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Abstract

Objective: A constant relative biological effectiveness (RBE) of 1.1 in current clinical practice of 

proton radiotherapy (RT) is a crude approximation and may severely underestimate the biological 

dose from proton RT to normal tissues, especially near the treatment target at the end of Bragg 

peaks that exhibits high linear energy transfer (LET). LET optimization can account for biological 

effectiveness of protons during treatment planning, for minimizing biological proton dose and hot 

spots to normal tissues. However, the LET optimization is usually nonlinear and nonconvex to 

solve, for which this work will develop an effective optimization method based on iterative convex 

relaxation (ICR).

Approach: In contrast to the generic nonlinear optimization method, such as Quasi-Newton 

(QN) method, that does not account for specific characteristics of LET optimization, ICR is 

tailored to LET modeling and optimization in order to effectively and efficiently solve the 

LET problem. Specifically, nonlinear dose-averaged LET term is iteratively linearized and 

becomes convex during ICR, while nonconvex dose-volume constraint and minimum-monitor-unit 

constraint are also handled by ICR, so that the solution for LET optimization is obtained by 

solving a sequence of convex and linearized convex subproblems. Since the high LET mostly 

occurs near the target, a 1cm normal-tissue expansion of clinical target volume (CTV) (excluding 

CTV), i.e., CTV1cm, is defined to as an auxiliary structure during treatment planning, where LET 

is minimized.

Main Results: ICR was validated in comparison with QN for abdomen, lung, and head-and-neck 

(HN) cases. ICR was effective for LET optimization, as ICR substantially reduced the LET and 

biological dose in CTV1cm the ring, with preserved dose conformality to CTV. Compared to QN, 

ICR had smaller LET, physical and biological dose in CTV1cm, and higher conformity index 

values; ICR was also computationally more efficient, which was about 3 times faster than QN.

Significance: A LET-specific optimization method based on ICR has been developed for solving 

proton LET optimization, which has been shown to be more computationally efficient than generic 

nonlinear optimizer via QN, with better plan quality in terms of LET, biological and physical dose 

conformality.
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1. Introduction

The clinical rationale for proton radiation therapy (RT) is to capitalize on the proton beam 

characteristic that the physical dose is deposited mostly at Bragg peak and then drops 

sharply to nearly zero with minimal exit dose [1]. In current clinical practice, the proton 

treatment planning is mostly based on the physical dose distribution that is optimized to 

be conformal to tumor targets and at the same time with sparing of organs at risk (OAR). 

However, the physical dose may not coincide with the actual biological damage in locations 

or magnitudes.

The biological dose for any particle is defined as the equivalent photon dose to reach the 

same level of clinical endpoints. For a given particle, the ratio of biological dose (i.e., 

equivalent photon dose) over physical particle dose is called relative biological effectiveness 

(RBE), e.g., RBE=1 for photons. For protons, RBE in the current practice is mostly 

approximated by a constant value 1.1. This rule of thumb is over simplified [2]: since 

the RBE at the end of Bragg peak is typically 1.3 to 1.5 or higher [3–5], the crude 

approximation RBE=1.1 may severely underestimate the biological dose from proton RT 

to normal tissues, especially near the treatment target at the end of Bragg peaks that exhibits 

high linear energy transfer (LET) [2].

Variable RBE models have been developed with depending factors, such as the tissue, 

dose [6], clinical endpoint, fractionation scheme, patient-specific radiosensitivity, and LET 

[7–12], many of which need to be further validated in terms of quantitative accuracy. RBE is 

found to monotonically depend on LET [9], and a simplified RBE model depending solely 

on LET is the following [4,13,14]

RBE = b
d = 1 + cL, (1)

where b is the biological dose (unit: Gy(RBE)), d is the physical dose (unit: Gy), L is 

LET, and c is a scaling parameter that is usually set as a constant 0.04 μm/keV in order to 

yield RBE=1.1 in the center of spread-out Bragg peak of 5cm modulation and 10cm range 

[3,4,15]. One way to account for RBE of proton therapy is to directly optimize b [3,4,15], 

which however is subject to the uncertainty in the value of c and planning constraints with 

respect to b.

An alternative is to optimize LET as well as physical dose instead of directly optimizing 

biological dose [5,16–18], because (1) this does not require c in treatment planning, (2) 

planning constraint values are well defined based on physical dose, and (3) the planning 

constraints for LET are relatively easy to define, e.g., to minimize the hot spots in OAR [2].

The LET is the transferred energy per unit length. Two common LET definitions [4,14,18–

23] are fluence-averaged (or track-averaged) LET Lf

Lf(z) = ∫ S(E) ⋅ ϕ(E, z)dE
∫ ϕ(E, z)dE (2)
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and dose-averaged LET Ld

Ld(z) = ∫ S(E) ⋅ d(E, z)dE
∫ d(E, z)dE (3)

where the stopping power S E  is the energy loss of protons per unit length at the energy of 

E, ϕ E, z  is proton energy spectrum at the location z, and the dose d E, z = ϕ E, z S E /ρ z
is the energy per unit mass deposited to the location z (neglecting the change in the proton 

flux, dϕ/dz = 0).

There is no clinical evidence regarding which definition of Eq. (2) and (3) is more correlated 

to the biological dose [2]. Based on Monte Carlo simulations, Lf tends to underestimate the 

biological dose in the track end [21], and Ld could be more directly related to the expected 

biological response [22]. Although both definitions can be used to predict the LET of the 

similar accuracy within the range of beam, Ld is frequently used to model the LET in LET 

optimization [4,5,14,16–18,20,24] and will be used in this work.

2. Method

2.1. Dose averaged LET optimization

Let x be the vector of proton spot weight to be optimized with Nx spots indexed by j, d and 

L be the vector of physical dose and LET respectively with N voxels indexed by i. Then we 

have

di = ∑
j

Nx

Aijxj, i ≤ N (4)

and

Li = ∑j
Nx BijAijxj

di
, i ≤ N . (5)

where A is the dose influence matrix and B is the LET influence matrix.

The LET optimization problem under consideration is the following

min
x

F (x) = min
x

Fd(d(x)) + FL(L(x))

s . t .

d = Ax

L = BAx
d

x ∈ 0 ∪ [g, + ∞)

(6)

In Eq. (6), Fd and FL represent the planning objectives with respect to the physical dose 

d and dose-averaged LET L respectively, with details provided in Appendix A. The 

third constraint is the so-called minimum-monitor-unit (MMU) constraint with the MMU 
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threshold g that is imposed in order for spots to be deliverable on proton machines. 

Various methods have been developed to solve the MMU problem, including postprocessing 

methods [25,26,29] and optimization methods [27,28,30,31,47]. For example, Varian 

Eclipse treatment planning system currently uses the rounding postprocessing method [25]. 

However, it has been shown that the optimization methods can provide better plan quality 

than the postprocessing methods [47]. Therefore, the optimization approach is used here to 

handle the MMU constraint.

Note that L is nonlinear with respect to x. Without further considering the specific features 

of the nonlinear optimization problem Eq. (6), it can be solved directly as a standard 

nonlinear problem [33], such as Quasi-Newton (QN) method [5,32] and interior-point 

method [17]. We will compare with QN, for which the derivative of the total objective 

F = Fd + FL with respect to x is provided in Appendix B.

Although QN is straightforward, it does not account for specific structures of the 

optimization problem Eq. (6). Next, we will develop an optimization method that is tailored 

to the structures of the optimization problem Eq. (6), which will be shown to outperform the 

generic method via QN in both plan quality and computational efficiency.

2.2. Iterative Convex Relaxation (ICR)

The optimization challenges for Eq. (6) include (1) nonconvexity from dose-volume 

constraints in Fd [34,35] (2) nonlinearity and nonconvexity from dose-averaged LET term in 

FL; (3) nonconvexity from the MMU constraint [25–31].

Here we propose an optimization method tailored to the structures of LET optimization 

problem Eq. (6) based on iterative convex relaxation (ICR) [27,28,36,37]: nonconvex dose-

volume constraints and nonlinear LET term are directly handled by ICR, while nonconvex 

MMU constraint is handled with analytic formula during the inner loop of ICR via 

alternating direction method of multipliers (ADMM) [38,39].

Specifically, ICR iterations indexed by m for solving Eq. (6) consist of three following steps

xm + 1 = argmin
x

Fd Ax, Ωm + FL(BAx
dm , Ωm),

s . t . x ∈ 0 ∪ [g, + ∞)
(7)

dm + 1 = Axm + 1, (8)

Ωm + 1 = H xm + 1 . (9)

In Eq. (7), with fixed Ωm and dm, Fd and FL are least squares of linear terms with respect to x, 

and therefore Eq. (7) can be efficiently optimized by solving a linear system (with formulas 

of derivates provided in Appendix B). Then the dose dm + 1 and the active set Ωm + 1 can be 

updated in turn based on the solution xm + 1 from Eq. (7) using Eq. (8) and (9) respectively. 

The detailed expression of H in Eq. (9) is provided in Appendix A.
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Next we provide the solution algorithm via ADMM for solving Eq. (7). ADMM [38] is 

particularly suitable to handle the optimization problem that is separable and parallelizable 

with analytic solutions available for subproblems (such as the MMU constraint in Eq. 

(7)), and has been utilized to solve various problems in image reconstruction [40–43] and 

treatment planning [44–47].

In order to split the MMU constraint from the planning objective in Eq. (7), a dummy 

variable z satisfying z = x is introduced to decouple the MMU constraint of z from the 

planning objective with respect to x, i.e.,

min
(x, z)

F (x)

s . t . z ∈ 0 ∪ [g, + ∞) .
x = z

(10)

In Eq. (10), Ωm and dm are removed for the clarity of presentation.

Then an auxiliary variable u of z is introduced to reformulate the constraint z = x to a least-

square term with the corresponding regularization parameter λ. That is, the ADMM solution 

for Eq. (7) is obtained by iteratively optimizing the following augmented Lagrangian of. Eq 

(10)

L(x, z, u) = F (x) + λ x − z + u 2,
s . t . z ∈ 0 ∪ [g, + ∞)

(11)

which consists of the following iterative steps indexed by k

xk + 1 = argmin
x

L x, zk, uk

zk + 1 = argmin
z

L xk + 1, z, uk .

uk + 1 = uk + xk + 1 − zk + 1

(12)

Note that the z-subproblem (Step 2 of Eq. (12)) has the analytic solution

zk + 1 = S xk + 1 + uk , (13)

where

S(x) = max xj, g , xj ≥ g/2
0, otℎerwise, j ≤ N . (14)

The existence of analytic solution Eq. (14) for the MMU constraint is the motivation for 

using ADMM and ICR. The solution to the x-subproblem of Eq. (12) can be obtained by 

taking the derivatives with respect to x (see Appendix B).
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2.3. Materials

ICR was validated in comparison with QN using four clinical cases: lung (60Gy in 30 

fractions), head-and-neck (HN) (69.96Gy in 33 fractions), brain (60Gy in 30 fractions), 

and abdomen (55Gy in 25 fractions). In the result section (including Figure 1–4 and Table 

1), “QN” and “ICR” refer to QN and ICR methods respectively for solving the treatment 

planning problem Eq. (6) without the LET term FL, while “QN-LET” and “ICR-LET” refer 

to QN and ICR methods respectively for solving the treatment planning problem Eq. (6) 

with the LET term FL.

Since the high LET mostly occurs near the target, a 1cm normal-tissue expansion of clinical 

target volume (CTV) (excluding CTV), i.e., CTV1cm, is defined to as an auxiliary structure 

during treatment planning, where the LET term FL is minimized. Both dose and LET 

objectives were enforced on CTV1cm for “QN-LET” and “ICR-LET”, while no objective 

was enforced for CTV1cm for “QN” and “ICR”.

Three proton beams (0°, 120°, 240°) were used for abdomen and lung, and four proton 

beams (45°, 135°, 225°, 315°) were used for HN and brain. MatRad [48] was used to 

generate dose influence matrices A and LET influence matrices B with 5mm spot lateral 

spacing on 3 mm3 dose grid, using default proton beam model provided in MatRad, where 

the spot size (i.e., FWHM at isocenter) ranges from 11.8 mm for 31.7 MeV to 5.4 mm for 

236.1 MeV.

For fair comparison, all methods had the same planning objective Fd, while QN-LET and 

ICR-LET had the same LET objective FL; the same plan normalization with respect to CTV 

was used for all plans. All the optimized plans satisfy the MMU constraint with the MMU 

threshold g=5×106 protons. A fixed number of 50 iterations is set for all methods for the 

comparison of computational time.

In Figure 1–4, dose-volume histogram (DVH), LET-volume histogram (LVH), and 

biological dose-volume histogram (BVH) are compared, where the biological dose b is the 

variable RBE weighted dose in Eq. (1). In Table 1, the conformity index (CI) is defined as 

V100, CTV
2/ VCTV × V100 (V100, CTV: CTV volume receiving at least 100% of prescription dose; VCTV: 

CTV volume; V100: total body volume receiving at least 100% of prescription dose).

3. Results

3.1. LET optimization

With LET optimization, ICR-LET (Fig. 1–4(d)) effectively decreased the LET in the 

CTV1cm, compared to ICR (Fig. 1–4(b)): while the high LET was around the CTV and 

inside CTV1cm using ICR, the high LET was pushed out of CTV1cm and into the CTV 

by ICR-LET. The LVH plots (Fig. 1–4(m)) also demonstrate substantially decreased LET 

in CTV1cm from ICR using ICR-LET. As a result, the biological dose was reduced in 

CTV1cm (Fig. 1–4(o)).

In terms of LET optimization efficiency, as shown in LVH for CTV1cm (Fig. 1–4(m)), 

ICR-LET had generally lower LET than QN-LET, while ICR had similar LET with QN. 
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It is noted that ICR-LET had a substantially lower LVH than QN-LET for LET between 

1.5keV/μm and 3keV/μm, and comparable (slightly higher) LVH with QN-LET for LET 

beyond 3keV/μm.

In terms of biological dose b, as shown in BVH for CTV1cm (Fig. 1–4(o)), ICR-LET had 

substantially lower b than QN-LET, while ICR had similar b with QN. On the other hand, as 

summarized in Table 1, ICR-LET had lower LET objective value than QN-LET, which also 

indicates that ICR-LET is more efficient than QN-LET for LET optimization.

In terms of LET distribution, despite of similar LET map between QN (Fig. 1–4(a)) and 

ICR (Fig. 1–4(b)), ICR-LET (Fig. 1–4(d)) pushes more high LET to CTV than QN-LET 

(Fig. 1–4(c)), by comparing the iso-LET lines, which is actually desirable for the purpose of 

tumor control. On the other hand, the high LET region outside of CTV1cm in the LET maps 

(e.g., Fig. 1(a–d)) was less significant, due to the low dose.

3.2. Plan quality

In terms of target dose conformality, by comparing CI values in Table 1, while QN and ICR 

had similar CI values for either physical dose d or biological dose b, ICR-LET improved the 

target dose conformality from QN-LET with larger CI values for both d and b, i.e., from 0.86 

to 0.9 in d and from 0.74 to 0.82 in b for lung, from 0.82 to 0.87 in d and from 0.66 to 0.75 

in b for HN, from 0.9 to 0.92 in j:\Production\18192\311936mc\upload\ and from 0.74 to 0.83 in 

b for brain, and from 0.88 to 0.93 in d and from 0.62 to 0.78 in b for abdomen. The improved 

target dose conformality using ICR-LET is also clear from dose maps (Fig. 1–4(e–l)). Take 

the HN case (Fig. 2) for example, 100% isodose lines for both d and b were brought closer to 

CTV from ICR to ICR-LET, but not so much from QN to QN-LET.

In terms of high-dose sparing, by comparing DVH (Fig. 1–4(n)) and BVH (Fig. 1–4(o)), 

ICR-LET provided better sparing than QN-LET for CTV1cm, which was a high-dose and 

high-risk OAR adjacent to CTV, despite of similar DVH and BVH between QN and ICR. 

The improved OAR sparing using ICR-LET is also clear from dose maps (Fig. 1–4(e–l)). 

Take the lung case (Fig. 1) for example, 80% isodose lines for both d and b were within 

CTV1cm and clearly shrank to be tight to CTV from ICR to ICR-LET, but not so much from 

QN to QN-LET.

To evaluate the OAR sparing, we compared LVH (Fig. 1–4(q)), DVH (Fig. 1–4(r)) and BVH 

(Fig. 1–4(s)) for the heart in the lung case, the left parotid (L-parotid) for the HN case, the 

brainstem for the brain case and the bowel for the abdomen case. ICR-LET had the smallest 

LET in OAR among all methods, except for the region higher than 2keV/μm in the HN case 

(Fig. 2(q)) and the region higher than 4keV/μm in the brain case (Fig. 3(q)). However, these 

two regions were with low dose and did not contribute to the total objective to be optimized, 

as the BVH (Fig. 1–4(s)) shows that ICR-LET had the smallest V30 in all the cases. Thus 

ICR-LET also spared OAR (outside of CTV1cm) from high dose d or b, more than QN-LET 

(Fig 1–4(r, s)).

The quantitative results in Table 1 also show that ICR-LET was better than QN-LET. For 

example the mean biological dose b was decreased from 2.8% to 1.7% of the prescription 
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dose for the heart in the lung case, from 12.9% to 10.1% for the L-parotid in the HN case, 

from 22.1% to 16.4% for the brainstem in the brain case, and from 4.9% to 4.0% for the 

bowel in the abdomen case. It is also noted that ICR-LET had smaller mean d and b to OAR 

than ICR in all the cases, while QN-LET had larger mean d and b to OAR than QN for lung 

and brain.

3.3. Computational efficiency

The computational time for 50 iterations is summarized in Table 1, which suggests that 

ICR (ICR-LET) was approximately 3-time faster than QN (QN-LET), based on the same 

computational environment and optimization parameters. The solution convergence for 

the brain case of 50 iterations for all methods is presented in Fig. 5: ICR (ICR-LET) 

had consistently lower optimization objective values than QN (QN-LET) during iterative 

solution process during the entire process (after about 30 iterations). Although the decrease 

of the total objective was faster for QN-LET than ICR-LET in the beginning, the decrease 

of the total objective was faster for ICR-LET than QN-LET after a while, e.g., QN-LET 

reached a plateau while ICR-LET still decreased after 30 iterations.

4. Discussion

Although there is a lack of theoretical justification regarding the superior performance of 

ICR over QN, there is an explanation why ICR can provide superior LET distribution and 

plan quality over QN. That is, a generic nonlinear optimizer such as QN is not specific 

to LET optimization, while ICR is tailored to specific structures of LET optimization 

for efficiently handling nonlinear and nonconvex terms. On the other hand, the improved 

computational efficiency from QN to ICR can be justified by the following: QN requires 

to calculate the full derivatives of optimization objectives within each iteration (Eq. (S13) 

in the Appendix B); In contrast, ICR does not require the full derivatives of optimization 

objectives in each iteration (Eq. (S12) in the Appendix B). Therefore, each QN iteration 

takes more time than each ICR iteration.

For the purpose of LET optimization, one needs to define the LET objective with respect to 

some OAR, for which we have introduced an auxiliary OAR ring structure CTV1cm. This 

is because the high dose occurs around the tumor target, e.g., CTV1cm, where the physical 

dose is high and thus LET is to be minimized. Although the use of CTV1cm may not be 

fundamentally necessary for the LET optimization compared to the use of other OARs, we 

have found the use of CTV1cm as the OAR for LET optimization is a reliable surrogate and 

the objective weighting for CTV1cm is relatively stable to tune than other OARs. The choice 

of 1cm was empirical. We found that with 5mm, there were still high-dose regions outside 

CTV5mm where LET needs to minimized, which otherwise leads to high biological dose. 

On the other hand, the choice of larger than 1cm seemed to make no significant difference 

in LET and dose distribution, which however increased the computational burden. Note that 

CTV1cm was also used for the purpose of FLASH optimization [36,37,45], as an auxiliary 

OAR ring structure where the high dose rate is desirable for biological FLASH sparing.

It is noted that ICR-LET was more responsive than QN-LET to the dose objective on the 

CTV1cm, i.e., pushing dose and LET from the ring into CTV or/and out of ring, which led 
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to better LVH for CTV1cm, higher CI values, and flatter DVH for CTV. As shown in Fig. 

1–4(m), both QN-LET and ICR-LET had substantial improvement of LVH from QN and 

ICR respectively, although ICR-LET had more improvement. In comparison, as shown in 

Fig. 1–4(n), the improvement of CTV1cm DVH from ICR to ICR-LET remained substantial, 

while the improvement of CTV1cm DVH from QN to QN-LET was much less. As a result, 

the improvement of CTV1cm BVH from ICR to ICR-LET was more substantial than that 

from QN to QN-LET, as shown in Fig. 1–4(o). The similar trends can be observed for 

another set of treatment plans with improved target dose uniformity (but reduced sparing of 

CTV1cm in terms of LET, DVH, and BVH) in Appendix E. Note that the same objective 

weightings were used between QN-LET and ICR-LET. This more responsive observation of 

ICR-LET to CTV1cm dose objective than QN-LET is likely due to the linearization nature 

of the ICR algorithm.

There is a tradeoff between optimizing dose and LET objectives. This tradeoff is generic 

in the sense that both QN and ICR share the same trend of improved target dose coverage 

for smaller LET objective weighting, with an example provided in Fig. S1 of Appendix 

C. All plans with different LET weighting had the same normalization D95=100% of the 

prescription dose. It is observed that, as the LET weighting increases, the over-covered 

target region (i.e., hot spots) increase and the under-covered target region (i.e., less than 

prescription dose) also increase, regardless of QN or ICR. This tradeoff between dose and 

LET optimization is generic and not specific to a method.

Because the MMU constraint is nonconvex, the magnitude of MMU threshold g can change 

the effectiveness of ADMM-based ICR for dealing with the MMU constraint [47]. For 

relatively large g, alternative optimization methods than ADMM may be needed, such as 

stochastic coordinate descent method [47].

5. Conclusion

We have developed a new LET optimization algorithm based on ICR, which is tailored to 

specific nonlinear and nonconvex structures of LET optimization. Compared to a generic 

nonlinear optimizer such as QN, ICR is shown to provide better LET optimization, plan 

quality, and computational efficiency.

Acknowledgment

The authors are very thankful to the valuable comments from reviewers. This research is partially supported by the 
NIH grants No. R37CA250921, R01CA261964, and a KUCC physicist-scientist recruiting grant.

Appendix A: Dose and LET objectives

The dose-volume planning objective Fd in Eq. (6) and (7) is
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Fd(d, Ω) = ∑
i = 1

NL2

w1, i dΩ1i − d1, i
2 + ∑

i = 1

Nmean

w2, iℎ MdΩ2i − d2, i MdΩ2i − d2, i
2

+ ∑
i = 1

Nduℎ − max

w3, i dΩ3, i − d3, i
2 + ∑

i = 1

Ndinℎ − min

w4, i dΩ4, i − d4, i
2

. (S1)

In Eq. (S1), di is the dose constraint for the dose dΩi in the region Ωi. There are four types 

of objectives. The first term in Eq. (S1) consists of L2-norm least squares, which drives dΩi

to d1 pointwise in Ω1, and NL2 is the number of L2-norm objectives. For L2-norm objectives, 

d1 = 100% of prescription dose at the target, and d1 = 0 for OAR. The second term in Eq. 

(S1) is the mean-max-dose objective for OAR with the max constraint d2, where M is the 

averaging operator to calculate the mean dose, and ℎ is the Heaviside step function. The 

third and fourth terms are dose-volume-histogram (DVH) based objectives [34,35]: the third 

term is DVH-max-dose objective with the max constraint d3 for target or OAR; the fourth 

term is DVH-min-dose objective with the min constraint d4 for target only.

The DVH-max constraint for a region of interest (ROI) is given by

Dp%, ROI ≤ c: ≤ p% of ROI receives ≥ c dose (S2)

and DVH-min constraint is

Dp%, ROI ≥ c: ≥ p% of ROI receives ≥ c dose (S3)

In the ROI, if the volume receiving the dose ≥ c is more than p% of ROI, the DVH-max 

constraint is violated and then DVH-max-dose objective is activated in the region Ω3 beyond 

the p% of ROI based on the DVH. That is, after sorting the dose d at this ROI in the 

descendent order

d′ = S (d), (S4)

the activate set Ω3 is determined by

Ω3 = j ∣ dj ∈ c, dp
′

(S5)

where d’p is the (sorted) dose corresponding to the volume p%.

Similarly, the active region for the DVH-min constraint can be determined by

Ω4 = j ∣ dj ∈ dp
′ , c (S6)

The active region for DVH constraints depends on the dose distribution d in the ROI, and Fd

is a nonconvex function of x. The details of H in Eq. (9) are provided in Eq. (S4)–(S6).
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Although the similar expression Eq. (1) for dose d can be used for LET L, LVH constraints 

are not common. Here we only the L2-norm objectives for LET, i.e.,

FL(d, Ω) = ∑
i = 1

NL

wi LΩi − li
2 . (S7)

Therefore, the explicit formula of total objective F  in Eq. (6) is the following

F (x) = ∑
i = 1

NL2

w1, i Ax − d1, i Ω1, i
2 + ∑

i = 1

Nmean

w2, iℎ MAx − d2, i MAx − d2, i Ω2, i
2

+ ∑
i = 1

Ndvℎ‐max

w3, i Ax − d3, i Ω3, i
2 + ∑

i = 1

Ndvℎ‐min

w4, i Ax − d4, i Ω4, i
2 + ∑

i
wi∑

k

Ωi

(∑j
Nx BkjAkjxj

∑j
Nx Akjxj

− li, k)
2

,
(S8)

where the summation i is for all active sets, the summation k is for all the voxels in Ωi, and 

the summation j is for all the spots.

Appendix B: Derivatives of dose and LET objectives

The first-order derivatives for Fd and FL are needed for either QN or ICR.

For Fd,

∂Fd

∂x = ∑
i = 1

NL2

2ATw1, i(Ax − d1, i)Ω1, i + ∑
i = 1

Nmean

2(A1Ω2, i
Tw2, iℎ(MAx − d2, i)(MAx − d2, i)Ω2, i

+ ∑
i = 1

Ndvℎ‐max

2ATw3, i(Ax − d3, i)Ω3, i

+ ∑
i = 1

Ndvℎ‐min

2ATw4, i(Ax − d4, i)Ω4, i,

(S9)

In Eq. (S9), 1Ω is from the averaging operator M, i.e., a column vector with all elements 

equal to one and the length equal to the number of elements in the active set Ω.

For ICR, we rewrite FL as

FL = ∑
i

∑
k

Ωi wi

dk
2 (∑

j

Nx

BkjAkjxj − lkdk)
2

, (S10)

because, in ICR, dk is taken as a constant in Eq. (7) and then updated separately in Eq. (8).

Then we simplify Eq. (S10) as

FL = w Cx − b 2
(S11)

where wi, k = wi/dk
2, Ckj = BkjAkj, and bk = lkdk. Then the derivative of FL for ICR
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∂FL

∂x = 2CTw(Cx − b) . (S12)

On the other hand, QN requires the full derivative of FL with respect to x,

∂FL

∂xp = ∂
∂xp ∑

i
wi∑

k

Ωi ∑j
Nx BkjAkjxj

∑j
Nx Akjxj

− li, k

2

= 2∑
j

wi∑
k

Ωi ∑j
Nx BkjAkjxj

∑j
Nx Akjxj

− li, k × BkpAkp

∑j
Nx Akjxj

− Akp
∑j

Nx BkjAkjxj

∑j
Nx Akjxj

2

= 2∑
i

wi∑
k

Ωi ∑j
Nx Ckjxj

dk
− li, k × Ckp

dk
− Akp

∑j
Nx Ckjxj

dk
2

= 2∑
i

wi∑
k

Ωi Ckp

dk
2 ∑

j

Nx

Ckjxj − Akp

dk
3 ∑

j

Nx

Ckjxj

2

+ li, kAkp

dk
2 ∑

j

Nx

Ckjxj − li, kCkp

dk
.

(S13)
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Appendix C: Tradeoff between optimizing dose and LET objectives

Figure S1. 
Target dose distribution under different LET objective weighting wLET. Dose plots (a-h): the 

1st and 2nd rows correspond to ICR and QN respectively; the 1st, 2nd, 3rd and 4th columns 

correspond to dose d for wLET = 1, 0.2, 0.01, and 0 respectively. DVH of CTV plots (i-k) for 

wLET = 1, 0.2, and 0.01 respectively. The display window for d is [0%, 110%] of prescription 

dose, and iso-dose lines of 105% and 80% are highlighted in (a-h).

Appendix D: Treatment plans with improved target dose uniformity

Another set of treatment plans with improved target dose uniformity was generated for lung, 

HN, brain, and abdomen in Fig. S2–S5 respectively, corresponding to Fig. 1–4. Compared 

to previous results, the new plans had less weighting on the LET objective; to control 

the hot spots, more weighting was set on the maximum CTV dose penalty term, i.e., 

to minimize the CTV volume with 105% physical dose or higher; the control the cold 
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spots, D95%⩾100% was replaced by D98%⩾100% for optimization and D95%=100% was 

replaced by D98%=100% for plan normalization.

The comparison CTV DVH of Fig. S2–S5(p) and Fig. S1–S4(p) shows that the target dose 

uniformity is indeed improved, however, at the cost of higher OAR dose (e.g., by comparing 

DVH between Fig. S2–S5(n) and Fig. S1–S4(n) or comparing BVH between Fig. S2–S5(o) 

and Fig. S1–S4(o)). The quantitative metrics for new results are provided in Table S1.

Figure S2. 
Lung results with improved physical dose uniformity at CTV compared to Fig. 1.
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Figure S3. 
HN results with improved physical dose uniformity at CTV compared to Fig. 2.
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Figure S4. 
Brain results with improved physical dose uniformity at CTV compared to Fig. 3.
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Figure S5. 
Abdomen results with improved physical dose uniformity at CTV compared to Fig. 4.

Table S1.

Computational time and dosimetric parameters with improved physical dose uniformity at 

CTV compared to Table 1.

Lung HN Brain Abd

T

QN 346 567 280 348

ICR 100 113 36 95

QN-LET 416 527 168 391

ICR-LET 86 100 37 120

F QN 3.1 2.0 1.7 0.5
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Lung HN Brain Abd

ICR 1.9 1.7 1.4 0.4

QN-LET 4.8 4.0 3.2 2.6

ICR-LET 4.4 3.7 3.3 2.8

Fd

QN 3.1 2.0 1.7 0.5

ICR 1.9 1.7 1.4 0.4

QN-LET 2.9 2.3 1.6 0.7

ICR-LET 2.4 2.1 1.7 1.0

FL

QN 0 0 0 0

ICR 0 0 0 0

QN-LET 1.9 1.7 1.6 1.9

ICR-LET 2.0 1.6 1.6 1.8

CId

QN 0.98 0.88 0.94 0.89

ICR 0.96 0.90 0.95 0.91

QN-LET 0.93 0.87 0.93 0.90

ICR-LET 0.95 0.91 0.95 0.93

CIb

QN 0.61 0.66 0.72 0.71

ICR 0.62 0.67 0.73 0.72

QN-LET 0.61 0.67 0.73 0.72

ICR-LET 0.73 0.72 0.78 0.77

LCTV1cm

QN 3.24 2.99 3.04 3.58

ICR 3.21 3.03 3.06 3.61

QN-LET 3.11 2.87 2.83 3.03

ICR-LET 3.00 2.75 2.77 2.97

dCTV1cm

QN 0.75 0.74 0.68 0.69

ICR 0.73 0.72 0.67 0.68

QN-LET 0.75 0.74 0.67 0.71

ICR-LET 0.68 0.68 0.60 0.60

bCTV1cm

QN 0.84 0.82 0.76 0.79

ICR 0.83 0.81 0.75 0.77

QN-LET 0.84 0.82 0.75 0.79

ICR-LET 0.76 0.75 0.66 0.67

LOAR

QN 1.30 1.30 1.84 2.23

ICR 1.27 1.26 1.91 2.15

QN-LET 1.35 1.85 1.72 2.47

ICR-LET 1.17 1.62 1.83 1.95

dOAR

QN 0.24 1.28 1.69 0.49

ICR 0.22 1.24 1.60 0.45

QN-LET 0.25 1.24 1.84 0.47
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Lung HN Brain Abd

ICR-LET 0.18 1.07 1.55 0.40

bOAR

QN 0.27 1.40 1.87 0.52

ICR 0.25 1.35 1.78 0.48

QN-LET 0.28 1.36 2.02 0.50

ICR-LET 0.21 1.15 1.69 0.43
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Figure 1. 
Lung. Dose plots (a-l): the 1st, 2nd and 3rd rows correspond to LET L, dose d and biological 

dose b respectively; the 1st, 2nd, 3rd and 4th columns correspond to QN, ICR, QN-LET and 

ICR-LET respectively. Dose\LET-volume plots (m-s): LVH (m), DVH (n) and BVH (o) for 

CTV1cm, DVH (p) for CTV, LVH (q), DVH (r) and BVH (s) for the heart. The display 

window for L is [0, 5keV/μm], and iso-LET lines of 4.0 and 3.2 are highlighted in (a-d); the 

display window for d and b is [0%, 110%] of prescription dose, and iso-dose lines of 110% 

and 80% are highlighted in (e-l).
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Figure 2. 
HN. Dose plots (a-l): the 1st, 2nd and 3rd rows correspond to LET L, dose d and biological 

dose b respectively; the 1st, 2nd, 3rd and 4th columns correspond to QN, ICR, QN-LET and 

ICR-LET respectively. Dose\LET-volume plots (m-s): LVH (m), DVH (n) and BVH (o) for 

CTV1cm, DVH (p) for CTV, LVH (q), DVH (r) and BVH (s) for the left parotid. The display 

window for L is [0, 5keV/μm], and iso-LET lines of 4.0 and 3.2 are highlighted in (a-d); the 

display window for d and b is [0%, 110%] of prescription dose, and iso-dose lines of 110% 

and 80% are highlighted in (e-l).
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Figure 3. 
Brain. Dose plots (a-l): the 1st, 2nd and 3rd rows correspond to LET L, dose d and biological 

dose b respectively; the 1st, 2nd, 3rd and 4th columns correspond to QN, ICR, QN-LET and 

ICR-LET respectively. Dose\LET-volume plots (m-s): LVH (m), DVH (n) and BVH (o) for 

CTV1cm, DVH (p) for CTV, LVH (q), DVH (r) and BVH (s) for the brainstem. The display 

window for L is [0, 5keV/μm], and iso-LET lines of 4.0 and 3.2 are highlighted in (a-d); the 

display window for d and b is [0%, 110%] of prescription dose, and iso-dose lines of 110% 

and 80% are highlighted in (e-l).
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Figure 4. 
Abdomen. Dose plots (a-l): the 1st, 2nd and 3rd rows correspond to LET L, dose d and 

biological dose b respectively; the 1st, 2nd, 3rd, and 4th columns correspond to QN, ICR, 

QN-LET and ICR-LET respectively. Dose\LET-volume plots (m-s): LVH (m), DVH (n) and 

BVH (o) for CTV1cm, DVH (p) for CTV, LVH (q), DVH (r) and BVH (s) for the bowel. 

The display window for L is [0, 5keV/μm], and iso-LET lines of 4.0 and 3.2 are highlighted 

in (a-d); the display window for d and b is [0%, 110%] of prescription dose, and iso-dose 

lines of 110% and 80% are highlighted in (e-l).
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Figure 5. 
Solution convergence. The objective values per iteration during 50 iterations are plotted for 

QN, ICR, QN-LET and ICR-LET. Left y-axis is for QN and ICR, while the right y-axis is 

for QN-LET and ICR-LET.
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Table 1.

Computational time and dosimetric parameters.

Lung HN Brain Abd

T

QN 317 907 276 370

ICR 110 112 47 100

QN-LET 287 579 166 381

ICR-LET 102 115 73 100

F

QN 1.4 0.77 0.60 0.15

ICR 1.0 0.61 0.49 0.12

QN-LET 10.8 9.1 8.9 9.7

ICR-LET 10.8 8.3 8.2 10.1

Fd

QN 1.4 0.77 0.60 0.15

ICR 1.0 0.61 0.49 0.12

QN-LET 2.1 1.9 1.3 1.3

ICR-LET 3.0 1.9 1.8 2.3

FL

QN 0 0 0 0

ICR 0 0 0 0

QN-LET 8.7 7.2 7.6 8.4

ICR-LET 7.8 6.4 6.4 7.8

CId

QN 0.88 0.84 0.91 0.93

ICR 0.88 0.84 0.91 0.93

QN-LET 0.86 0.82 0.90 0.88

ICR-LET 0.90 0.87 0.92 0.93

CIb

QN 0.71 0.64 0.71 0.60

ICR 0.70 0.63 0.69 0.59

QN-LET 0.74 0.66 0.74 0.62

ICR-LET 0.82 0.75 0.83 0.78

LCTV1cm

QN 3.24 3.01 3.05 3.56

ICR 3.21 3.03 3.06 3.58

QN-LET 2.90 2.65 2.74 2.88

ICR-LET 2.70 2.46 2.47 2.73

dCTV1cm

QN 0.75 0.75 0.69 0.70

ICR 0.75 0.75 0.70 0.70

QN-LET 0.73 0.73 0.66 0.69

ICR-LET 0.62 0.63 0.56 0.57

bCTV1cm

QN 0.84 0.84 0.78 0.79

ICR 0.84 0.84 0.78 0.80

QN-LET 0.82 0.81 0.73 0.77
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Lung HN Brain Abd

ICR-LET 0.69 0.70 0.61 0.63

LOAR

QN 1.29 1.28 1.80 2.29

ICR 1.30 1.26 1.88 2.28

QN-LET 1.27 1.88 1.62 2.40

ICR-LET 1.25 2.07 1.58 1.92

dOAR

QN 0.24 1.32 1.74 0.49

ICR 0.23 1.35 1.68 0.47

QN-LET 0.25 1.18 2.03 0.46

ICR-LET 0.16 1.03 1.53 0.37

bOAR

QN 0.27 1.44 1.93 0.52

ICR 0.26 1.47 1.87 0.50

QN-LET 0.28 1.29 2.21 0.49

ICR-LET 0.17 1.01 1.64 0.40

The quantities from top to bottom: computational time T (unit: second); total objective F, dose objective Fd and LET objective FL (unit: 10−3); 

conformity index for physical dose CId and biological dose CIb; mean LET L (unit: keV/μm), mean physical dose d and mean biological dose b 

(in ratio to prescription dose) for CTV1cm; mean LET L (unit: keV/μm), mean physical dose d and mean biological dose b (in ratio to prescription 

dose; unit: 10−1) for OARs, where OAR is the heart for the lung case, the left parotid for the HN case, the brainstem for the brain case and the 
bowel for the abdomen case.
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