ABCG46 transporter of 
Medicago truncatula was obtained from the UniProt data-
base (accession no. A0A396JDZ5), and submitted to a local 
installation of AlphaFold2 v2.1.0 using the default settings 
[31]. The resulting models were evaluated using the pLDDT 
score [31] and PROCHECK software [50].

To define positions of the  Mg2+ ions, experimental struc-
tures of ABCG2 from Homo sapiens (PDB ID: 6hbu) and 
Pdr5 from Saccharomyces cerevisiae (PDB ID: 7p06) were 
employed as templates. The NBD region of the model and 
experimental structures were superimposed using TM-align 
software [51], and positions of the  Mg2+ ions were copied to 
the model. For the ATP molecules, the NBD regions were 
also superimposed, but coordinates of the ATP atoms were 
not used directly. Instead, a docking box enclosing the mol-
ecules was built, then AutoDock Vina v1.1.2 [52] was used 
to determine their most suitable positions. Mutations at resi-
due F562 to alanine, leucine, and tyrosine were performed 
with the tleap module of the Amber20 package [53], and one 
system of the wild-type protein was built without ATP and 
 Mg2+ ions as an apo variant.

Molecular dynamics (MD) simulations

The protein model was protonated with the H++ server [54] 
at pH 7.0. The protonated protein was embedded in a 1-pal-
mitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid 
bilayer using the CHARMM-GUI server with integrated 
PPM 2.0 method to obtain the system's coordinates in PDB 
format [55–59]. For the system, the size of the simulation 
box was set to 130 Å, with water thickness of 15 Å, and 
KCl salt concentration of 0.1 M. Further ATP molecules and 
 Mg2+ ions were inserted as described above and the PDB file 

was converted to AMBER parameters and topology using 
tleap module of Amber20 package [53]. The water model 
employed was OPC [60], and the HMR [61] method was 
used to enable 4 fs simulation timesteps. The MD engine 
employed was Amber20 [53] with the pmemd GPU imple-
mentation [62], the ff19SB force field [63] was used for the 
protein, lipid17 for the POPC membrane, and previously 
presented parameters for the ATP molecules [64]. The sys-
tem was minimized with 2500 steps of steepest descent, fol-
lowed by 2500 steps of conjugated gradient, applying only 
positional restraints to the protein, ATP, and  Mg2+ ions, but 
positional and dihedral restraints to the membrane (Supple-
mentary Table 1). After the minimization, a series of 1 ns 
NVT and NPT equilibration simulations with Langevin 
thermostat and Monte Carlo barostat used as appropriate 
was employed to release restraints applied on the system 
(Supplementary Table 1). After the equilibration stage, an 
extra 100 ns NPT equilibration simulation was applied in 
which restraints were only maintained for the  Mg2+ and 
ATP molecules (Supplementary Table 1). Finally, 100 ns 
unrestrained NPT simulation to fully equilibrate the system 
was performed, followed by a production phase of 400 ns 
unrestrained NPT simulation (Supplementary Table 1). For 
every variant considered, five replicas of the production 
phase were simulated.

To simulate conversion to more open IF conformation, 
umbrella sampling (US) [65] was employed on all protein 
variants with two aims: to obtain the structures in their IF-
open conformations and study the dynamics in that confor-
mation, and to evaluate the energetic cost of the opening 
process. Both processes employed the same procedure and 
input structures, varying in the biasing potential and simu-
lation time for each umbrella. The open ScPDR5 structure 
with bound rhodamine 6G substrate was used as the target 
(PDB ID: 7p05). The US simulations were performed with 
the Amber20 package, using the RMSD to backbone atoms 
of the transmembrane helices of the target as the collective 
variable (Supplementary Fig. 1). For each variant, the US 
simulations were initiated from the structures exhibiting the 
lowest RMSD to the backbone atoms of the transmembrane 
helices of the target. Following, the ATP molecules of each 
system were replaced by ADP molecules present in the tar-
get structure, and the parameters were modified accordingly 
[64]. The systems were minimized with 1000 steps of steep-
est descent, followed by 1000 steps of conjugated gradient. 
Next, 250 ps of equilibration with NPT simulation were per-
formed at 303.15 K and 1 bar using Langevin thermostat and 
Monte Carlo barostat. The US protocol to obtain IF-open 
structures consisted of 22, 21, 22, and 24 simulation win-
dows for WT, F562L, F562Y, and F562A, respectively, equi-
distantly positioned (step 0.1 Å RMSD) along the collective 
variable until the target RMSD of 0 Å. For each window, a 
1 ns NPT simulation was performed at 303.15 K and 1 bar 
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using the Langevin thermostat and Monte Carlo barostat 
and the force constant of 1000 kcal  mol−1 Å−2. At the end 
of the US runs, the final structures for each variant were 
used in MD simulations that followed the same simulation 
protocol described earlier. For each variant, 100 ns of MD 
without restraints was performed as the equilibration stage, 
followed by five replicates with 400 ns of unrestrained MD 
as the production stage. To evaluate the energetic cost of 
transition from IF-closed to IF-open states in each variant, 
three opening simulations were performed with 1, 2, and 
4 ns of simulation time per window. In these US simulations, 
the RMSD step for each window was reduced to 0.02 Å to 
guarantee sufficiently large overlaps between windows for 
later analysis, using the following force constants: 500 kcal 
 mol−1 Å−2, and increased to 1000 kcal  mol−1 Å−2 from 1.7 
to 1.40 Å RMSD, resulting in 36, 31, 36, and 46 simula-
tion windows for WT, F562L, F562Y, and F562A, respec-
tively. The potential of mean force was calculated with the 
weighted histogram analysis method [66] implemented by 
Grossfield, in version 2.0.11 [67] (http:// membr ane. urmc. 
roche ster. edu/? page_ id= 126).

Access path detection, classification, and selection

For path computation and detection, CAVER v3.0 software 
[68] was employed with a 0.9 Å probe radius, 6 Å shell 
radius, and 4 Å shell depth. For clustering, the average-link 
hierarchical algorithm was used, the maximum number 
of clusters was set to 50, and clustering threshold to 3.5. 
The starting position of the CAVER calculation was set to 
employ the center of mass of residues 562, 566, 1213, and 
1217. Subsequently, TransportTools software v0.9.0 [69] 
was used to obtain a comprehensive and comparative view 
of the path network across all variants sourced from all con-
verged CAVER calculations. In TransportTools, the cluster-
ing method was set to complete with a clustering cutoff of 
0.5 Å for the analysis of the wild-type protein, then switched 
to the average method for the comparison of all variants in 
IF-closed and IF-open states simultaneously using cluster-
ing cutoffs of 2.0 and 0.5 Å, respectively, while all other 
parameters were left as default. The candidate selected as 
the correct access path was further sorted by the bottleneck 
radius and the 100 widest paths of each variant were used 
in the analysis and further ligand migration experiments.

Ligand migration and energy barrier calculation

To study the capability of each variant to transport the 
four tested phenolic compounds, molecular docking across 
selected paths was performed with CaverDock software v1.1 
[70]. 3D structures of the ligands of the four compounds 
were obtained from the PubChem database: liquiritigenin 
(CID 114829), isoliquiritigenin (CID 638278), 4-coumarate 

(CID 637542), and 7,4′-dihydroxyflavone (CID 5282073), 
then the MGLTools v1.5.6 [71] was used to prepare the 
files for CaverDock with the prepare_ligand4.py script with 
the default settings. In the same way, all the snapshots of 
the MDs from the variants where a path was selected were 
processed with the prepare_receptor4.py script with default 
settings. The exhaustiveness for CaverDock runs was set to 
one, using a single CPU core per task whereas eight parallel 
workers unique to CaverDock algorithm were used to ena-
ble extensive sampling of each path segment [70]. Finally, 
the upper-bound trajectories describing continuous ligand 
migration were analyzed with in-house Python scripts.

Auxiliary analyses of data from MD simulations

Using the cpptraj [72] module of the Amber20 package, ini-
tially the heavy atoms’ root mean square deviation (RMSD) 
and the root mean square fluctuation (RMSF) of the whole 
system were calculated. However, since the main focus was 
the TMD region, separate RMSDs for specific regions were 
also calculated (Supplementary Fig. 2b and Supplementary 
Table 2). For the membrane, the lipid order parameters of 
lipid tails were evaluated together with the mass density 
with cpptraj to ensure the proper equilibrium behavior of 
the POPC membrane. To evaluate the behavior of the TMD 
helices forming the candidate access path, α helices 2, 5, 
8, and 11 were analyzed with the HELANAL module of 
MDAnalysis v2.0.0 [73, 74].

Statistical analyses

Statistical analyses were performed using GraphPad Prism 
software v9.0. The normality of distribution assumption was 
assessed for particular groups of values by Anderson–Dar-
ling, Shapiro–Wilk, and Kolmogorov–Smirnov normality 
tests. If data met normal distribution criteria, an unpaired 
t test with Welch's correction was applied. If data did not 
meet normal distribution criteria, non-parametric tests were 
applied (the two-tailed Mann–Whitney test or Kruskal–Wal-
lis test with post hoc Dunn’s multiple comparison test). P 
values obtained can be found in the Supplementary Statisti-
cal Data.

Results

The MtABCG46 model features an unusually 
occluded central cavity connected 
with the intracellular environment by a transient 
access path

The MtABCG46 model obtained from AlphaFold2 has 
good overall quality according to the pLDDT score [31], 

http://membrane.urmc.rochester.edu/?page_id=126
http://membrane.urmc.rochester.edu/?page_id=126
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with limited confidence for only a few regions (Supple-
mentary Fig. 2a). Moreover, these regions with the low 
pLDDT scores correspond to highly dynamic motifs in 
related ABCG proteins [26, 28, 29], for which single 
structures are hard to define. According to the template 

modeling score (TM-score) [51], the model has a very 
similar fold to the recent full-size PDR5 structure of 
Saccharomyces cerevisiae (ScPDR5) [28], human 
ABCG1 (HsABCG1) [26], and half-size human ABCG2 
(HsABCG2) [29] with TM-scores of 0.82, 0.72, and 0.66, 
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respectively (Supplementary Fig.  3). In the structure, 
the typical arrangement of domains in a full-size ABCG 
transporter is clearly visible (Supplementary Fig. 2b), with 
TMD regions, each composed of 6 α-helices, and the two 
half-size domains joined by a ~ 55-residue linker region. A 
comparison of central cavities of MtABCG46 and ScPDR5 
revealed a small disconnected cavity in the TMD region of 
MtABCG46 (Fig. 1a). In contrast, a wide-open cavity in 
the TMD region that directly connects with the cytosolic 
environment was observed in ScPDR5 (Fig. 1b).

To explore possible paths enabling access of cognate 
ligands into the central cavity, we analyzed molecu-
lar dynamics (MD) simulations for temporarily opened 
continuous internal voids formed within the MtABCG46 
structure using CAVER 3.0 [68] and TransportTools [69]. 
This revealed a network of putative transport paths from 
the bottom of the cavity to the intracellular, extracellular, 
and membrane regions (Supplementary Fig. 4a). To help 
identification of the likeliest localization of a functionally 
relevant entrance to such a path along the membrane’s 
Z-axis, we ran six independent MD simulations of sys-
tems composed of the endogenous MtABCG46 substrate, 
liquiritigenin, and a membrane. These simulations showed 
that liquiritigenin preferentially stayed between the heads 
and tails of the membrane phospholipids (Supplementary 
Fig. 4b, c). Consequently, among all paths that opened 
in this region, the most prevalent (open for ~ 9% of the 
total simulation time) was the third-ranked one (Sup-
plementary Table 3) with an average bottleneck radius 
of 0.97 ± 0.06 Å (Fig. 1e). This path provided the most 
straightforward access to the central cavity from the intra-
cellular region (Fig. 1c and Supplementary Fig. 4d). Inter-
estingly, an equivalent path was practically undetectable in 
simulations of MtABCG46 without bound ATP molecules 
(Supplementary Fig. 5). The remaining paths leading to 
the intracellular region were not considered due to their 
much lower frequency and much longer, curved geometry 
(Supplementary Table 4).

Phylogenetic analyses of residues of the MtABCG46 
central cavity

To investigate the importance of the architecture of internal 
voids in MtABCG46 for the passage of specific phenylpro-
panoids, we mapped residues contributing to the surface of 
the access path and central cavity during the MD simula-
tions (Supplementary Fig. 6). We hypothesized that varia-
tions in the recognition and transport of diverse molecules 
by various ABCG proteins may arise from differences in 
the amino acid sequences that form the cavity. Based on 
this assumption, we generated multiple sequence alignment 
(MSA) of predicted amino acid sequences of 1839 plant 
full-size ABCG transporters extracted from the 1KP pro-
ject [42, 43]. The latter collected transcriptomic data from 
more than 1000 species spanning a diversity of plant king-
dom. The sequences were analyzed using the ConSurf [46, 
47] and Gremlin [48, 49] servers. We then selected residues 
that contribute to the central cavity, are not fully conserved 
(ConSurf grade ≤ 8), and display variability that could not be 
readily explained by co-evolutional links with other residues 
(Fig. 2a).

One of the selected amino acids, residue F562 in TMD 
helix 2, particularly drew our attention due to its corre-
spondence to F431 in HsABCG2 (Fig. 2 and Supplementary 
Fig. 7), a putatively important residue for ligand recogni-
tion and binding [75]. Residue F431 is highly conserved 
in human ABCG transporters and fully conserved among 
ABCG2 homologs in several animal species (Fig. 2b, c). 
However, in plant full-size ABCG transporters, variations 
at the F562 position include amino acids such as tyrosine, 
leucine, and isoleucine (Fig. 2d). Intriguingly phylogenetic 
analyses revealed that the prevalence of amino acids other 
than phenylalanine at this position is significantly higher in 
seed plants than in non-seed plants (Fig. 2e). Notably, such 
expansion of variability in seed plants was not observed for 
other residues that directly contribute to the cavity surface 
(Supplementary Fig. 8). Since seed plants have a higher 
degree of chemodiversity, emphasized in associated special-
ized metabolism, this led to the conclusion that variability at 
this position might be meaningful for plant ABCG transport-
ers and/or possibly MtABCG46 selectivity.

F562 substitutions profoundly affect the selectivity 
of MtABCG46‑mediated transport

To address the importance of F562 for MtABCG46-medi-
ated transport of phenylpropanoids, we substituted it for the 
other two most frequent amino acids at this position in plant 
full-size ABCG transporters, tyrosine and leucine (Fig. 2e), 
as well as alanine. Alanine is often used in such analyses as 
it eliminates the sidechain beyond the β carbon, but does not 
alter the main-chain conformation [76].

Fig. 1  Structure and dynamics of the central cavity and its access 
path in MtABCG46. a Sliced surface side view of the MtABCG46 
model obtained from AlphaFold2 featuring an occluded central cav-
ity (indicated by a black rectangle). b Sliced surface side view of a 
cryo-EM structure of ScPDR5 (PDB ID: 7p04) with an open cavity 
(indicated by a black rectangle). c Structural representation of part of 
MtABCG46, showing the mutated residue F562 (in red sticks), the 
overall volume of the access path ensemble (green), and TMD heli-
ces forming it (intracellular region in pink, transmembrane region 
in gold, and extracellular region in blue). d The bottom view on 
transmembrane region of MtABCG46 from intracellular side, show-
ing mutated residues F562 (in red sticks), and four TMD helices 
forming the path and central cavity (intracellular region in pink and 
transmembrane region in gold). e Bottleneck radius distribution of 
access path ensemble connecting the cavity in MD simulations of 
MtABCG46, the widest 100 paths are colored green and shown in the 
inset

◂
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All our MtABCG46 variants, including the native form 
(hereafter: wild type, WT), tagged with GFP at the N termi-
nus, were introduced into BY2 tobacco suspension cell cul-
tures, a well-established heterologous expression systems for 
biochemical studies of ABCG proteins [8, 77]. To confirm 
the presence and correct localization in the plasma mem-
brane (PM) of the transporters in BY2 lines, the colocaliza-
tion of GFP-tagged MtABCG46 variants with a PM marker, 
FM4-64, was checked with confocal microscopy (Fig. 3a).

Effects of mutations were investigated by ATP-depend-
ent, MtABCG46-mediated, transport assays of liquiriti-
genin, 4-coumarate, isoliquiritigenin, and 7,4′-dihydrox-
yflavone into PM inside-out vesicles derived from BY2 
lines. Consistent with previous observations [24], liquir-
itigenin and 4-coumarate accumulated in vesicles from 
lines expressing WT MtABCG46 (Fig. 3b, c) but not isoli-
quiritigenin or 7,4′-dihydroxyflavone (Fig. 3d, e). Further 
experiments with lines expressing variants of MtABCG46 

Fig. 2  Residue selection for the site-directed MtABCG46 mutagen-
esis. a Schematic representation of candidate residues in sequences 
of MtABCG46 transmembrane helices 2, 5, 8, and 11 selected using 
conservation degrees (with Consurf), co-evolutionary parameters 
(with Gremlin), and the structural data. Candidate residues num-
bered in accordance with the MtABCG46 sequence. Alignment of 

the region corresponding to surroundings of F431 in HsABCG2 for 
human ABCGs (b) and animal homologs (c). d Alignment of the 
region corresponding to surroundings of F562 in MtABCG46 for 
selected plant full-size ABCG transporters. e Frequencies of occur-
rence of indicated amino acids in the residue corresponding to 
MtABCG46 F562 in full-size ABCG sequences of indicated taxa
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revealed that F562Y and F562A substitutions abolished 
transport of liquiritigenin and 4-coumarate (Fig. 3b, c). 
None of the variants were able to translocate isoliquiriti-
genin nor 7,4′-dihydroxyflavone (Fig. 3d, e). Interestingly, 
the F562L variant, accumulated liquiritigenin similarly to 
the WT MtABCG46, however, it was not able to transport 
4-coumarate (Fig. 3b, c).

Previous research has shown that liquiritigenin is a 
competitor of 4-coumarate in MtABCG46-mediated trans-
port [24]. Analyses of liquiritigenin transport in the pres-
ence of 4-coumarate confirmed that this effect is mutual, 
i.e., 4-coumarate also reduces the rate of MtABCG46-
dependent liquiritigenin transport (Fig.  3f). Experi-
ments also revealed that although F562L cannot transport 

Fig. 3  Transport assays with microsomes derived from BY2 sus-
pension cell cultures. a Plasma membrane localization of the 
MtABCG46 variants tagged with GFP: WT, F562L, F562A, and 
F562Y in BY2 suspension cell cultures. Cell cultures expressing 
empty vector (EV) were used as a control. Images with GFP and 
FM4-64 fluorescence pseudo-colored in green and magenta, respec-
tively. PC—Pearson’s correlation coefficients for the colocalization of 
GFP and FM4-64 in the plasma membrane, visualized as an overlay. 
Scale bars, 20  µm. Transport of liquiritigenin (b), 4-coumarate (c), 
isoliquiritigenin (d), and 7,4′-dihydroxyflavone (e) in microsomes 
derived from BY2 suspension cell cultures expressing empty vec-
tor (gray) or indicated variants of MtABCG46: WT (green), F562L 
(blue), F562Y (purple), and F562A (red). f Competitive transport of 
liquiritigenin versus 4-coumarate, isoliquiritigenin or 7,4′-dihydroxy-

flavone in microsomes expressing WT and F562L MtABCG46, n ≥ 6 
means ± SD from two to three biological replications, each with at 
least three technical replications. b–f Values are presented as fold 
change between (+)ATP and (−)ATP as a control. In each box-and-
whiskers plot: the central black line indicates the median; ‘+’ indi-
cates the mean; the box extends from the 25th to 75th percentile; 
the whiskers extend from the 10th to the 90th percentile, and points 
below and above the whiskers are marked by individual dots. Differ-
ent lowercase letters indicate significant differences: P < 0.001 (b); 
P < 0.005 (f); P < 0.01 (c); P < 0.05 (d, e). P values, determined by 
the Kruskal–Wallis test with a post hoc Dunn’s multiple comparison 
test (b–f) and unpaired t test with Welch’s correction or Mann–Whit-
ney test (f) can be found in Supplementary Statistical Data
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4-coumarate, the latter is still a competitor for liquiriti-
genin (Fig. 3f). Interestingly, presence of non-transported 
compounds isoliquiritigenin and 7,4′-dihydroxyfla-
vone also negatively affected the MtABCG46-mediated 

transport of liquiritigenin. Moreover, this susceptibility 
was increased in F562L variant compared to the WT, what 
was significantly visible in case of 7,4′-dihydroxyflavone 
(Fig. 3f).
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F562 substitutions affect the viability 
of the transient access path through rearranged 
TMD helices

In MD simulations of our four variants (WT, F562L, F562Y, 
and F562A), there were no significant differences in overall 
stability or flexibility between the mutant and WT proteins 
(Supplementary Figs. 9–12). Structurally, the introduced 
modifications of residue 562 disrupted non-covalent contacts 
(Supplementary Fig. 13), changing the bending and twisting 
angles of the TMD helices forming the access path (Sup-
plementary Figs. 14, 15). In WT, residue F562 maintained 
a parallel displaced π-stacking interaction with residue F684 
during the simulations (Supplementary Fig. 13a), a feature 
shared with the F562Y mutant (Supplementary Fig. 13c). 
Loss of this non-covalent contact in F562A resulted in a 
considerable displacement of TMD helix 5 (Supplementary 
Fig. 13d). F562L also lost the π-stacking interaction but 
maintained stability of this helix (Supplementary Fig. 13b) 
with interhelical space maintained at the level of WT (Sup-
plementary Fig. 16a, b), likely due to remaining Van der 
Waals interactions of its sidechain. Interestingly, the dis-
placement of TMD helix 5 in F562A allowed marked bend-
ing and to some extent twisting of TMD helix 8 (Supple-
mentary Figs. 14c, 15c). Furthermore, the bending of TMD 
helices markedly reduced the available space between the 
helices and resulting in a more packed structure. This reduc-
tion of available space was observed in both F562A and 
F562Y mutants (Supplementary Fig. 16c, d), although no 
significant bending of TMD helix 8 was observed in the 
F562Y mutant. In this case, the additionally introduced 
hydroxyl group in F562Y formed an H-bond with Y1213 
in TMD helix 8 during the whole simulation time. This 
pulled the modified residue and Y1213 closer to each other, 
thereby rearranging the orientation of the neighboring resi-
dues in TMD helix 8 and changing its twist helical angle 

(Supplementary Fig. 15c). Moreover, residue Y1213 formed 
an H-bond with N1331, a highly conserved residue (Fig. 2a), 
in all performed MD simulations. Consequently, disturbance 
of the normal behavior of these residues could influence 
ligands’ binding in the central cavity. To explore this pos-
sibility, we investigated the availability of polar interactions 
provided by residues of the central cavity. We found only 
three polar residues around the deepest part of the central 
cavity: Y1213, T1214, and N1331. Of these, T1214 has lim-
ited accessibility as it is oriented outwards of the cavity, and 
Y1213 maintains constant H-bond contact with the ketone 
group of N1331 in all MD simulations. Hence, the amine 
group of N1331 is the only one to act as a hydrogen donor. 
Notably, a high conservation score was obtained for residue 
N1331 in our MSA analysis (ConSurf grade 9), indicating 
that it has functional importance. In our MD simulations, all 
investigated mutations of residue F562 resulted in a consid-
erable change in the conformation of N1331 (Supplemen-
tary Fig. 17) perturbing the putative interaction with bound 
ligands.

Nonetheless, there were considerable differences in the 
availability of access paths leading to the central cavity, 
which were lower in all mutants than in the WT (Supple-
mentary Table 3 and Supplementary Fig. 18a). The 100 
widest paths were almost as wide in the F562L mutant as in 
WT, but they were markedly narrower in F562Y and F562A 
mutants (Supplementary Fig. 18b), mainly because they had 
more constricted entrances (Fig. 4a, Supplementary Figs. 16, 
19), presumably hampering access of bulky molecules to 
the central cavity. Accordingly, we hypothesized that F562Y 
and F562A mutations affect the structural arrangement of 
residues forming the access path, making it less permissive 
for migration of ligands and thereby significantly reducing 
its overall transport capability.

To address this possibility, we assessed the viability 
of the 100 widest paths in each variant for the access of 
liquiritigenin and 4-coumarate, as well as isoliquiritigenin 
and 7,4′-dihydroxyflavone, which are chemically similar 
but not effectively transported by MtABCG46 (Fig. 4b), 
from the intracellular environment into the central cavity 
using CaverDock [70]. Each run of CaverDock yields an 
energetic profile of the binding energy between a ligand 
and protein along the path, which can be translated as an 
energetic barrier that must be overcome for a ligand to 
reach the central cavity (Supplementary Fig. 20). Such an 
approach has proven utility in detecting hotspot residues 
for protein engineering [78], and correlating energetic 
barriers with biochemical rates [79, 80]. The cumulative 
distribution of the energy barriers for all ligand migra-
tion events resulting in favorable binding of ligands into 
the central cavity showed that none of the ligands except 
for 4-coumarate could reach the central cavity effectively 
(Supplementary Fig. 21). Even for WT and F562L, the 

Fig. 4  Effects of F562 mutations on the accessibility of the path to 
the central cavity of MtABCG46. a Radius of the probe fitting the 
bottleneck region of the 100 most open access paths in MtABCG46. 
In each box-and-whiskers plot: the center black line indicates the 
median; ‘+’ indicates the mean; the box extends from the 25th to 
75th percentile; the whiskers extend from the 10th to the 90th per-
centile, points below and above the whiskers are marked as individ-
ual dots. Different lowercase letters indicate significant differences, 
P < 0.0005. P values, determined by the Kruskal–Wallis test with 
a post hoc Dunn’s multiple comparison test, can be found in Sup-
plementary Statistical Data. b Structures of ligands evaluated with 
CaverDock. The atom of 4-coumarate in red circle could be also be 
present in protonated form. Comparison of the migration for the two 
protonation forms is available in Supplementary Fig.  22. Cumula-
tive distributions of energetic barriers for migration to the internal 
cavity for the widest 100 paths for liquiritigenin (c), 4-coumarate 
(d), 7,4′-dihydroxyflavone (e), and isoliquiritigenin (f). In c–f curves 
obtained from experiments with WT, and F562L in IF-open states are 
marked in pale green and cyan, respectively

◂
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fraction of successful migration events was surprisingly 
low (about 20%, see Supplementary Fig.  21), clearly 
indicating that a more open state of IF conformation is 
required to efficiently initiate the transport process by 
ligand migration into the central cavity. Interestingly, 
the migration efficiency was similar also when the neu-
tral form of this ligand was considered (Supplementary 
Fig. 22a).

To investigate the putative open state, we have 
employed umbrella sampling simulations to achieve the 
partial opening of the transmembrane helices by driving 
the system toward the conformation observed in the most 
open state of ScPDR5 as the only viable template for full-
size ABCG transporters. Here, we would like to point out 
that the available ScPDR5 structures feature only limited 
openings of their central cavity in different IF conforma-
tions despite their pleiotropic nature [28] unlike widely 
open states observed in half-size human ABCGs, which 
are among others lacking the covalent linker present in 
full-size ABCGs. Notably, the opening processes in the 
slowest-driven US simulations were found to have 1.2, 
9.4, and 11.6 kcal  mol−1 higher energetic costs in F562L, 
F562Y, and F562A, respectively, when compared to WT 
(Supplementary Fig. 23) at the conformation ensemble 
most similar to the arrangements observed in the target 
ScPDR5 (RMSD of ~ 1.5 Å) (Supplementary Fig. 24). This 
observation suggested that the compact interhelical space 
formed due to F562A and F562Y mutations (Supplemen-
tary Fig. 16c, d) rendered these variants unlikely to adopt 
such an open state in IF conformation and perform their 
function in contrast to WT and F562L, which were much 
more prone to undergo this transition.

The subsequent unbiased simulations of WT and F562L 
starting from their induced IF-open states, showed a par-
tial reversal toward their closed states, reaching an RMSD 
of ~ 2.2 and 2.4 Å compared to the target ScPDR5, respec-
tively (Supplementary Fig. 25). Despite such relaxations, 
these simulations still featured a more frequent opening of 
the continuous access paths for at least 31 and 12% of the 
total simulation time in WT and F562L, respectively (Sup-
plementary Table 5). The bottlenecks of these paths could 
be fitted with spherical probes of up to 1.7 and 1.4 Å radii 
in WT and F562L, respectively (Fig. 4a and Supplementary 
Table 5). Notably, the access paths ensemble in the open 
states of MtABCG46 also included branches that opened 
laterally to the lipid bilayer (Supplementary Fig. 26), allow-
ing ligands to enter either from the membrane or through the 
cytosolic region, in contrast to the access paths found in the 
closed states. Additionally, the interhelical region of WT in 
the open state underwent significant enlargement along the 
majority of its length (Supplementary Fig. 16e), expanding 
not only the entry filter but also the volume of the central 
cavity. In contrast, conformations from F562L simulations 

mostly showed only minor enlargements in this region (Sup-
plementary Fig. 16f).

When considering the explicit calculation of ligand 
migration, performed with CaverDock, the revealed expan-
sions enabled favorable access of all investigated ligands to 
the central cavity of MtABCG46 WT, exhibiting distinct 
preference for 4-coumarate. It was illustrated by almost 
100% rate of successful migration events (Fig. 4d), irrespec-
tively of the protonation form (Supplementary Fig. 22b). 
The much bulkier liquiritigenin and 7,4′-dihydroxyflavone 
reached the cavity in about 60% of migration events, with 
a slight preference for the former (Fig. 4c, e). In contrast, 
the least favorable migration was calculated for isoliquir-
itigenin, with only 30% rate of successful migration events 
(Fig. 4f). In the F562L mutant, the preference concerned 
only the 4-coumarate, which retained about half of its effi-
ciency, compared to WT (Fig. 4d). All bulkier compounds 
reached similar efficiencies when it comes to migrating to 
the central cavity of F562L, with much lower success rates 
and considerably higher energy costs (Fig. 4c, e, f). The 
partial discrepancy, visible in the overall transport assays, 
corresponds well with the disruption of the helices and the 
central cavity, caused, to different degrees, by all three muta-
tions investigated in F562 (Supplementary Fig. 16). This 
suggests that these mutations may also affect subsequent 
stages of the transport cycle.

Discussion

AlphaFold2 has recently proposed suitability for modeling 
ABCG proteins, with the ability to provide similar levels 
of accuracy as for soluble proteins [32]. The MtABCG46 
structure we obtained using AlphaFold2 has the typical 
architecture of full-size ABCG transporters described in 
the literature [81]. Moreover, our MD simulations identi-
fied transiently formed access paths to the central cavity 
from the intracellular region that were narrower than the 
ones observed in IF-ScPRD5 structures, irrespective of the 
adopted states (Fig. 1, Supplementary Fig. 27 and Supple-
mentary Tables 4 and 5). Such open cavities were observed 
in HsABCG1 [26], HsABCG2 [29], and a recently obtained 
cryo-EM structure, ScPDR5 [29] (Supplementary Fig. 28). 
Also several substrates such as rhodamine 6G, cholesterol, 
and mitoxantrone have been found to occupy equivalent 
regions of ScPDR5, HsABCG1, and HsABCG2, respec-
tively [26, 28, 29]. However, context of the access path to 
the cavity, as well as its role in substrate recognition and 
transport, have not been thoroughly investigated.

Tested substitutions of the selected residue F562 in 
the central cavity (F562L, F562Y, and F562A) severely 
affected MtABCG46-mediated transport of 4-coumarate 
and liquiritigenin, highlighting this residue’s importance 
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for phenylpropanoid transport in M. truncatula. Transport 
assays of four phenylpropanoids with MtABCG46 WT 
showed lack of isoliquiritigenin or 7,4′-dihydroxyflavone 
transport (Fig. 3d, e), in accordance with indications from 
CaverDock analyses in IF-open like conformation predicted 
very good efficiency of migration to the central cavity for 
both 4-coumarate and liquiritigenin (Fig. 4c, d). In contrast, 
likelihood of other two compounds to access the central 
cavity is lower, in particular for metabolic precursor isoli-
quiritigenin (Fig. 4e, f). We have previously shown that the 
MtABCG46 promotes response of Medicago truncatula to 
pathogen infection by efficient transport of liquiritigenin but 
not isoliquiritigenin resulting in the de novo biosynthesis 
of the pterocarpan phytoalexin medicarpin, derived from 
the 5-deoxyisoflavonoid branch. Our observation regard-
ing the efficiency of migration to the central cavity supports 
the potential role of it in this process. This is because, both 
scenario and pathway wise, such preference toward liquiriti-
genin but not isoliquiritigenin could be beneficial since the 
latter is a direct precursor that has to be converted and not 
transported [23, 24].

Moreover, the observed migration priority is in agreement 
with the ability of isoliquiritigenin or 7,4′-dihydroxyflavone 
to interfere with liquiritigenin transport in MtABCG46 WT 
(Fig. 3f), while lack of clear preference for liquiritigenin 
entry into the central cavities in F562L mutant (Fig. 4c, e, 
f) agrees well with the increased susceptibility of this pro-
tein to the interference from the same compounds (Fig. 3f). 
In contrast, the lack of transport capabilities in F562A or 
F562Y (Fig. 3) is well in line with the observed collapse of 
the interhelical space lining the access path and consequent 
overstabilization of IF-closed state caused by their muta-
tions, disallowing the necessary opening for efficient ligand 
transport (Fig. 4a and Supplementary Fig. 16, 23). Thus, our 
data indicate that restriction of access to the central cavity 
is a contributor to substrate selectivity in early stages of the 
transport process, probably highly relevant for overall activ-
ity of the transporter in competitive environment inside the 
cell, where structurally analogous metabolites are present. 
Also, the fact that all four phenylpropanoids can still access 
the central cavity of MtABCG46 WT and F562L clearly 
reveals the presence of additional molecular mechanisms 
behind the observed selectivity in subsequent stages of the 
transport cycle, e.g., recognition of the substrate bound in 
the central cavity or its stabilization during the subsequent, 
likely rate-determining, conformational change (from IF to 
OF) of the transporter.

Similarly to the corresponding residue F431 of 
HsABCG2, in ABCG46 F562 is located in the direct 
proximity of the short loop after TMD helix 5 (and TMD 
helix 11). This loop is called a valve and has been pro-
posed to work as a molecular gate crucial for regulating 
the conformation-dependent substrate release [29, 33]. A 

residue in this loop in another full-size plant ABCG trans-
porter from A. thaliana, AtABCG36 was also highlighted 
as potentially important for substrate specificity [18], also 
supporting our results. Our simulations showed that F562 
interacts with at least one of the residues within the valve, 
namely F684, behavior of which was substantially altered 
in F562A and F562L variants (Supplementary Fig. 13). 
This enabled us to speculate, that introduced substitutions 
of F562 could significantly alter this structural element 
important for the transport mechanism. The substitutions 
were also considerably affecting the conformation of 
highly conserved N1331 (Supplementary Fig. 17), being 
the only hydrogen donor in the deep part of the central 
cavity, which could in the consequence affect the substrate 
binding.

In general, the molecular determinants of sequence 
changes resulting from protein adaptation to various bio-
chemical needs remain obscure. Our experimental data, 
together with phylogenetic observations, suggest that adap-
tation of ABCG proteins associated with evolutionary pres-
sures in plants has resulted in a variability of some key resi-
dues, such as F562 (Fig. 2e). Such variability is essential 
for transporters to fulfill their functional roles in diverse, 
complex chemical and biological scenarios. We foresee 
sequence–structure–dynamics exploration fueled by Apl-
haFold2 presented here as an alternative mean to overcome 
limitations in structural studies of membrane transporters, 
which can help to identify residues that define functional 
properties of that important subfamily of ABC transporters.
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