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ABSTRACT: Bacterial infections are increasingly problematic due
to the rise of antimicrobial resistance. Consequently, the rational
design of materials naturally resistant to biofilm formation is an
important strategy for preventing medical device-associated
infections. Machine learning (ML) is a powerful method to find
useful patterns in complex data from a wide range of fields. Recent
reports showed how ML can reveal strong relationships between
bacterial adhesion and the physicochemical properties of
polyacrylate libraries. These studies used robust and predictive
nonlinear regression methods that had better quantitative
prediction power than linear models. However, as nonlinear
models’ feature importance is a local rather than global property,
these models were hard to interpret and provided limited insight into the molecular details of material−bacteria interactions. Here,
we show that the use of interpretable mass spectral molecular ions and chemoinformatic descriptors and a linear binary classification
model of attachment of three common nosocomial pathogens to a library of polyacrylates can provide improved guidance for the
design of more effective pathogen-resistant coatings. Relevant features from each model were analyzed and correlated with easily
interpretable chemoinformatic descriptors to derive a small set of rules that give model features tangible meaning that elucidate
relationships between the structure and function. The results show that the attachment of Pseudomonas aeruginosa and Staphylococcus
aureus can be robustly predicted by chemoinformatic descriptors, suggesting that the obtained models can predict the attachment
response to polyacrylates to identify anti-attachment materials to synthesize and test in the future.
KEYWORDS: bacterial attachment, healthcare-associated infections, machine learning, classification, polyacrylates

1. INTRODUCTION
Bacterial infections are a major problem in healthcare due
largely to increasing antimicrobial resistance and larger
numbers of patients with weakened or compromised immune
systems. In 2002, it was estimated that, in the United States,
almost 2 million patients suffered from healthcare-associated
infections (HAIs) and 6% died.1 The estimated annual cost to
hospitals was between US$28 billion and 45 billion.2 Two
types of nosocomial infections were predominant: surgical site
infections (SSI) with 22% of occurrence and urinary tract
infections (UTIs) that account for a third of the cases.1 They
represented more than half of all HAIs in the US outside of
intensive care units (ICUs). A similar situation exists in the
United Kingdom: In 2016/2017, an estimated 834,000
patients suffered from HAIs, and 28,500 of whom died
(3.4%).3 Antimicrobial resistance (AMR) evolves when
bacteria are subjected to the selection pressures by antibiotics
and biocidal agents by drugs. Prolonged therapies, inappro-
priate prescriptions, self-medication, and overuse of antibiotics
in agriculture have enabled the emergence of bacterial strains
that are not susceptible to most or all antibiotic drugs.4

Therefore, new approaches are urgently needed to address the
problem of HAIs. Preventing infection is clearly better than
killing pathogens as the selective pressure to develop resistance
is removed. Prevention is commonly achieved by modifying
the surface of a medical implant5,6 by altering the surface
chemistry7,8 or adsorbing/covalently coupling bactericidal
molecules to the surface.9,10

After contact with a surface, biofilm formation occurs in
three main stages�attachment, microcolony formation, and
maturation. Initially, bacteria attach to a surface reversibly.9

Factors that promote attachment include surface hydro-
phobicity (the presence of a water layer can prevent bacteria
from adhering to the surface)10 and a positively charged
surface (most bacterial species are negatively charged).11
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Rough and porous surfaces promote bacterial adhesion due to
their greater surface area.9,12 Importantly, other surface
biomaterial properties such as stiffness and topography may
also play a role in bacterial attachment.11 Subsequently,
bacteria attach irreversibly by excreting an extracellular matrix
(ECM) that promotes surface adhesion and mature biofilm
development.13 In vivo, adhesion can also be aided by
interactions with the host blood and tissue proteins including
fibronectin, fibrinogen, and thrombin, while albumin inhibits
adhesion.14 The biofilm ECM is composed mostly of
exopolysaccharides, proteins, and extracellular DNA15 that
dramatically reduce immune responses and drug treatment
efficacy by shielding bacteria from antimicrobials and the host
immune system.16 When the bacterial biofilm has matured,
cells disperse to the surrounding areas to seed sites for new
biofilms to develop.9

The relationship between the multiple surface properties
associated with initial bacterial attachment is complex and
poorly understood, hampering de novo design of bacterium-
resistant materials. It is known that the surface topography can
modulate cell behavior; however, literature evidence suggests
that the surface chemistry is the dominant factor.17−20

A useful way to analyze the complex relationships between
material properties and biological responses is quantitative
structure−activity relationship (QSAR) modeling.21 Several
reports have elucidated factors that drive bacterial attachment
to polymeric surfaces using partial least squares (PLS)
regression22 or more complex machine learning (ML)
methods. ML methods have been particularly successful in
predicting the attachment response of Staphylococcus aureus
(SA), Pseudomonas aeruginosa (PA), and uropathogenic
Escherichia coli (UPEC) on mono- and polyacrylates.23,24

These studies focused on the quantitative prediction of
bacterial attachment using a Bayesian regularized neural
network (BRANN).25 Results showed that both computed
molecular descriptors (from the commercial package Drag-
on26) and experimental mass spectral molecular ions contained
information that was useful for predicting bacterial attachment
of new polymers. However, these nonlinear regression models
were difficult to interpret and do not provide simple design
rules that a polymer chemist could use to synthesize improved
biomaterials. Nonlinearity means that the importance of
chemical features is local, not global, depending on where
they are assessed.
Here, we adopted a simpler approach using logistic

regression, a binary linear classifier27 that is more interpretable
than the nonlinear regression models. The aim was to explain
the role of key molecular features on the attachment of PA, SA,
and UPEC to polyacrylates while still retaining most of the
predictive power of the more complex nonlinear models. We
separated polyacrylates into pro- and anti-attachment classes
rather than use quantitative models of bacterial adhesion to the
polymers. To further simplify the analysis, we studied the
attachment response of these three different bacterial species
separately. The polyacrylates used for this study were
synthesized and incubated with three different suspensions of
planktonic bacteria, and their chemical compositions were
analyzed and characterized by time-of-flight secondary ion
mass spectrometry (ToF-SIMS) as described in two
experimental publications.7,22 The molecular ions obtained
via ToF-SIMS contain information on the surface chemistry
that bacteria would sense and respond to. They were used to
train models together with 200 molecular descriptors obtained

from the RDKit chemoinformatics Python library. Bacterial
attachment response models for PA, SA, and UPEC were
generated using ToF-SIMS data alone, chemoinformatic
descriptors alone, or all features combined after applying
several feature selection methods to reduce the model
complexity and risk of overfitting. Models with good predictive
capabilities were found for all three pathogens. Importantly,
the most relevant features from each model were interpreted as
a small number of simple design rules.

2. EXPERIMENTAL SECTION
2.1. Datasets. The datasets described below and Python code to

process are provided in the Supporting Information. The pathogen
attachment data consisted of two different datasets. One (denoted
c496) consists of 496 homo- and co-polymeric acrylates, while the
other (denoted h106) consists of 106 homo-polyacrylates. These two
datasets were generated by Hook et al. and are described in
experimental publications.7,22 Polymers were incubated with green
fluorescent protein (GFP)-transformed PA (strain PAO1), SA (strain
8325-4), or UPEC (strain O6:K15:H31). The fluorescence intensity
was strongly correlated with the number of bacteria remaining on the
surface after incubation. The polymers were analyzed by ToF-SIMS
for their surface chemical compositions. Since each polymer in the
c496 dataset had several replicates, outliers (data point replicates that
conflicted with the others) were detected and removed using the
modified Thompson’s tau, as reported by Mikulskis et al.24 After
outlier removal, the c496 dataset consisted of 492 polymers, while the
h106 dataset contained 98 polymers. In addition, 200 descriptors
were computed using the Python chemoinformatics library RDKit28

to increase the diversity of molecular information. We chose this
package as binary classification is a simpler task than nonlinear
regression and the RDKit is an accessible open-source package. When
computing descriptors of co-polymers, cheminformatic descriptors
were first computed for both monomeric components, and the
resultant descriptor vector was the weighted mean of vectors of single
components according to their ratio in the co-polymer as has been
successful in prior studies. The Supporting Information contains the
full list of descriptors used by the models (S-4).
2.2. Class Assignment and Training/Test Set Splitting.

Unlike regression, which tries to predict quantitative attachment
values, classification models find the best categorization of a dataset
into defined classes (pro- or anti-attachment in the current case).
Class labels are generated by setting a threshold value. Responses
above the cut-off are categorized as “positives”; otherwise, they are
labeled as “negatives”. In our case, all polymers with a fluorescence
signal below the detection limit were given the label “0” (anti-
attachment); otherwise, the label was set to “1” (pro-attachment).
Since fluorescence data were collected from three different bacterial
species, each polymer had three class labels.
We generated different datasets by combining c496 and h106

libraries or using the larger library (c496) alone. This was necessary
because of the following.
(a) A poor class balance in some cases forced us to merge c496

and h106 samples to increase the representativity of minority
class.

(b) c496 differed from h106 in its molecular character: the former
was mainly made of co-polymers; the latter was exclusively
made of homopolymers. This hampered the use of one dataset
to predict the attachment response of polymers in the other
and forced us to use either the larger set (c496) as the main
dataset or the merged c496 and h106 datasets.

(c) ToF-SIMS ions in c496 did not follow the same distributions
as those in h106. The ion peak values had dramatically
different ranges. This prevented us from merging the two
datasets using ToF-SIMS data. However, the use of RDKit
descriptors for merged samples was still possible because
computed descriptors consistently represent chemical struc-
tures with no bias.
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Regardless of the dataset used, a fraction of the dataset (20% for PA
and UPEC and 10% for SA because of poor class balance) was
selected as a test set using a fixed random seed (preserving the same
positive/negative class ratio). Model training and cross-validation
were performed on the remaining 80 or 90% of data samples. The
data sets were not balanced, so the training sets were resampled by
randomly removing polymers belonging to the majority class until a
60/40 ratio of classes was obtained. However, the original class
balance was not altered in the test set. All descriptors were
standardized using the Z-score formula:

x
x

i
i i

i
=

(1)

where xi′ is the standardized descriptor vector, xi is the non-
standardized descriptor vector in the ith column of the dataset, μi is its
average value, and σi is its standard deviation. Data standardization is
widely used, and it is common practice to avoid a dataset with large
differences between the magnitudes of descriptors and to allow the
learning algorithm to converge.29

Table 1 summarizes the dataset type, training and test set sample
size, and class balance after majority class undersampling.

2.3. Quantitative Modeling. Before training, the number of
descriptors was reduced to discard highly correlated and low-diversity
features. A correlation matrix using squared Pearson’s r2 was
computed to identify any highly correlated descriptors, and
descriptors with low information contents (low variance) across the
dataset were removed (S-3). Entropy can assume any value between 0
and 1, and high values reflect descriptors with a high amount of
information. These two feature suppression criteria (multicollinearity
and diversity) were applied at different thresholds (0.7, 0.8, and 0.9)
each time to narrow the feature space down to a more manageable
number of descriptors to save on computational cost and avoid

overfitting. Both multicollinearity and entropy filters act as feature
selection methods that are independent of the ML algorithm used.
After carrying out this first feature selection process, a wrapper

method was also used to further reduce the size of the feature set in
the final model. Wrapper methods are feature selection methods that
use a learning algorithm for the feature selection process.30,31 We used
sequential forward selection (SFS) rather than backward elimination
because the modest number of samples in the dataset necessitated the
models incorporating a relatively small number of features. A
conservative rule of thumb suggests the use of only 1 feature for
every 10 samples.32

Logistic regression (LR)27 was the machine-learning algorithm
used inside the wrapper. It is a fast, simple, yet powerful linear
classifier whose regularization type and strength can be tuned to avoid
overfitting. A high regularization strength (the lower the value, the
stronger) penalizes large coefficients during fitting, while by choosing
an L1 penalty type over L2 causes the setting of many less relevant
feature coefficients to zero, thus performing a sparse selection.33 An
LR model was trained on each feature subset that the wrapper
provided, and the performance was assessed through 10-fold cross-
validation. The feature whose inclusion provided the highest cross-
validation score was then incorporated into the updated set of
descriptors. At the same time, the LR model was used to predict
pathogen adhesion to the test set polymers. The optimal feature list
was chosen on the basis of the highest and most consistent score
across training, validation, and test phases. Performance was evaluated
through sensitivity, specificity,34 and the Matthew’s correlation
coefficient (MCC).35 Sensitivity and specificity can assume any
values between 0 and 1. These three metrics indicate how accurately
models classify positive and negative samples and are equal to zero for
random prediction (null model). These three metrics are defined as
follows

sensitivity
TP

TP FN
=

+ (2)

specificity
TN

TN FP
=

+ (3)

MCC
TP TN FP FN

(TP FP) (TP FN) (TN FP) (TN FN)

=
× ×

+ × + × + × +
(4)

where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives predicted by the model,
respectively. The MCC ranges from −1 to 1 and is equal to zero if the
model makes random predictions. It corrects performance over-
estimation in unbalanced datasets by lowering good scores if the class
ratio is far from balanced, so it is a very useful metric to adopt with

Table 1. Dimensions and Class Balance of the Datasets
Useda

dataset
training set (positive,

negative)
test set (positive,

negative)

P. aeruginosa (c496) 144 (86,58) 99 (84,15)
P. aeruginosa
(c496 + h106)

192 (115,77) 118 (99,19)

S. aureus (c496 + h106) 169 (101,68) 59 (52,7)
E. coli (c496) 389(156,233) 99 (39,60)
E. coli (c496 + h106) 472 (191,281) 118 (48,70)
aThe table shows dataset sizes and class balance in terms of positive
(first number in brackets) and negative (second number in brackets)
samples for training and test sets.

Table 2. Summary of the Classification Model Performancea

training
set cross-validation test set

N
pathogen (model

name)
R2 (diversity
threshold) regularizer

descriptor number
(type) MCC

MCC, mean, and SD
(p value)

MCC
(scrambled) sens spec G mean

1 PA (c496 + h106) 0.9 L1, 10 22 (RDKit) 0.53 0.47 ± 0.12 (<10−6) 0.36 (0.12) 0.80 0.63 0.71
2 PA (c496) 0.8 L1, 100 13 (RDKit) 0.54 0.51 ± 0.24 (<10−4) 0.45 (.21) 0.82 0.73 0.77
3 PA (c496) 0.7 L1, 0.1 3 (RDKit + ToF) 0.41 0.46 ± 0.23 (<10−4) 0.44 (0.19) 0.85 0.67 0.75
4 PA (c496) 0.9 L1, 100 9 (ToF) 0.56 0.60 ± 0.20 (<10−5) 0.48 (0.20) 0.76 0.87 0.81
5 SA (c496 + h106) 0.8 L2, 10 19 (RDKit) 0.64 0.65 ± 0.18 (<10−5) 0.68 (0.21) 0.96 0.71 0.83
6 SA (c496 + h106) 0.7 L2, 0.1 4 (RDKit) 0.58 0.67 ± 0.13 (<10−7) 0.57 (0.14) 0.92 0.71 0.81
7 UPEC (c496) 0.8 L1, 10 53 (ToF) 0.46 0.33 ± 0.14 (<10−4) 0.41 (0.23) 0.64 0.77 0.70
8 UPEC (c496) 0.9 L2, 100 24 (RDKit + ToF) 0.40 0.38 ± 0.14 (<10−5) 0.33 (0.16) 0.62 0.72 0.67

aThe best models, which are used for subsequent feature interpretation, are shown in bold. Columns indicate the name of the model, threshold
used for multicollinearity and entropy filtering, regularizing model, number, and type of descriptors, the training, cross-validation (p value for t-test
for the score > 0), and test set MCC, sensitivity, specificity, and geometric mean.
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real-life classification datasets, which is similar to the F1 score or G
mean.36−38

3. RESULTS AND DISCUSSION
The results of LR modeling of data for the three pathogens are
summarized in Table 2.
All four PA models were statistically significant regardless of

the type of descriptor and dataset used. The three models
(Models 2−4) trained on the c496 dataset were similar and
had higher prediction accuracies than Model 1 trained on both
data sets. Model 4, using nine ToF-SIMS ion descriptors and
trained on the c496 dataset, was selected as the best PA model
based on a balance between the test set MCC and G mean and
sparsity. However, Models 2, 3, and 4 were used for

subsequent feature interpretation because of their similar
predictive powers. Notably, Model 3 (using the c496 dataset
with ToF-SIMS and RDKit descriptors) required only three
features (two ToF-SIMS ion peaks and one RDKit descriptor).
To ensure that the model performances were not due to
chance, we performed a Fisher exact test39,40 on the confusion
matrices of the models (Figure 1).
Statistical tests on the three best-performing PA models

(Models 2, 3, and 4 of Table 2) provided a p value of <0.0001
for Model 2 (13 RDKit descriptors), a p value of <0.001 for
Model 3 (2 ToF ions + 1 RDKit descriptor), and the best
results for Model 4, which used nine ToF ions (p value <
0.00001). Although all three models passed the Fisher exact

Figure 1. Confusion matrices for test set predictions for PA models. (a) Confusion matrix for PA-ToF (p < 0.00001). (b) Confusion matrix for the
PA-RDKit (p < 0.0001). (c) Confusion matrix for PA-RDKit + ToF (p < 0.001).

Figure 2. Confusion matrices for test set predictions of SA models. (a) SA-RDKit extended (p < 0.0001) and (b) SA-RDKit simple (p < 0.001).

Figure 3. Confusion matrices for test set predictions of UPEC models. (a) UPEC-ToF (p < 0.0001) and (b) UPEC-Tof + RDKit (p < 0.01).
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test, Model 2, using 13 RDKit descriptors, was the best
compromise between the predictive power and interpretability.
For SA, two models with similar performance were

generated, and both used RDKit descriptors and combined
c496 and h106 datasets. One model used 19 features and the
other only 4 to predict the attachment. The need to merge
c496 and h106 datasets defined a larger domain of applicability
for the models. However, the original poor class balance in the
SA dataset resulted in negative samples being under-
represented in the test set (whose class ratio was left
untouched after splitting the dataset into training and test
sets). Therefore, the test set MCC and G mean were more
appropriate measures of prediction performance than the other
metrics.
SA models (Models 5 and 6 of Table 2) were significant

with p values of <0.0001 and <0.001 (Fisher exact test),
respectively (Figure 2a,b).
Two models were generated for UPEC attachment. One

model used 53 ToF ions, while the other used 24 features
(RDKit descriptors and ToF ions). The test set sensitivity,
specificity, and G mean were similar, but the more complex
model had a better test set MCC, although the difference may
not be statistically significant. Although the more complex
Model 7 had a higher test MCC, it also had a much larger
number of adjustable parameters, so, applying the principle of
parsimony, the simpler model is preferred. Both UPEC models
(rows 7 and 8 in Table 2) provided statistically significant

results, having passed the test with p values of <0.0001 and
<0.01, respectively (Figure 3a,b).
When both the training and test target variables were

shuffled (thus performing a Y scrambling) after using the same
filters as those of the best models generated without shuffling,
all MCC values were much lower than the scores observed
without Y scrambling (Table 2). This strongly suggests that no
chance correlations have occurred in the modeling process.
3.1. Feature Analysis. Feature coefficients for each of the

three PA models are shown in Figure 4.
Two of them (Figure 4b,c) used RDKit descriptors either

exclusively or in combination with ToF-SIMS ions, while the
model in Figure 4a used ToF-SIMS ions only. Regarding the
ToF-SIMS ion interpretation, we were able to find a moderate
correlation with simple chemoinformatic descriptors for four of
them (S-4). Many features of the model in Figure 4 appeared
ambiguous and related to common moieties found in many
polymers; for example, C3H7O2

+, CH3H5O+, and CH3O+ were
all associated with the polypropylene or polyethylene glycol
repeated block that several monomers in the dataset were
made of. Other ToF-SIMS ions, such as C7H7

+ and C8H12
+, are

believed to have come from the polymer backbone. This
explained why polyfunctional acrylates, which have multiple
polymerization sites and would thus produce a cross-linked
polymeric mesh, produced a higher yield for those ions.
Finally, an anti-attachment contribution was observed for the
acetophenone ion peak (C7H4O+). The C4H8O2

+ ion, which
comes from the repeated polyethylene glycol units, was the

Figure 4. Feature coefficients for test set predictions for PA models. (a) Top 10 feature coefficients for PA-ToF, (b) all 13 feature coefficients for
PA-RDKit, and (c) all three feature coefficients for PA-RDKit + ToF.

Figure 5. Feature coefficients for test set predictions of SA models. (a) Top 10 feature coefficients for SA-RDKit extended and (b) all four feature
coefficients for SA-RDKit simple.
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most influential peak in the model built from both ToF-SIMS
ions and RDKit descriptors (Figure 4c) and has previously
been reported to have a strong pro-attachment effect.22 The
CH2N+ peak was uniquely present in the only nitrogen-bearing
monomer in the dataset, and almost all its polymers were
labeled as pro-attachment.
Four descriptors from the RDKit model (Figure 4b) were

related to the physicochemical properties of the materials as
previously described (calculated log octanol/water partition
coefficient MolLogP,41 topological polar surface area TPSA,42

molecular complexity index BertzCT,43 and drug-likeness
index qed44), while others had to be analyzed more carefully
(see the Supporting Information). Within the library of
monomers used in this study, TPSA is correlated positively
with the number of nitrogen and oxygen atoms,42 and a strong
anti-attachment contribution for this descriptor suggested the
importance of such heteroatoms in the monomeric unit. Qed
was included both in the RDKit model and the ToF-SIMS ions
and RDKit model, showing a moderate anti-attachment effect
in both cases and being the only feature in the ToF + RDKit
model that can be correlated with simple chemoinformatic
descriptors (see the Supporting Information).
Analysis of the RDKit descriptors in both SA models is

shown in Figure 5. The SA extended model used 19 features
(Model 5 in Table 2; Figure 5a), while the SA simple model
used only four RDKit descriptors (Model 6 in Table 2; see
Figure 5b). In the more complex model, as with the model in
Figure 1b for PA, MolLogP was the most important anti-
attachment feature among the top 10 (Figure 5a). All other
descriptors in both models (S-4) did not have a clear chemical
meaning.
Finally, we looked at the descriptors in both UPEC models

(Figure 6). The first uses 53 ToF ion peaks (Model 7 in Table
2), while the second uses a combination of RDKit descriptors

and ToF ion peaks to give a total number of 24 features
(Model 8 in Table 2). As was observed for the PA−ToF
model, the ubiquitous nature of many peaks that could be
found in a wide range of pro- and anti-attachment polymers
made the task very difficult. However, the C6H6O+ phenyl ion
peak can be easily recognized in Figure 6a, and it shows a
moderate pro-attachment effect. Overall, we were able to
provide some chemical meaning for two features (S-8).
The interpretation of the top 10 features of the UPEC−ToF

+ RDKit model (Figure 6b) was assisted by correlating them
with interpretable features (see full description in S-8). This is
a novel approach to the interpretation of arcane molecular
descriptors generated by packages such as Dragon and RDKit.
The CH3O+ ion peak made the largest contribution to the
model, having a strong anti-attachment coefficient and being
associated with the ethylene glycol and propylene glycol
repeated units commonly found in many monomers of the
dataset. Interestingly, that ion also had a high anti-attachment
coefficient in the PA−ToF model (Figure 4a).
3.2. Design Rules for Low Attachment Polymers.

Simple design rules for polymers can be very useful to chemists
in efficiently creating new materials with desirable antifouling
and anti-attachment properties.45 After studying the relation-
ship between each model descriptor and the pool of easily
interpretable descriptors (the full procedure is available in the
Supporting Information), we deduced several simple rules in a
decreasing order of importance that defined the main
monomer characteristics needed for strong anti-attachment
polymers for all three bacteria (Table 3).
Higher lipophilicity and a smaller number of rotatable bonds

have previously been reported as crucial parameters for
acrylates in resisting PA attachment.46 Moreover, lipophilicity,
polarity, the number of nitrogen/oxygen atoms, and molecular
complexity were also reported to be important in a previous

Figure 6. Feature coefficients for test set predictions of UPEC models. (a) Top 10 feature coefficients for UPEC-ToF and (b) top 10 feature
coefficients for UPEC−ToF + RDKit.

Table 3. Summary of the Design Rules for Anti-attachment Polymersa

rule number PA SA UPEC

1 log P > 1.9 N + O < 5 monomer MW > 330 Da
2 rings ≥ 1 monomer MW < 300 Da aromatic rings = 0
3 rotatable bonds < 11 heteroatoms < 6 −NH or −OH ≥ 1
4 monomer MW < 300 Da aliphatic carbocycles = 0 rotatable bonds < 12
5 −NH or −OH ≥ 1 log P > 2
6 rotatable bonds < 10

aThe small sets of design rules derived after descriptor interpretation are listed for each bacterium: P. aeruginosa, S. aureus, and E. coli.
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modeling work, which used more complex and non-linear
methods.23

In SA models, similar to the PA models, we observed a
preferred threshold for the minimum accepted log P and
maximum tolerated monomeric molecular weight as well as for
the number of rotatable bonds, although their importance was
lower. However, the major factor was the need to have <5
nitrogen and/or oxygen atoms. This requirement contradicts
the third rule that a good monomer should ideally have >6
heteroatoms, although this characteristic is applicable to a
broad set of elemental constituents and is consistent with the
strong anti-attachment behavior of fluorinated polymers in the
dataset. A smaller number of nitrogen and oxygen atoms for
achieving improved anti-bacterial properties is consistent with
the literature for SA.22

As with the PA models and unlike the SA models, amine or
hydroxyl groups were permitted in UPEC the models possibly
because PA and UPEC are Gram-negative bacteria. A low
number of rotatable bonds was a consistent rule for all three
bacterial species, suggesting that rigid pendant groups might
play a role in modulating bacterial attachment, regardless of
other structural differences between PA, SA, and UPEC. This
is consistent with previous studies that suggest a role of
molecular rigidity for achieving resistance to bacterial attach-
ment.46,47

4. CONCLUSIONS
Adhesion of bacteria to biomedical devices is a serious and
growing problem due to the ever-increasing numbers of
implanted devices used that promote biofilm-centered
infections, biofilm tolerance to antibiotic therapy, and the
problem of multi-antibiotic resistance. Prevention rather than
treatment of infection is a key challenge for medical research.
Discovery of new materials supporting very low bacterial
attachment and biofilm inhibition is an important strategy to
reduce mortality associated to bacterial infections and ease the
economic burden on national healthcare systems. Here, we
have shown that a binary classification approach can predict
the attachment behavior of PA, SA, and UPEC on
polyacrylates with good statistical significance when trained
using ToF ions, RDKit chemoinformatic descriptors, or a
combination of both. An important outcome of the study is the
ability to provide design rules for anti-attachment monomers,
which was achieved through feature analysis that enabled a
simplified interpretation of the model. The results identified
the particular importance of moderate to high lipophilicity (log
P > 2) and a small number of rotatable bonds (<10−12).
These play a key role for PA attachment and can be extended
to SA and possibly UPEC despite SA being a Gram-positive
species with a structurally different cell envelope compared
with PA and UPEC. The presence of electronegative or
hydrogen bond donor−acceptor nitrogen and/or oxygen
functionalities also supported the low attachment for PA and
UPEC but enhanced SA adhesion, which is consistent with
literature. SA attachment was also modulated by the presence
of fluorine atoms. The models generated in this study and the
generalized design rules established will be useful for the future
design and development of novel anti-bacterial materials.
Notably, the models generated using computed molecular
descriptors only can be used to virtually screen many potential
monomers (near the domain of applicability of the models) to
identify new polymers with improved anti-attachment proper-
ties.
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UTIs, urinary tract infections
ECM, extracellular polymeric matrix
QSAR, quantitative structure−activity relationship
PLS, partial least squares
ML, machine learning
SA, Staphylococcus aureus
PA, Pseudomonas aeruginosa
UPEC, uropathogenic Escherichia coli
BRANN, Bayesian regularized neural network
ToF-SIMS, time-of-flight single ion mass spectrometry
GFP, green fluorescent protein
SFS, sequential forward selection
LR, logistic regression
MCC, Matthew’s correlation coefficient
RMSE, root mean squared error
TPSA, topological polar surface area
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