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Abstract

The thymus is an intricate organ consisting of a diverse population of thymic epithelial cells 

(TEC). Cortical and medullary TECs (cTECs and mTECs) and their subpopulations have distinct 

roles in coordinating the development and selection of functionally competent and self-tolerant T 

cells. Recent advances made in technologies such as single-cell RNA sequencing (scRNA-seq) 

have made it possible to investigate and resolve the heterogeneity in TECs. These findings 

have provided further understanding of the molecular mechanisms regulating TEC function and 

expression of tissue restricted antigens (TSAs). In this brief review, we focus on the newly 

characterized subsets of TECs and their diversity in relation to their functions in supporting T 

cell development. We also discuss recent discoveries on expression of self-antigens in the context 

of TEC development as well as the cellular and molecular changes occurring during embryonic 

development to thymic involution.

Introduction

The thymus is the primary organ responsible for the generation and maturation of T cells 

with antigen specificity resulting in a diverse repertoire of T cell receptors (TCRs). T cells 

that are unable to properly distinguish between self- and non-self-proteins risk promoting 

autoimmune disease. During their intra-thymic development, thymocytes are subjected to 

a complex selection process mediated by recognition and binding strength of their TCRs 

to self-peptide/MHC complexes presented by thymic epithelial cells (TEC). Cortical or 

cTECs are found in the cortex region of the thymus and mediate positive selection of 

TCRs capable of recognizing peptide/MHC complex. Following positive selection, cTECs 

and subsequently medullary TECs (mTECs) remove potentially autoreactive T cells that 

have high-affinity TCRs for self-antigens in a process termed negative selection (1). T 

cells with intermediate affinity are additionally redirected to a regulatory T-cell fate (2, 

3). These mechanisms of deletion and diversion ensure that only thymocytes with low 

self-affinity will differentiate into effector T cells (Teff) and establish central tolerance. As 

the role of the thymus is to “educate” developing T cells against self and non-self, TECs 

express up to 19,293 protein-coding genes or 88% of all protein-coding genes (4, 5), which 

is the highest number of genes known to be expressed in any cell type. Many of these 

genes encode for self-proteins normally only found in differentiated cell types and thus 

are called tissue-restricted antigens (TRAs). At the population level, TECs express almost 

all protein-coding genes with only individual mature mTECS expressing 1–3% of TRAs 

at any given time (4–8). Additionally, mTECs have a high turnover rate (9) and several 
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defined developmental states with varying gene expression patterns, all leading to a highly 

heterogeneous population.

With the ability to sequence heterogenous populations at single-cell resolution using single 

cell RNA sequencing (scRNA-seq) technology, we are now able to provide new insights 

into the functions of thymic epithelial cells and their development. While there have also 

been many studies done utilizing scRNA-seq on developing T cells (10), this review aims 

to focus on the current field of thymic epithelial cell function along with the emerging 

knowledge recently revealed by systems immunology approaches. Better understanding of 

the mechanisms in which thymic epithelial cell development and self-antigen expression 

is regulated can lead to insights as to why individuals have different susceptibilities to 

autoimmune deviations and provide better strategies for therapies involving thymic culture 

systems to generate T cells.

TEC heterogeneity & development

Generally, cTECs are defined as Epcam+LY51+CD45− by flow cytometry and keratin 8 

(KRT8) expression whereas mTECs are defined as Epcam+UEA-1+CD45− and keratin 

5 (KRT5). Early studies showed that mTECs had heterogeneous expression of MHC 

II and thus mTECs can be broadly divided into CD80loMHCIIlo (or mTEClo) and 

CD80hiMHCIIhi (or mTEChi). It was hypothesized that MHCIIhi mTECs were major players 

in thymic tolerance induction and MHC II genes are the prevailing contributors of genetic 

susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D), multiple sclerosis, 

and rheumatoid arthritis among others (11). The mTEChi population consists of cells that 

have high expression of Aire and Fezf2 and early studies showed embryonic mTEClo 

cells gave rise to mTEChi in a reaggregate thymic organ culture (RTOC, (12). It is now 

appreciated that the mTEClo population includes both immature mTEC precursors as well as 

terminally differentiated mTECs that have previously expressed Aire (13, 14).

Recent studies using scRNA-seq and fate-mapping analyses indicate that mTEC 

heterogeneity, is more complex than previously thought and mTECs have recently been 

classified into four major subsets, termed mTEC I-IV (14, Figure 1). Table 1 resolves some 

of the naming variations among publications from different groups which we will refer to in 

this review. mTEC I is characterized by high expression of Itag6, Ly6a (15), Pdpn (16, 17) 

and Ccl21 (18). This population is found at the cortical-medullary junction of the thymus 

and production of CCL21 regulates the migration of positively selected thymocytes. The 

mTEC II population consists of the previously named mTEChi group expressing Aire, Fezf2, 
CD40, H2-Aa or CD74 and are the precursors to terminally differentiated mTEC III cells 

that express Pigr, Ly6d, Spink5, Ivl, and Krt10 (15) but have lost their Aire expression 

(18, 19). Notably, mTEC IV cells resemble tuft cells that have been described at mucosal 

sites, including gut and lung epithelial. Tuft cells are a type of chemosensory epithelial cell 

most studied for their role in controlling helminth infections by initiating type 2 mucosal 

immunity. When comparing transcriptional signatures of both tuft cells in the intestinal 

epithelium and thymus they were found to be similar and express Lrmp, Avil, Trpm5, Dclk1, 
Gng13, Llcam and Sox9. Thymic tuft cells are also characterized by high expression of 

interleukin-25 (IL-25) and are critical for the development of IL-4 producing type 2 invariant 
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natural killer T (NKT2) in the thymus (19). Increased frequencies of ILC2 were also present 

in the thymus of Pou2f3−/− mice lacking tuft cells, however it is unknown whether this is 

linked to absence of IL-25 (15).

While it was previously thought that mTEC I gives rise to the fully differentiated mTEC 

II population (16, 17), a more recent investigation utilizing scRNA-seq technology found a 

cluster of cells they termed TAC-TECs (18) as the precursor to both the Ccl21 producing 

mTEC I and Aire positive mTEC II populations (Figure 1). This was demonstrated using 

both Aire-lineage tracing and RANK-ligand transient ablation models to measure population 

kinetics. While TAC-TECs seem to be a precursor population, these cells did not express 

previously described canonical stem cell markers and were actively cycling, suggesting that 

they are an undifferentiated population in transition between stem cells and differentiated 

cells known as transit-amplifying cells (20, 21). When comparing the TAC-TEC gene 

signature to those of published transit-amplifying populations (21) they found a significant 

enrichment of previously described transit-amplifying genes (18).

Supporting this hypothesis, Dhalla et al also identified a proliferating mTEC cluster that 

could act as a bipotent mTEC progenitor that differentiated into both Aire+ mTEC II 

and CCL21+ mTEC I lineages (22). Cells in the proliferating cluster upregulated genes 

involved in proliferation such as Mik67, and expressed Aire, suggesting it could represent 

the proliferating mTEChi population previously reported (22–24). Analysis of the same data 

using RNA velocity, a different trajectory method that relies on pre- and post-spliced RNA 

reads, produced conflicting results that indicated rather than differentiating into CCL21+ 

mTEC I, the proliferating mTEC cluster seemed to be derived from the mTEC I population 

(25). Another study conducted scRNA-seq of mouse TECs throughout the 1st year of year of 

life also identified a cluster equivalent to proliferating TAC-TECs. However, their diffusion 

psuedotime analysis suggested that the CCL21+ mTEC I could bifurcate into the two mTEC 

trajectories progressing towards Aire+ mTEC II and the proliferating mTEC cluster (26) 

(Figure 1).

While mTECs control thymocyte selection, CD4+ thymocytes also control the cellularity 

of Aire-positive mTECs by activating RANK and CD40 to induce the NF-κB signaling 

pathway. This reciprocal signaling between thymocytes and mTECs is referred to as thymic 

crosstalk. In a recent study using high through-put RNA-sequencing, Lopes et al show that 

self-reactive CD4+ thymocytes induce in CD80lo mTECs pivotal transcriptional regulators 

to control the composition, including precursors of mTEC II (Aire+), mTEC III (post-Aire 

cells), and mTEC IV (tuft-like mTECs) (27). They also showed upregulation in expression 

of TRAs, chemokines, cytokines, and adhesion molecules involved in T-cell development 

suggesting that self-reactive thymocytes are inducers of T-cell tolerance by controlling the 

developmental transcriptional programs of mTEC subsets (27).

Self-antigen expression regulation

TECs express many self-proteins normally found only in differentiated cell types and thus 

these genes are called tissue-restricted antigens (TRAs). While peripheral tissues have tight 

spatio-temporal control of gene expression during various stages of development, the diverse 
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expression of tissue specific genes observed in the thymus is referred to as promiscuous 

gene expression (PGE) (4, 6, 28). In mTECs, the transcription factor Autoimmune Regulator 

(Aire) positively regulates 3980 TRAs whereas Aire-independent genes consist of around 

3947 TRAs. Of the AIRE regulated genes, approximately 533 are directly dependent on 

AIRE for their expression (Aire-dependent), while expression of the remaining genes is 

enhanced in the presence of AIRE (Aire-enhanced) (4). Aire-dependent TRAs as generally 

characterized by an enrichment of H3K27me3 histone mark (trimethylation of lysine-27 

of histone H3) indicating a repressive chromatin state (4). Furthermore, loss-of-function 

mutations in Aire causes the autoimmune polyglandular syndrome type-1 (APS-1) which 

is marked by thymic export of self-reactive Teff cells (29). Many of these tissue specific 

genes are known targets of Aire and the syndrome is characterized by severe organ-specific 

autoimmunity affecting parathyroid chief cells, steroidogenic cells of the adrenal cortex, 

pancreatic β-cells, gastic parietal cells, skin melanocytes, hepatocytes, gonads, and the lung. 

Recently, Fezf2 was identified as a transcription factor capable of inducing TRA expression 

independently of Aire (30), suggesting other potential factors are likely to contribute to the 

regulation of TRAs in mTECs.

Despite expression of almost all protein-coding genes at the population level, TRA 

expression at single-cell resolution is heterogeneous with individual mature mTECs only 

expressing 1–3% of TRAs at a time (4–8). On average, in a single cell TRAs accounted 

for approximately 10% of all genes expressed (17) and TRA repertoires are not enriched 

for any particular peripheral tissue (4, 5, 8, 17). While Aire-dependent genes have a 

smaller frequency of genes expressed and have higher mean expression levels (4, 5, 8, 

17), Fezf2-induced TRAs have the same frequency as non-TRA expression but similar 

mean expression levels when compared to Aire-dependent genes (17). Additionally, Aire 
expression is only found in the mTEC II populations while interestingly Fezf2 was detected 

in both mTEClo and mTEChi populations (12, 18). While Aire expression is dependent on 

RANK signaling, both lymphotoxin β receptor (LTβR) and RANK signaling have been 

implicated in Fezf2 expression (30, 31). Wells et al reported conflicting results showing 

that Fezf2 expression was generally independent of RANK (18), therefore which signals 

induces Fezf2 expression needs further study. While Aire-KO and Fezf2-KO mice both 

develop autoimmunity in several peripheral target organs and show defective clonal deletion 

of autoreactive thymocytes (30, 32), the expression of exact target genes controlled by Aire 
and Fezf2 has also remained incompletely defined.

Accumulating evidence using scRNA-seq to investigate regulation of self-antigen co-

expression points to PGE expression being coordinated by mTEC developmental stages (17, 

22, 33). For example, Derbinski et al, compared expression of a small set of self-antigens 

between CD80lo and CD80hi mTECs and found that the CD80hi population had upregulated 

expression of both Aire-dependent and Aire-independent TRAs (28). More recently, several 

groups performed scRNA-seq and found mTECs tend to have higher expression of TRAs 

as they mature suggesting that the heterogeneity of self-antigen expression tend to reflect 

mTEC maturation trajectory (17, 22, 33). Dhalla et al went further to sort and compare 

total “unselected” mTECs in addition to mTECs expressing specific TRAs, namely Tspan8 

and GP2 protein, and found the pre-selected self-antigens tended to cluster within mTEC 

subpopulations (22). This was also reproducible when comparing different mouse strains 
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strongly suggesting that PGE in mTECs is regulated under an ordered and not random 

process (22). Another study also utilizing scRNA-seq of mTECs from Aire-KO mice found 

altered heterogeneity of mTECs and aberrant expression of CTLA-4 which was not found 

in wildtype (WT) mice (34). The ectopically expressed CTLA-4 was found to remove 

CD80/CD86 ligands expressed on thymic dendritic cells which attenuated their ability to 

provide co-stimulatory signals and present self-antigens transferred from mTECs, leading 

to impaired Treg production and autoimmunity in Aire-KO mice (34). Overall, it appears 

that mTECs shift through heterogenous patterns of promiscuous gene expression throughout 

development to eventually cover all protein-coding self-antigens.

Investigation of TRA expression by mTEC subset show very few TRAs are differentially 

expressed in the mTEC I population (17) and mTEC II expresses significantly elevated 

levels of Aire-enhanced and Aire-dependent genes. While mTEC III had been regarded as 

a passive step towards mTEC death, this population has been found to express the highest 

number of TRAs, including Aire-unaffected TRAs and similar numbers of Aire-enhanced 

and Aire-dependent TRAs compared to mTEC II (17). Similarly, Fezf2-dependent TRA 

expression also increases as the mTEC II population undergos maturation to mTEC III 

(17). Supporting this finding, Wells et al also show that TRA expression peaks well after 

initiation of Aire expression and was maintained even after Aire expression decreased (18). 

Overall, Miragaia and Wells findings both suggest that while Aire is critical for inducing 

TRA expression, it is not necessary for maintaining it (17, 18). Interestingly, Miragaia et 

al observed little divergence of the TRA repertoires between each stage of maturation (17). 

This suggests that the TRAs encountered by thymocytes anywhere in the medulla does not 

depend largely on the maturation stage of the surrounding mTECs. Specifically, mTEC I 

are found in the cortex-medulla junction, mTEC II at the periphery of the medulla and 

mTEC III towards the center of the medulla (14). However, these observations are based 

on mRNA quantities which does not correlate linearly with protein quantities. A recent 

study using trans-omics analysis, combining transcriptomic and proteomic analysis, further 

identified signature molecules at both the mRNA and protein level that functionally and 

developmentally characterize cTECs and mTECs (35). Proteomic profiling of cTECs and 

mTECs needs further investigation and will be useful as an unbaised and powerful tool to 

gain insight into the distinct machinery of protein processing and peptide presentation to 

shape the self-tolerant TCR repertoire in T cells.

Recent evidence is now suggesting that AIRE regulates TRA expression by first directly 

regulating mTEC differentiation which subsequently regulates TRA expression. This was 

recently shown using scRNA-seq of mTECs from Aire-augmented mice, where Nishijima et 

al found Aire-augmented and Aire-KO mice both had altered mTEC heterogeneity and that 

many of the same TRAs were downregulated in both groups of mice (33). One hypothesis 

for this finding is that given the expression of TRAs is dependent on mTEC maturation 

status, perturbations of this process in either Aire-KO or Aire-augmented mice might 

account for the downregulation of TRAs. However, the authors did suggest that there was a 

possibility that feedback mechanisms initiated by Aire overexpression may also be playing a 

role in transcriptional suppression of TRAs.
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Overall, identification of direct Aire targets has been hampered by low and promiscuous 

expression of TRAs. Using ATAC-seq, ChIP-seq and a reporter gene assay, the authors 

were able to identify CCl25 as a canonical target downstream of Aire (33). While Ccl25-

deficient mice showed some inflammatory changes in the salivary gland and kidney, they 

did not show obvious signs of autoimmunity. Ccl25 also did not affect expression of TRAs 

and differentiation programs in mTECs so how reduced Ccl25 develops organ-specific 

autoimmune disease awaits further study. In another study using transgenic mice, expression 

of model TRAs were directed under either the C-reactive protein (CRP) locus, whose 

Aire-independent expression is preferentially detected in the mTEC I subset, or the Insulin2 

(Ins2) locus to restrict expression to Aire+ mTEC II subsets. Using these models of 

antigen expression, it was found that mTEC I supported TCRαβ+ CD8αα intraepithelial 

lymphocyte development whereas mTEC II restricted antigen preferentially induces Treg 

differentiation to impact control of infections agents and tumor growth (36).

About a decade ago, Aire-regulated genes were shown to colocalize in chromosomal clusters 

(37, 38). Since then, it has been accepted that AIRE’s ability to recruit transcription factors 

to regions of closed chromatin would induce remodeling thus facilitating the co-expression 

of neighboring genes (29). The discovery that AIRE binds super enhancers supports this idea 

(39), providing a model that that explains both intra- and inter-chromosomal co-expression 

patterns of Aire regulated TRAs (8). Maragaia et al further investigated the gene clustering 

effect at the single cell level to determine how it changes in mTEC subsets and how 

it affects both Aire-enhanced and Aire-dependent TRAs (17). Overall, they found that 

genomic clustering tendency preferentially affects a minority of Aire-dependent TRAs and 

this effect seems to be established only in mTEC II and III, while limited in the mTEC I 

population (17).

From embryo to thymic involution

During mouse embryogenesis, an early rudiment of the thymus is evident in mouse gestation 

by embryonic day (E) 10–11. As development progresses, hematopoietic progenitors 

migrate to the thymus triggering the organ to double in size daily until birth. This formation 

and subsequent TEC differentiation is critically dependent on the expression of the 

transcription factor, Foxn1 (40–42) and mutations in the FOXN1 gene are characterized by 

T-cell immunodeficiency, congenital alopecia, and nail dystrophy (43). Bipotent progenitors 

of cTECs and mTECs arise as early as day 12.5 (44), however in an embryonic thymus, 

cTECs arise earlier whereas later in life mTECs are the predominant population in the adult 

thymus (45). mTEC I and mTEC II subpopulations become detectable at E18.5 and can be 

the most proliferative cells in the TECs. mTEC III can be found in the 4-week-old thymus 

and mTEC IV cells are present on neonatal day 6. Molecular features of TECs also differ 

between embryonic and adult thymus. For example, while in the adult thymus cTECs and 

mTECs can be separated based on their expression of keratin-5 and kertin-8 respectively (46, 

47), in the early embryonic thymus a keratin 5- and keratin 8-positive TEC subset is the 

dominant population (48, 49) making analysis of TEC populations by this approach difficult.

Recent studies using scRNA-seq has helped provide new insights into the developmental 

pathway of the thymus both at embryonic stage and up until adulthood. One study 
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characterizing the developmental dynamics of the embryonic thymus both in vivo and in 
vitro provided a single-cell transcriptional framework for thymus organogenesis (50). The 

study sampled thymic lobes beginning at embryonic day (E)12.5 and each day until birth, 

and they found Aire-expressing cells as early as E13.5. They also confirmed that mTEC III 

and IV were only found in the adult thymus (51) and not at birth (50). Additionally, they 

found that expression of autoimmune-implicated genes may begin during embryogenesis. 

Overall, their findings showed cellular heterogeneity of TECs dynamically changes 

with progression of thymus organogenesis, providing useful markers for developmental 

trajectories. Furthermore, they sequenced short term in vitro fetal thymic organ cultures 

(FTOCs) and found their transcriptome was comparable to in vivo development of thymii 

at similar timepoints (50). This provides evidence that in vitro thymic organ cultures are a 

physiologically relevant model and may be useful for future studies dissecting perturbations 

to thymic organ or T cell development. As an example, they showed that exogenous retinoic 

acid did not change the overall landscape of TEC compartments (50).

After birth the thymus continues to expand in size, although at a reduced rate, until peaking 

in size at ~4 weeks of age. It is then maintained in the adult mouse until puberty, around 8 

weeks, after which it begins to decline (23). While TECs display considerable proliferative 

potential (23), it remains unclear why thymic involution occurs. Thymic involution refers 

to the diminished TEC cellularity and turnover, disrupted thymic architecture, decreased 

thymic output and reduced T cell function that occurs in an age-dependent manner 

(52–54). Aging, infections, pregnancy, stress, and other processes can all cause thymic 

involution, or atrophy (55–57). Involution and reduced T cell output has been linked to 

age-related incidence of cancer, infection, and autoimmunity (58). While reduced levels of 

the transcription factor, Foxn1 contributes to thymic involution (59), genetic manipulation of 

cell-cycle regulators such as cyclins and E2F transcription factors can maintain thymic mass 

in aged mice (60, 61).

Another group performing transcriptome sequencing of neonatal TECs after birth included 

skin epithelial cells for comparison. They found that cell cycle progression is differentially 

regulated in TECs and skin epithelial cells and that many positive regulators of cell division 

are repressed in TECs relative to skin epithelial cells which could be related to thymic 

involution (62). Also supporting this hypothesis, Ki et al, showed thymic involution is 

associated with downregulation of cell-cycle genes in the CD80lo mTEC subset including 

decreased E2F3 activity in cTEC and CD80lo mTEC cells (51). Another study investigating 

transcriptional diversity of TECs through development also found increased proliferation 

and ribosomal biogenesis in fetal TEC and displayed diminishing expression with age (63). 

In this study, they showed that genes controlling ribosomal biogenesis and cell cycling in 

fetal stages in TEC development were targets of Myc which also had an age-correlated 

decline in expression (63). Overall, this further established Myc as a possible therapeutic 

target in modulating thymic regeneration and function.

Human thymus

While the thymus has been extensively studied using animal models, human immunity 

cannot be understood without further investigation into human TEC heterogeneity and 
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development. The study of human fetal thymus organogenesis has been mainly limited to 

morphological descriptions (64). Thymus organogenesis initiates from the third pharyngeal 

pouches during week 6 of gestation (65). During week 7, thymic and parathyroird 

primordium contains undifferentiated bi-potent thymic epithelial progenitor cells (TEPCs) 

(64) and at week 8, the differentiation of TECs occurs. After week 12, the cortical and 

medullary epithelial regions are distinct and CD4+ and CD8+ single-positive T lymphocytes 

appear (65).

To further characterize the molecular profiles of TECs and their interactions with developing 

thymocytes using human samples, two groups took single-cell transcriptomic approaches. 

Park et al, sequenced thymii spanning from embryonic, fetal, pediatric, and adult stages (66) 

whereas Zeng et al, analyzed thymii from the thymus, AGM (aorta-gonad-mesonephros) 

region, liver and blood of human embryos and fetuses (67). Park et al, found TEC 

populations that were conserved from mouse to human included PSMB11-positive cTECs, 

KRT14-positive mTEC I, Aire-expressing mTEC II, and KRT1-expressing mTEC III. mTEC 

IV tuft-like cells were found and enriched but were not specifically expressing DCLK1 

or POU2F3. Additionally, there were two populations specific to humans which included 

MYOD1- and MYOG- expressing myoid cells, TEC(myo)s and NEUROD1-, NEUROG1- 

and CHGA-expressing TEC(neuro)s, that resemble neuroendocrine cells (66).

Another study investigated the transcriptional landscape of early thymic epithelial cell 

development and potential cell-cell interactions during early thymus organogenesis by 

using cells from multiple hemogenic and hematopoietic sites spanning embryonic and 

fetal stages. In human thymic primordia, TECs are relatively rare, accounting for about 

1% of total cells (67, 68). Similarly in mice, few mature mTECs were detected during 

the early embryonic stages evidenced in the absence of Aire (67, 69–71) whereas cTECs 

proliferated and developed at a significantly faster rate than mTECs. Using prediction 

methods to calculate cellular interactions (72) they found that interactions between TECs 

and mesenchymal cells, as well as those between TECs and endothelial cells were the 

strongest, suggesting that cross talk between each type of stromal cell was important for 

early thymus organogenesis (67). Additionally, both embryonic and fetal early thymic 

progenitors (ETPs) had intensive interactions with TECs (67), consistent with the role of 

TECs in the hematopoietic progenitor-seeding thymus and T cell development.

The study of human thymus development has been limited; however, a recent study was 

able to isolate and expand clonogenic CD49f expressing mTEC and cTECs which could 

repopulate whole-organ scaffolds to reconstitute an anatomic phenocopy of the human 

thymus. The authors showed that the repopulated thymus scaffolds were able to support 

mature T cell development in vivo after transplantation into humanized immuno-deficient 

mice (73). Additionally, scRNA-seq analysis of the expanded cells in culture provided gene 

signatures useful for dissecting the complexity and properties of these thymic clonogenic 

cells. Further development of this organ reconstruction system and other ex vivo tools 

(73–76) will be valuable to address the roles of TECs and other human stromal cells (e.g. 

dendritic cells) during both organogenesis and thymopoesis.
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Conclusions

Unbiased transcriptomic analysis has been powerful in advancing our understanding of 

TECs. Global gene expression analysis identified promiscuous gene expression in mTECs 

(4, 6, 28, 77) and single-cell RNA-sequencing has revealed enormous diversity in mTEC 

subpopulations, including the novel tuft-like cell population (13, 15). Recent discoveries 

have contributed to a new appreciation of TEC diversity to provide multiple thymic 

microenvironments supporting different stages of thymocyte development. With new tools 

to study cell heterogeneity, we can further understand the mechanisms contributing to 

their development and identify new markers for each population. Overall, research in TEC 

function contributing to thymocyte development and their molecular characteristics during 

development will provide better understanding of the etiology of multiple T-cell-related 

diseases. These insights will improve strategies for T-cell based immunotherapies in cancer 

and autoimmune diseases.
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Figure 1. Phenotypic markers and pathways in mTEC development.
The mTEC I subset is part of the mTEClo compartment and characterized by CCL21 

expression. mTEC II are the classically mature Aire+ mTEChi populations. mTEC III are the 

post-Aire terminally differentiated mTECs that also are found in the mTEClo compartment 

and mTEC IV are the newly found tuft-like cells. Additionally, there has been a newly 

characterized proliferating TAC-TEC subset and whether this subset is a progenitor of 

mTEC I and mTEC II (18), or mTEC I leads to the TAC-TEC and mTEC II populations (26) 

requires further study.
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Table 1.
mTEC subsets.

Comparison of mTEC nomenclature used by different scRNA-seq studies

Bornstein (15) mTEC I mTEC II mTEC III mTEC IV Identified thymic tuft-cells

Miragaia (17) jTECs mTEChi mTEClo jTECs precursors give rise to mTEChi → mTEClo

Wells (18) Ccl21-high Aire-positive Late-Aire Tuft TAC-TEC population gives rise to both Ccl21-high and 
Aire-positive populations

Lebel (36) mTEClo mTEChi Post-Aire mTEC Tuft cells Model antigen with biased mTEChi expression supports Treg 
differentiation

Lopes (27) CCL21+ Aire+ Post-Aire Tuft-like Self-reactive CD4+ thymocytes regulate Aire+ precursors, 
post-Aire and tuft-like mTEC populations
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