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Abstract 

Background:  With the development of biotechnology and the accumulation of 
theories, many studies have found that microRNAs (miRNAs) play an important role in 
various diseases. Uncovering the potential associations between miRNAs and dis-
eases is helpful to better understand the pathogenesis of complex diseases. However, 
traditional biological experiments are expensive and time-consuming. Therefore, it is 
necessary to develop more efficient computational methods for exploring underlying 
disease-related miRNAs.

Results:  In this paper, we present a new computational method based on positive 
point-wise mutual information (PPMI) and attention network to predict miRNA-disease 
associations (MDAs), called PATMDA. Firstly, we construct the heterogeneous MDA 
network and multiple similarity networks of miRNAs and diseases. Secondly, we respec-
tively perform random walk with restart and PPMI on different similarity network views 
to get multi-order proximity features and then obtain high-order proximity representa-
tions of miRNAs and diseases by applying the convolutional neural network to fuse the 
learned proximity features. Then, we design an attention network with neural aggre-
gation to integrate the representations of a node and its heterogeneous neighbor 
nodes according to the MDA network. Finally, an inner product decoder is adopted to 
calculate the relationship scores between miRNAs and diseases.

Conclusions:  PATMDA achieves superior performance over the six state-of-the-art 
methods with the area under the receiver operating characteristic curve of 0.933 and 
0.946 on the HMDD v2.0 and HMDD v3.2 datasets, respectively. The case studies further 
demonstrate the validity of PATMDA for discovering novel disease-associated miRNAs.

Keywords:  MiRNA-disease association prediction, PPMI, Attention network, Deep 
learning

Background
MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that do not 
encode proteins. MiRNAs are approximately 22nt in length and bind to the 3′ untrans-
lated region of target mRNAs mainly through sequence-specific base pairing, which in 
turn participates in the regulation of target mRNA expression at the post-transcriptional 
level [1–4]. More and more studies have shown that mutation or abnormal expression of 
miRNAs is often linked to the development and progression of complex human diseases 
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such as cancer [5, 6]. For example, miR-143 and -145 consistently show reduced stable 
levels of mature miRNAs in adenoma and carcinoma stages of colorectal cancer [7]. In 
lung cancer, high hsa-mir-155 and low hsa-let-7a-2 expression are associated with poor 
survival and they may be potential prognostic markers [8]. Therefore, it is necessary 
to reveal more underlying associations between miRNAs and diseases for the sake of 
understanding the pathogenesis and developing personalized therapies.

Experimental methods such as qPT-PCR [9], northern blotting [10], and microar-
ray profiling [11] have been used to predict novel miRNAs associated with diseases. 
Although experimental methods have highly accurate results, they usually require a rela-
tively large time and economic investment, which is inefficient. Therefore, to facilitate 
the discovery of potential disease-related miRNAs, computational methods are devel-
oped, which can be classified into three main types, namely similarity-based methods, 
machine learning-based methods, and deep learning-based methods.

For similarity-based methods, they are based on the assumption that functionally 
similar miRNAs tend to correlate with similar diseases and vice versa. Jiang et al. [12] 
put forward the first computational method for miRNA-disease association (MDA) pre-
diction, which uses hypergeometric probability distributions to explore disease-related 
miRNAs. However, it was oversimplified by using the Boolean network to reflect the 
associations between diseases or between miRNAs, which may result in loss of informa-
tion. Subsequently, HDMP [13] was proposed to assess the functional similarity between 
two miRNAs based on known MDAs and semantic similarity of diseases and to predict 
the MDA scores based on weighted k most similar neighbors. This approach overcomes 
the drawback of the Boolean network by calculating the similarities of miRNAs and dis-
eases, but they both only consider the direct neighbor information (local information) of 
the network and ignore the global information in the network. Further, Chen et al. [14] 
devised a method based on global network similarity, which identifies potential disease-
associated miRNAs by performing random walk with restart (RWR) on the disease simi-
larity network. And Shi et al. [15] combined a protein-protein interaction (PPI) network 
and utilized RWR to predict underlying associations between miRNAs and diseases, 
which takes advantage of the association information between miRNAs or diseases 
and genes. Although these methods are gradually improving the performance of MDA 
prediction, they are difficult in predicting miRNAs associated with new diseases that 
have no known relevant miRNAs. To address this problem, Chen et  al. [16] proposed 
to employ regularized least squares to uncover novel MDAs, which is a semi-supervised 
and global approach. Although some similarity-based methods attempt to improve the 
performance of identifying new MDAs, including the potential associations for new dis-
eases and new miRNAs [17–19], they are susceptible to the quality of the networks con-
structed, such as different similarity calculation methods may yield different results.

Machine learning-based methods are another class of computational methods that are 
often used for predicting MDAs. For example, EGBMMDA [20] employed the extreme 
gradient boosting machine to obtain the probability scores of relationships between 
miRNAs and diseases, and it was the first decision tree learning-based model for infer-
ring candidate miRNAs. Chen et al. [21] designed a computational model that uses a fil-
ter-based method to select important features and employed random forest to discover 
disease-associated miRNAs. In addition, Zhang et al. [22] proposed a graph regularized 
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generalized matrix factorization method to screen novel miRNAs that are related to dis-
eases, which takes into account the neighborhood information of each node. NCMC-
MDA [23] combined neighborhood constraints with matrix completion to reconstruct 
the relationship matrix between miRNAs and diseases. However, these models above 
extract and fuse feature at shallow levels, which are unable to learn complex latent asso-
ciations from multi-source data.

In the last few years, deep learning has achieved satisfactory results in many domains, 
and as a result, using deep learning to predict molecular associations has become a hot 
topic. For example, SAEMDA [24] pre-trained the stacked auto-encoder (SAE) with all 
MDA pairs, and then fine-tuned the SAE with an equal number of known and unob-
served MDA pairs to determine potential disease-related miRNAs. Although deep 
learning-based methods [25–27] have achieved good performance on intermolecu-
lar relationship prediction, some of them ignore the information interaction between 
nodes on the heterogeneous network composed of different biological entities. Recently, 
to exploit known molecular relationship pairs for information fusion between differ-
ent types of nodes, Long et  al. [28] used graph attention networks with talking-heads 
to learn embeddings of microbes and diseases based on the microbe-disease associa-
tion network, and GAEMDA [29] is a new graph auto-encoder method that aggregates 
the neighborhood information of nodes based on known MDAs via the aggregator func-
tion and multi-layer perceptron, which achieves heterogeneous information fusion. 
Nevertheless, most of these models only consider the first-order proximity of the nodes 
in simple integrated similarity networks, while ignoring the multi-hop neighborhood 
information in different similarity networks. Some studies [25, 30, 31] have shown that 
high-order neighborhood information in networks is important for learning embed-
ding representations of nodes on homogeneous/heterogeneous networks. Therefore, to 
learn high-order proximity representations of nodes from different similarity networks 
and efficiently fuse information of different types of nodes, we develop a new end-to-end 
computational approach based on positive point-wise mutual information (PPMI) and 
attention network for predicting MDAs, called PATMDA. Specifically, our main contri-
butions are summarized as follows:

•	 We construct the MDA network and multiple miRNA and disease similarity net-
works, which are based on disease semantic similarity, miRNA functional similarity, 
and Gaussian interaction profile (GIP) kernel similarity for miRNAs and diseases.

•	 To learn global structural information from the similarity network views, RWR and 
PPMI are utilized to obtain multi-order proximity features. Furthermore, we com-
bine high-order proximity representations got by exploiting convolutional neural 
network (CNN) and first-order proximity representations including direct neighbor 
information.

•	 To efficiently integrating structural features of different types of nodes, we design an 
attention network with neural aggregation, which learns the final representations of 
miRNA and disease nodes by fusing the representations of nodes and their heteroge-
neous neighbors based on the MDA network.

•	 Our experimental results show PATMDA outperforms baseline methods in explor-
ing novel MDAs.
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Results and discussion
Datasets

In this work, we obtain human MDAs from HMDD v2.0 [32] that are confirmed by 
experimental evidence in the literature, including 5430 known MDAs among 495 
miRNAs and 383 diseases. In addition, the newest version HMDD v3.2 [33] is used 
to further validate the performance of the model, where as in [25], 12 446 observed 
MDAs involving 853 miRNAs and 591 diseases are extracted. And directed acyclic 
graphs (DAGs) about the semantic trees of diseases are downloaded from the medical 
subject heading (MeSH) (https://​www.​nlm.​nih.​gov/​mesh/).

Experimental setup

The PATMDA model is implemented based on the Pytorch framework. The Xavier 
normal distribution is employed for the initialization of the transformation matrices. 
For the hyperparameters of the model, we set the number of RWR transition steps K 
as 3, the number of CNN filters Cout for miRNA and disease as 256, the dimensional-
ity of the transformed feature ftran as 256, attentional heads’ number L as 2, and the 
learning rate as 0.0001.

In addition, common classification evaluation metrics are used to evaluate the per-
formance of PAMDA for predicting MDAs, which includes area under the receiver 
operating characteristic (ROC) curve (AUC), area under the precision/recall (P–R) 
curve (AUPR), area under the TruePositiveRate@k (TPR@k) curve (AUTPR@k), 
accuracy (Acc.), precision (Prec.), recall and F1-score. And we plot the ROC curve, 
P–R curve, and TPR@k curve to evaluate the PATMDA performance, where TPR@k 
curve depicts the proportion of positive samples predicted correctly in the top k to all 
positive samples under different k values [34]. It is worth noting that the calculation 
of the evaluation metrics, such as precision, would involve the existence of negative 
samples or making some assumptions about unknown samples. Since there are no 
proven uncorrelated miRNA-disease pairs, we make the assumption that MDA pairs 
that are not verified are considered negative samples. Further, in the experiment, we 
take all known MDA pairs as positive samples, and randomly select an equal number 
of samples from unconfirmed MDA pairs as negative samples. We use 5-fold cross-
validation (5-CV) to evaluate the PATMDA model. Specifically, all samples are ran-
domly divided into 5 equal parts, and in turn, each part is treated as the test set while 
the others are applied for training. In each round of 5-CV, the GIP kernel similarity of 
miRNAs and diseases is recalculated based on the training set.

Performance evaluation

Here, we evaluate the performance of PATMDA on HMDD v2.0 dataset using 5-CV. 
As shown in Table 1, PATMDA obtains mean Acc. of 85.78% , Prec. of 85.27% , recall of 
86.53% , and F1-score of 85.88% . In addition, Figs. 1, 2 and 3 show the ROC, P–R and 
TPR@k curves of the PATMDA model, respectively. We are able to see that PATMDA 
obtains mean AUTPR@k of 72% , achieves mean AUC of 93.3% , which is the mean of 
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92.3% , 93.73% , 93.65% , 93.37% , 93.47% , and obtains average AUPR of 93.4% , which is 
the average of 92.72% , 93.54% , 93.88% , 93.14% , 93.73%.

Comparison with state‑of‑the‑art methods

To further evaluate the performance of our proposed model, we compare the PATMDA 
model with six state-of-the-art computational models for predicting MDAs using 5-CV 

Fig. 1  ROC curves of PATMDA under 5-CV based on HMDD v2.0

Fig. 2  P–R curves of PATMDA under 5-CV based on HMDD v2.0
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on HMDD v2.0 and HMDD v3.2 datasets, including MDHGI [35], ABMDA [36], NIM-
CGCN [27], DANE-MDA [37], SAEMDA [24] and MINIMDA [31]. MDHGI is a method 
for identifying potential disease-related miRNAs by using matrix decomposition and 
heterogeneous graph inference [35]. ABMDA is an adaptive boosting-based method for 
uncovering underlying associations between miRNAs and diseases [36]. NIMCGCN is 
a computational method that combines neural inductive matrix completion and graph 
convolutional network to predict MDAs [27], and DANE-MDA reveals latent MDAs 
based on deep attributed network embedding [37]. SAEMDA is a stacked autoencoder-
based approach for prioritizing disease-related miRNAs [24], and MINIMDA discovers 
potential relationships between miRNAs and diseases by integrating mixed neighbor-
hood information in multimodal networks [31]. For a fair comparison, we adopt the 
default parameters of the baseline models provided by the authors to obtain their AUC 
and AUPR.

As shown in Figs. 4 and 5, PATMDA achieves competitive performance on both data-
sets. For HMDD v2.0 dataset, PATMDA achieves the highest AUC, AUPR of 93.3%, 
93.4%, which may be due to that PATMDA fuses multi-order proximity representations 

Fig. 3  TPR@k curves of PATMDA under 5-CV based on HMDD v2.0

Table 1  The results of PATMDA based on HMDD v2.0

Testing set Acc. (%) Prec. (%) Recall (%) F1-score (%)

1 84.71 84.02 85.42 84.71

2 86.33 84.57 88.43 86.46

3 86.1 86.47 86 86.24

4 85.96 86.31 85.75 86.03

5 85.82 84.98 87.02 85.99

Mean 85.78± 0.56 85.27± 0.97 86.53± 1.09 85.88± 0.61
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from multiple similarity network views via CNN and aggregates heterogeneous struc-
tural information of miRNA and disease nodes via attention network with neural aggre-
gation. Compared with MDHGI, ABMDA, and SAEMDA, PATMDA takes into account 
the high-order proximity representations of nodes in different similarity networks and 
enhances the information interaction between heterogeneous nodes, instead of using 
only direct neighbor information from the integrated similarity network as in these com-
parison methods. Although DANE-MDA considers the interaction between the associa-
tion network structure and similarity (attribute) information of miRNAs and diseases 
captured from the diverse degrees of proximity, its performance is not as good as that 
of PATMDA, which suggests that the design of our model is more reasonable. In addi-
tion, although NIMCGCN utilizes high-order information from the integrated similarity 
network, its performance is not as good as that of PATMDA, which may be due to the 
fact that NIMCGCN ignores the information fusion between miRNA and disease nodes. 

Fig. 4  ROC curves and P–R curves of PATMDA with all comparison methods under 5-CV on HMDD v2.0 
dataset

Fig. 5  ROC curves and P–R curves of PATMDA with all comparison methods under 5-CV on HMDD v3.2 
dataset



Page 8 of 19Xie et al. BMC Bioinformatics          (2023) 24:113 

Though MINIMDA considers high-order information of nodes and information fusion 
between heterogeneous nodes, its performance is still worse than that of PATMDA, 
which may be because PATMDA can better capture and fuse information of nodes in 
different networks and has better representation ability. Furthermore, Fig. 5 shows that 
PATMDA achieves the highest AUC, AUPR of 94.6%, 94.68% on HMDD v3.2 dataset. In 
conclusion, the experimental results show that PATMDA is effective in exploring poten-
tial disease-related miRNAs.

Ablation experiments

We use an attention network with neural aggregation to efficiently aggregate informa-
tion of the nodes and their heterogeneous neighbors, and obtain structural features of 
nodes containing first-order and high-order proximity from multiple similarity network 
views. To analyze the importance of the main components of our model, we design three 
variants of PATMDA (PATMDA_NP, PATMDA_Int, PATMDA_Gat) as comparison 
methods. PATMDA_NP means that we do not consider high-order proximity repre-
sentations of nodes. Besides, like most methods, PATMDA_Int uses GIP kernel similar-
ity to fill in missing values for another similarity, instead of considering each similarity 
view separately. PATMDA_Gat uses the standard graph attention network (GAT) [38] 
to replace the attention network with neural aggregation module, which does not effec-
tively consider the importance of the nodes themselves. Figure 6 shows the evaluation 
results of PATMDA and its variant models under 5-CV on HMDD v2.0 dataset, except 
that the recall of PATMDA is lower than that of PATMDA_NP, all other indicators are 
significantly higher than the variant models. For PATMDA_NP and PATMDA, after 
combining high-order proximity information, this model can obtain more structural 
information than only considering first-order proximity information. This result shows 
that high-order proximity and first-order proximity representations contain different 
structural features, which means that high-order information can be used as a comple-
ment to first-order information. For PATMDA_Int and PATMDA, it is more beneficial 

Fig. 6  The performance of PATMDA and its variants under 5-CV on HMDD v2.0 dataset
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to consider the structural information in each similarity network separately to extract 
the feature representations of miRNAs and diseases. For PATMDA_Gat and PATMDA, 
compared with only considering the information of its neighbor nodes, after using neu-
ral aggregation to enhance the information interaction between the node and its neigh-
bor nodes, the model obtains more informative representations, which proves that the 
information of the node itself is also very important.

Case studies

To further validate the ability of the PATMDA model to discover potential disease-
related miRNAs in practical applications, we conduct two different types of case studies 
based on the HMDD v2.0 dataset, and the dbDEMC [39] and HMDD v3.2 [33] datasets 
are utilized to identify the top 20 new associations between miRNAs and diseases.

In the first case study, we focus on detecting novel MDAs. Specifically, for each 
specific disease, we use all known MDA pairs and an equal number of association 
pairs randomly selected from unknown MDA pairs except those associated with 
the disease to train the PATMDA model, and further predict probability scores for 
unknown relationship pairs related to the disease. Furthermore, we rank potential 
miRNAs in descending order based on the predicted scores. We establish the case 

Table 2  The top 20 miRNAs associated with lymphoma

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-125b dbDEMC 11 hsa-let-7b dbDEMC

2 hsa-mir-34a dbDEMC 12 hsa-let-7g dbDEMC

3 hsa-mir-181b dbDEMC 13 hsa-let-7a dbDEMC

4 hsa-mir-221 dbDEMC; HMDDv3.2 14 hsa-mir-34c dbDEMC

5 hsa-mir-106b dbDEMC 15 hsa-let-7i dbDEMC

6 hsa-mir-223 dbDEMC 16 hsa-mir-222 dbDEMC; HMDDv3.2

7 hsa-mir-145 dbDEMC 17 hsa-let-7d dbDEMC; HMDDv3.2

8 hsa-mir-29b dbDEMC; HMDDv3.2 18 hsa-mir-143 dbDEMC; HMDDv3.2

9 hsa-mir-29a dbDEMC 19 hsa-let-7e dbDEMC

10 hsa-let-7c dbDEMC 20 hsa-mir-146b dbDEMC

Table 3  The top 20 miRNAs associated with prostate neoplasms

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-21 dbDEMC; HMDDv3.2 11 hsa-mir-106b dbDEMC; HMDDv3.2

2 hsa-mir-155 dbDEMC; HMDDv3.2 12 hsa-let-7b dbDEMC; HMDDv3.2

3 hsa-mir-34a dbDEMC; HMDDv3.2 13 hsa-mir-182 dbDEMC; HMDDv3.2

4 hsa-mir-146a dbDEMC; HMDDv3.2 14 hsa-mir-15a dbDEMC; HMDDv3.2

5 hsa-mir-126 dbDEMC; HMDDv3.2 15 hsa-mir-29a dbDEMC; HMDDv3.2

6 hsa-mir-16 dbDEMC; HMDDv3.2 16 hsa-mir-34c dbDEMC; HMDDv3.2

7 hsa-mir-199a dbDEMC; HMDDv3.2 17 hsa-mir-200b dbDEMC; HMDDv3.2

8 hsa-mir-29b dbDEMC; HMDDv3.2 18 hsa-mir-223 dbDEMC; HMDDv3.2

9 hsa-mir-15b dbDEMC; HMDDv3.2 19 hsa-mir-222 dbDEMC; HMDDv3.2

10 hsa-mir-143 dbDEMC; HMDDv3.2 20 hsa-mir-221 dbDEMC; HMDDv3.2
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study for three diseases, including lymphoma, prostate neoplasms, and esophageal 
neoplasms. Tables 2, 3 and 4 respectively show the top 20 miRNA candidates asso-
ciated with three diseases, which can be identified and validated by dbDEMC or 
HMDD v3.2 datasets.

In the second case study, we attempt to validate the usability of the PATMDA 
model for new diseases without observed associated miRNAs, where we take the 
relationship pairs between a specific disease and all miRNAs as the test set, and use 
the remaining known relationship pairs and a randomly selected equal number of 
unobserved relationship pairs related to other diseases as the training set. Similarly, 
we prioritize the top 20 underlying miRNAs according to the relationship scores 
predicted by PATMDA. Here we predict the associations between miRNAs and 
breast neoplasms, one of the most common malignancies in women. As shown in 
Table 5, the top 20 predicted breast neoplasm-related miRNAs are all confirmed by 
dbDEMC, and 12 of them are also verified by HMDD v3.2.

The results of the above case studies demonstrate that PATMMDA has good per-
formance in screening latent MDAs and miRNA candidates associated with new 
diseases.

Table 4  The top 20 miRNAs associated with esophageal neoplasms

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-125b dbDEMC; HMDDv3.2 11 hsa-let-7g dbDEMC; HMDDv3.2

2 hsa-let-7d dbDEMC 12 hsa-let-7e dbDEMC

3 hsa-mir-200b dbDEMC 13 hsa-mir-181a dbDEMC

4 hsa-mir-16 dbDEMC 14 hsa-mir-146b dbDEMC; HMDDv3.2

5 hsa-mir-9 dbDEMC; HMDDv3.2 15 hsa-let-7i dbDEMC; HMDDv3.2

6 hsa-mir-17 dbDEMC 16 hsa-mir-181b dbDEMC

7 hsa-mir-222 dbDEMC 17 hsa-mir-125a dbDEMC

8 hsa-let-7f dbDEMC 18 hsa-mir-221 dbDEMC; HMDDv3.2

9 hsa-mir-1 dbDEMC 19 hsa-mir-7 dbDEMC

10 hsa-mir-29a dbDEMC 20 hsa-mir-29b dbDEMC

Table 5  The top 20 miRNAs associated with breast neoplasms. The miRNAs related to breast 
neoplasms are deleted before training the PATMDA model

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-1207 dbDEMC; HMDDv3.2 11 hsa-mir-641 dbDEMC

2 hsa-mir-21 dbDEMC; HMDDv3.2 12 hsa-mir-146a dbDEMC; HMDDv3.2

3 hsa-mir-659 dbDEMC 13 hsa-mir-545 dbDEMC

4 hsa-mir-451 dbDEMC; HMDDv3.2 14 hsa-mir-4792 dbDEMC

5 hsa-mir-189 dbDEMC 15 hsa-mir-125b dbDEMC; HMDDv3.2

6 hsa-mir-155 dbDEMC; HMDDv3.2 16 hsa-mir-298 dbDEMC; HMDDv3.2

7 hsa-mir-941 dbDEMC 17 hsa-mir-1827 dbDEMC

8 hsa-mir-548c dbDEMC; HMDDv3.2 18 hsa-mir-122 dbDEMC; HMDDv3.2

9 hsa-mir-922 dbDEMC; HMDDv3.2 19 hsa-mir-34a dbDEMC; HMDDv3.2

10 hsa-mir-1287 dbDEMC 20 hsa-mir-145 dbDEMC; HMDDv3.2
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Conclusion
In this paper, we propose a novel computational approach named PATMDA, which 
combines PPMI and attention network with neural aggregation to identify unob-
served associations between miRNAs and diseases. PATMDA not only considers the 
first-order neighbor information in different similarity network views, but also effi-
ciently extracts high-order neighbor information from similarity views by using PPMI 
and CNN. To obtain more informative representations, we use an attention network 
with neural aggregation to integrate the structural information of heterogeneous 
nodes according to the MDA network. Comprehensive experiments show that our 
proposed PATMDA model is reliable and efficient in retrieving potential miRNA can-
didates for diseases, which may contribute to guiding biological experiments.

However, there are still some limitations that need to be further investigated in 
the future. First, although we consider the topology features from multiple similar-
ity network views, how to maintain the consistency and complementarity of features 
learned from different similarity views is a topic worthy of future research. Second, in 
the similarity calculation of diseases and miRNAs, we hope to introduce more infor-
mation to discover disease-related miRNAs, such as miRNA sequence similarity and 
gene-based functional similarity of miRNAs and diseases may help in MDA predic-
tion. In conclusion, more and more biological data sources provide convenience for 
predicting MDAs, but how to more effectively and rationally apply information from 
different data sources to improve the performance of methods for inferring poten-
tial miRNAs for diseases requires further exploration. In addition, we will also try to 
use PATMDA to identify non-coding RNAs such as lncRNAs and circRNAs that are 
related to diseases, and further design a more general method for predicting the rela-
tionships between non-coding RNAs and diseases.

Fig. 7  Overview of PATMDA model architecture. a Learning high-order proximity representations. b Fusing 
structural information of heterogeneous nodes. c Association prediction for miRNAs and diseases
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Methods
In this work, we put forward a deep learning model based on PPMI and attention net-
work for MDA prediction. As shown in Fig. 7, PATMDA mainly consists of the following 
parts: (i) RWR and PPMI are applied to various similarity network views to learn multi-
order proximity representations, in turn, CNN is employed to obtain high-order prox-
imity representations by fusing the learned multi-order proximity features; (ii) based on 
the combined first-order and high-order proximity representations, the information of 
the nodes and their heterogeneous neighbors is integrated by the attention network with 
neural aggregation to obtain the final embeddings; (iii) inner product decoder is used to 
predict the association probability scores between miRNAs and diseases.

Human MDAs

Based on known human MDAs, we get an association matrix A ∈ Rnm∗nd between 
miRNAs and diseases, where nm and nd denote the number of miRNAs and diseases, 
respectively. When there is a verified relationship between miRNA i and disease j, Aij is 
equal to 1, otherwise, it is 0. Further, we construct the heterogeneous association net-
work including miRNA and disease nodes based on the relationship matrix, whose adja-
cency matrix GA can be defined as follows:

Similarity measures

Disease semantic similarity

Disease semantic similarity can be calculated based on MeSH descriptors [13], in which 
the relationships between diseases can be described by DAGs. Many studies [24, 27, 40] 
have used DAGs to generate disease semantic similarities (DSSs). There are two differ-
ent approaches to calculating DSSs. DSS1 is obtained based on the assumption that two 
diseases are more similar to each other if they share more ancestral nodes in the DAGs. 
Further considering that the disease that appears in more (or less) DAGs is more com-
mon (or specific), DSS2 assigns different semantic contribution values to the diseases in 
the same layer of the DAG. We compute these two DSSs between diseases according to 
the previous method [13, 41] and obtain the adjacency matrix G(1)

d  of the disease seman-
tic similarity network by averaging them, which means the edge weight between two dis-
ease nodes is equal to their semantic similarity value.

MiRNA functional similarity

On the basis of the hypothesis that similar functional miRNAs tend to correlate with 
similar phenotypic diseases and vice versa, miRNA functional similarity can be calcu-
lated according to the method in a previous study [41]. That is, we are able to obtain 
miRNA functional similarity depending on the semantic similarity between miRNA-
related disease sets. For fairness, for the HMDD v2.0 dataset, we acquire the miRNA 
functional similarity directly from https://​www.​cuilab.​cn/​files/​images/​cuilab/​misim.​zip 
as in many studies. Whereas for the HMDD v3.2 dataset, we generate the functional 
similarity between miRNAs following [41]. In turn, we obtain the adjacency matrix G(1)

m  

(1)GA =
0 A

AT 0
.

https://www.cuilab.cn/files/images/cuilab/misim.zip
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of the miRNA functional similarity network, where the similarity value between two 
miRNAs determines the edge weight between the two nodes.

GIP kernel similarity for diseases and miRNAs

Based on the assumption that similar diseases and miRNAs have analogous modes of inter-
action and non-interaction and vice versa [24], GIP kernel similarity can be used to measure 
the relationships between miRNAs and between diseases. miRNA GIP kernel similarity and 
disease GIP kernel similarity can be calculated by the approach in the previous study [42]. 
Similarly, based on the GIP kernel similarity of miRNAs and diseases, we can obtain the 
adjacency matrices G(2)

m  and G(2)
d  of their corresponding GIP similarity networks.

Learning high‑order proximity representations

As described in [43, 44], the edge weight between two nodes determines the first-order 
proximity between them, that is, the first-order proximity indicates the degree of simi-
larity between two nodes. The high-order proximity between two nodes represents 
neighborhood similarity, meaning that two nodes are similar if they share similar neigh-
bors. The high-order proximity includes the global structure information of the network, 
and the first-order proximity contains the local structure information of the network, 
which gives the direct neighbor information. Each similarity network view of miRNAs 
(diseases) gives first-order proximity information of miRNAs (diseases) from different 
perspectives. Next, we will introduce how to obtain the high-order proximity of nodes 
according to different similarity views.

Multi‑order proximity representations by PPMI

Since only local structural information is contained in the similarity network, motivated 
by [45, 46], we adopt RWR [47] to capture the global topological information of different 
similarity network views. Specifically, every time, the random walk process will continue 
at probability α and will return to the initial node and restart the process at probability 
1− α . We denote the s-th similarity view of miRNA and the q-th similarity view of dis-
ease as G(s)

m  and G(q)
d  , respectively. For example, for the view s of miRNA, RWR can be 

represented as the following iterative process:

where P(s)
k  denotes the transfer probability matrix after k steps in view s. P(s)

0  is an iden-
tity matrix, and Ĝ(s)

m  represents the one-step probability transition matrix got by employ-
ing row-wise normalization of the similarity weight matrix G(s)

m  . After the K-step, we 
obtain network structure information of view s from different orders of proximity with 
the probability transition matrices 

{
P
(s)
1 ,P

(s)
2 , · · · ,P

(s)
K

}
 , which characterizes the proba-

bility of co-occurrence of miRNA nodes on view s from different degrees.
Next, according to the multi-order proximity of miRNAs on view s, we obtain multi-

order representations of miRNA nodes by computing a shifted PPMI matrix [48]. For 
the k-th step structure proximity P(s)

k  , the PPMI matrix is calculated as follow:

(2)P
(s)
k = αP

(s)
k−1Ĝ

(s)
m + (1− α)P

(s)
0 ,
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where k = 1, 2, · · · ,K  and X (s)
k ,ij is the j-th feature of miRNA i at the k-th step in view s. 

According to the view s of miRNAs, we get the multi-order representations of miRNAs 
as follows:

Analogously, we can obtain multi-order feature representations of diseases on the q-th 
network view G(q)

d :

where Y (q)
k  is the k-th order representation of diseases obtained by using the RWR and 

PPMI to the normalized similarity weight matrix G(q)
d  of view q, k = 1, 2, · · · ,K  and K 

denotes the total number of RWR transition steps.
As shown in Fig.  7a, by applying the RWR and PPMI to preprocess the multi-view 

of miRNAs and diseases, we can get the representations of miRNAs and diseases from 
diverse perspectives, which contain the multi-order proximity information from dif-
ferent views. These features for miRNAs of S views and diseases of Q views can be 
expressed as:

Multi‑order proximity fusion by CNN

For miRNAs and diseases, multiple feature matrices from different views can be 
regarded as multiple channels of an image. To the best of our knowledge, CNN utilizes 
convolutional filters to generate feature maps, which has made a huge breakthrough in 
computer vision. Therefore, we use CNN to further extract features and obtain high-
order proximity representations of miRNA and disease. Given miRNA channel embed-
ding Xm =

[
x1, x2, · · · , xCin

m

]
 , the final high-order proximity representation X̂m is 

calculated as follows:

where Cin
m = S × K  , ⊗ represents the convolution operator, and Wm

t and bmt are the t-
th convolution filter and bias vector respectively. outputt is the representation from the 
t-th output channel, where t = 1, 2, · · · ,Cout and Cout is the number of CNN filters. By 
stacking the representations from all output channels, the final high-order proximity 

(3)X
(s)
k ,ij = max



0, log2




P
(s)
k ,ij

�
i

�
j P

(s)
k ,ij

�
i P

(s)
k ,ij

�
j P

(s)
k ,ij







,

(4)
{
X
(s)
1 ,X

(s)
2 , · · · ,X

(s)
K

}
.

(5)
{
Y
(q)
1 ,Y

(q)
2 , · · · ,Y

(q)
K

}
,

(6)
{{

X
(1)
1 ,X

(1)
2 , · · · ,X

(1)
K

}
, · · · ,

{
X
(S)
1 ,X

(S)
2 , · · · ,X

(S)
K

}}
,

(7)
{{

Y
(1)
1 ,Y

(1)
2 , · · · ,Y

(1)
K

}
, · · · ,

{
Y
(Q)

1 ,Y
(Q)

2 , · · · ,Y
(Q)

K

}}
.

(8)outputt =

Cin
m∑

i=1

xi ⊗Wm
t + bm

t ,
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representation of miRNA X̂m ∈ Rnm∗Cout is obtained. Similarly, the disease high-order 
proximity representation Ŷd can be got.

In order to preserve the local and global structural features in the similarity net-
work views, we respectively combine the first-order and high-order representations of 
miRNA and disease as their structure embeddings, which can be defined as:

where ‖ denotes the concatenation operation, and X̃m and Ỹd are respectively the embed-
dings of miRNA and disease obtained from similarity views.

Attention network with neural aggregation

GAT [38] is a powerful graph neural network with good performance in processing 
graph-structured data. GAT learns the embedding of the central node by assign-
ing different weights to distinct neighbors, which aggregates the information of the 
neighbors to generate a useful representation of the central node. Therefore, inspired 
by [38, 49], to achieve the effective fusion of heterogeneous information, we design an 
attention network with neural aggregation to aggregate the structural features (that 
are, X̃m and Ỹd , which include direct and indirect neighbor information) from nodes 
of different types based on the MDA network. Specifically, firstly, since different kinds 
of nodes have different feature spaces, we use node-type transformation matrices to 
map them to the same feature space, which is expressed as follows:

where h(l) ∈ R(nm+nd)∗ftran is the transformed high-level features in the l-th attention 
head, and W (l)

m  and W (l)
d  denote the transformation matrices of miRNA nodes and dis-

ease nodes, respectively. ftran is the feature dimension of miRNA and disease nodes after 
being transformed.

Furthermore, we use an attention mechanism to learn the importance of neighbor 
nodes of each node, and then fuse the representations of neighbor nodes according to 
the attention score to enhance the representation of the center node. For example, the 
attention score e(l)ij  between miRNA i and disease j can be defined as:

where h(l)i  and h(l)j  are respectively the transformed features of miRNA i and disease j, 
and LeakyReLU is the activation function. Then, we obtain the attention coefficient a(l)ij  
by applying the softmax function to normalize the attention score, which is shown as 
follows:

(9)X̃m = G(1)
m

∥∥∥G(2)
m

∥∥∥X̂m,

(10)Ỹd = G
(1)
d

∥∥∥G(2)
d

∥∥∥Ŷd ,

(11)h(l) =

[
X̃mW

(l)
m

ỸdW
(l)
d

]
,

(12)e
(l)
ij = LeakyReLU

((
h
(l)
i

)(
h
(l)
j

)T)
,
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where Ni denotes all neighbors of miRNA i in the adjacent matrix GA . After obtaining 
the importance of each neighbor node to the central node i, we can obtain the heteroge-
neous neighbor representation of miRNA i by integrating neighbor features according to 
the attention coefficient:

where σ represents the nonlinear activation function. Similarly, we can get the heteroge-
neous neighbor representations of disease nodes.

Since h(l)N  only integrates the representations of heterogeneous neighbor nodes and 
neglects the representation of the node itself, we design a neural aggregator to integrate the 
node representation h(l) and its heterogeneous neighbor representation h(l)N  , which facili-
tates the information interaction between a node and its heterogeneous neighbors by using 
the fully connected layers (FCLs). And the enhanced feature Z(l) is represented as follows:

where W (l)
1  , W (l)

2  , b(l)1  and b(l)2  are respectively trainable weight and bias matrices.
Finally, similar to standard GAT [38], we use the following multi-head mechanism to 

obtain the final embedding of miRNA and disease:

where L is the number of independent attentional heads.

Association prediction for miRNAs and diseases

According to the obtained feature representation Z̃m for miRNAs and feature representa-
tion Z̃d for diseases, we simply use their inner product to predict the probability scores of 
associations between miRNAs and diseases, which is described as follows:

where the larger the value of Âij , the more likely miRNA i is associated with disease j, 
and conversely, the less likely miRNA i is related to disease j.

Finally, we optimize the parameters of the PATMDA model by minimizing the cross-
entropy loss between true labels and predicted values, where the loss function is defined as 
follows:

(13)a
(l)
ij = softmax

(
e
(l)
ij

)
=

exp
(
e
(l)
ij

)

∑
t∈Ni

exp
(
e
(l)
it

) ,

(14)h
(l)
Ni

= σ




�

t∈Ni

a
(l)
it h

(l)
t



,

(15)Z(l) =
((

h(l)�h
(l)
N

)
W

(l)
1 + b

(l)
1

)
�
((

h(l) + h
(l)
N

)
W

(l)
2 + b

(l)
2

)
,

(16)Z̃ =

[
Z̃m

Z̃d

]
= �Ll=1Z

(l),

(17)Â = sigmoid
(
Z̃mZ̃d

T
)
,

(18)loss
(
Âij ,Aij

)
= −

(
Aij log Âij +

(
1− Aij

)
log

(
1− Âij

))
,
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where Aij denotes the true label of the association between miRNA i and disease j, and 
Adam optimizer [50] is utilized to train the model.
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