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ABSTRACT
Cav1.4 L-type calcium channels are predominantly expressed at the photoreceptor terminals and 
in bipolar cells, mediating neurotransmitter release. Mutations in its gene, CACNA1F, can cause 
congenital stationary night-blindness type 2 (CSNB2). Due to phenotypic variability in CSNB2, 
characterization of pathological variants is necessary to better determine pathological mechanism 
at the site of action. A set of known mutations affects conserved gating charges in the S4 voltage 
sensor, two of which have been found in male CSNB2 patients. Here, we describe two disease- 
causing Cav1.4 mutations with gating charge neutralization, exchanging an arginine 964 with 
glycine (RG) or arginine 1288 with leucine (RL). In both, charge neutralization was associated with 
a reduction channel expression also reflected in smaller ON gating currents. In RL channels, the 
strong decrease in whole-cell current densities might additionally be explained by a reduction of 
single-channel currents. We further identified alterations in their biophysical properties, such as 
a hyperpolarizing shift of the activation threshold and an increase in slope factor of activation and 
inactivation. Molecular dynamic simulations in RL substituted channels indicated water wires in 
both, resting and active, channel states, suggesting the development of omega (ω)currents as 
a new pathological mechanism in CSNB2. This sum of the respective channel property alterations 
might add to the differential symptoms in patients beside other factors, such as genomic and 
environmental deviations.
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Introduction

Cav1.4 L-type voltage-gated calcium channels are 
predominantly expressed in retinal photoreceptor 
cells [1–4], coupling light-induced membrane 
potential changes to neurotransmitter release at 
the axon terminal [5–7]. Transportation of 
Cav1.4 channels to their site of action and their 
modulation is enabled by β2 and α2δ4 subunits in 
the channel complex. Among other proteins, these 
auxiliary subunits also provide the synaptic envir
onment suitable for proper signal transmission 
to second-order neurons [8,9]. Mutations in the 
gene of Cav1.4, CACNA1F, can lead to X-linked 
retinal diseases such as Åland Island Eye Disease 
(AIED) [10], cone-rod dystrophy (CORDX3) [11] 
or congenital stationary night blindness type 2 

(CSNB2) [12,13]. By sequencing, the CACNA1F 
gene locus of affected patients, a wealth of muta
tions have been collected [14]. Substituted amino 
acids are mostly localized in conserved regions, 
crucial for channel stability and gating, as well as 
protein-protein interactions [15,16], however their 
effects have been characterized only for few chan
nel mutations in vitro [17–22] (for review see 
[15]). The voltage sensor (S4 helix) belongs to 
these conserved regions and is found in all four 
voltage-sensing domains (VSDs). It consists of 
repeating positively charged amino acids that 
form salt bridges with negative counter charges 
from surrounding helices in the VSD [23]. Water 
crevices are formed on each side of the membrane, 
reaching toward the hydrophobic center of the 
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VSD and focusing the electric field through the S4 
helix [24–27]. Owing to their positive charges, the 
S4 helices can sense changes in the membrane 
potential and transform their relative position 
according to the electrical field, inducing the open
ing and closing of the channel pore (for review see 
[28]). Neutralization of these amino acids in other 
voltage-gated ion channels has been linked to dis
eases, such as hypokalemic periodic paralysis 
(Nav1.4 [29] or Cav1.1 [30]), normokalemic peri
odic paralysis (Nav1.4 [31] or Cav1.1 [32]), mixed 
arrhythmias associated with dilated cardiomyopa
thy (Nav1.5 [33]) and peripheral nerve hyperexcit
ability (Kv7.2 [34]). The substitution of distinct 
positive S4-helix residues facilitates the connection 
of both water-filled vestibules surrounding the 
VSD by providing more space in between the 
helices to form a water wire [35]. This enables an 
uncontrolled but state-dependent cation flux, 
termed gating pore or ω-currents, which leads to 
an ion imbalance and pathology (for review see 
[36]). Several Cav1.1 pathological variants were 
already biophysically characterized. Out of seven 
measured periodical paralysis-causing arginine 
substitutions, five elicited ω-currents in vitro 
[32,37–40], two further have not been assessed 
for their ω-current capability and one harbored 
a substitution of a negative counter charge in III- 
S3 [41]. Recently, another L-type calcium channel, 
Cav1.3, has been shown to elicit ω-currents 
in vitro when arginine 990 was substituted by 
histidine [35].

In this study, we characterized the effects of two 
Cav1.4 substitutions, Arg964Gly (RG) and 
Arg1288Leu (RL), in vitro, both of which have 
been found in patients diagnosed with AIED 
[42]. We aimed to elucidate the effect of these 
missense mutations on protein expression and 
function. While the total channel expression and 
stability was unaffected in both, RG and RL 
according to statistical analyses, the current den
sities were decreased, presumably caused by 
a lower single-channel conductance. Homology 
modeling also suggested the loss of salt bridges, 
implying a reduced response to changes of voltages 
across the membrane likely explaining the altera
tions in biophysical properties compared to wild 
type. For RL, water wires were hypothesized by 
structural modeling, enabling ω-currents. Thus, 

our data provide the first possible indication of ω- 
currents in a pathological variant of Cav1.4.

Experimental procedures

Cloning of mutant Cav1.4 channels

Both CSNB2-associated Cav1.4 mutations 
Arg964Gly and Arg1288Leu [42], there referred 
to as p.(Arg975Gly) and p.(Arg1299Leu); 
UNIPROT O60840–1) were inserted into the 
“pCI mammalian expression vector” (E1731, 
Promega) by applying splicing by overlap exten
sion PCR. In short, the human Cav1.4 coding 
sequence (JF701915) acted as a template for the 
first round of PCR for which overlapping forward 
and reverse primers were designed, carrying 
a codon optimized region of change – the 2890– 
2892 nt region was changed from CGG to GGC 
(Arg → Gly), the 3862–3864 nt region was altered 
from CGA to CTG (Arg → Leu). 5’ and 3’ flanking 
primers harbored the restriction enzyme recogni
tion sites NheI and SalI, respectively. The resulting 
PCR fragments were combined in a second round 
of PCR, adding the flanking primers. The final 
full-length PCR fragment was inserted into the 
pCI backbone, both digested with NheI and SalI 
restriction enzymes (step 1). For detection in 
immunoblotting experiments, the same cloning 
strategy and primers have been applied to clone 
plasmids, taking an HA-tag-carrying human 
Cav1.4 coding sequence (CDS) as a template, in 
which the tag is inserted after nucleotide 2037 in 
the S5-S6-loop of domain II [43] (step 2). 
Sequence identity was confirmed by sequencing 
(Primers used in steps 1 and 2 are indicated in 
SupplementaryFigure 1).

Cell culture and transfection

Both, tsA-201 (immunoblotting;#96121229, 
ECACC) and HEK-293 (whole-cell patch-clamp 
recordings [44];) cells were cultured in Dulbecco 
´s modified Eagle´s medium (DMEM, R15–801, 
PAA) supplemented with 10% fetal bovine serum 
(10270–106, Gibco), 2 mM glutamine (25030–032, 
Gibco), 10 units/ml Penicillin (Cat# P-3032, 
Sigma-Aldrich), 10 µg/ml Streptomycin (Cat# 
S-6501, Sigma-Aldrich) and maintained at 37°C 
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and 10% CO2. Cells were grown and split at 80% 
confluency using PBS-EDTA and trypsin (25030– 
032, Gibco) for cell dissociation. The passage num
ber did not exceed 18 passages in tsA-201. Cells 
were transiently transfected via calcium phosphate 
(CaPO4) precipitation as described previously by 
Burtscher [21].

Protein preparation and immunoblotting

HA-tagged wild type (WT), Cav1.4-Arg964Gly 
(RG) or Cav1.4-Arg1288Leu (RL) were expressed 
together with their α2δ-1 and β3 subunits in tsA- 
201 cells, seeded in 10 cm cell culture dishes (con
fluency 70–80%). As a negative control, a Cav1.4 
construct without HA tag was taken. Protein pre
paration, SDS-PAGE and western blot carried out 
as by Hofer [45] with following modifications. For 
protein concentration measurement, Bio-Rad’s 
“Protein Assay Reagent Concentrate” (5000006) 
was mixed with protein solution for subsequent 
photometric quantification at 595 nm. The HA-tag 
was targeted with anti-HA high-affinity antibody 
(1:1000, #11867423001, Roche diagnostics GmbH), 
tubulin with anti-ɑ-tubulin (1: 25 000, CP06, 
Merck) and mEmerald with anti-GFP (1:15 000, 
A6455, Thermo Fisher Scientific). Peroxidase- 
conjugated goat anti-mouse (1:8 000, 31430, 
Thermo Fisher Scientific), goat anti-rabbit (1:15 
000, A0545, Merck) or goat anti-rat (1:10 000, 
112-035-003, Jackson ImmunoResearch) have 
been applied as secondary antibodies.

Cycloheximid chase experiments

For cycloheximide (CHX) chase experiments, tsA- 
201 cells (2.2e + 06 cells per 100 mm dish) were 
seeded and transfected as described. Cells were 
treated two days after transfection with 20 μg/ml 
CHX (C1988, Merck) for 2, 4 and 8 h. 
Immunoblotting was carried out as described 
above with the following changes: 15 µg of 
extracted membrane proteins was loaded and 
detection of the Na/K-ATPase (1:100 000; 
#ab76020, Abcam) was preferred instead of alpha- 
Tubulin. Due to space restrictions, WT samples of 
one transfection were used on two separate plots 
for comparison with RG and RL protein levels. 
Thus, the mean of the resulting WT signal 

intensities after normalization to loading control 
over these two blots served as one value for WT 
samples.

Electrophysiological recordings

HEK-293 cells, stably expressing α2δ-1 and β3 
(Ortner et al., 2007), were transfected with plas
mids, carrying the channel WT, RG or RL, re- 
plated the following day and patch-clamp experi
ments were performed two to three-day post 
transfection. All electrophysiological experiments 
were carried out at room temperature. Electrodes 
were pulled from glass capillaries (borosilicate 
glass, Harvard Apparatus, Cat. Num. 64–0792) 
using a micropipette puller (Sutter Instruments) 
and fire polished with an MF-830 Microforge 
(Narishige) with a final resistance of 1.5–3.5 MΩ. 
The intracellular solution contained (in mmol/L): 
135 CsCl, 10 Cs-EGTA, 1 MgCl2, 10 HEPES, and 4 
ATP-Na2 adjusted to pH 7.4 with CsOH. The bath 
solution contained (in mmol/L): 15 CaCl2 or 
BaCl2, 150 choline-Cl, 1 MgCl2, and 10 HEPES, 
adjusted to pH 7.3 with CsOH. Cells were 
recorded in the whole-cell patch-clamp configura
tion using Axopatch 200B Amplifier (Molecular 
Devices). Recordings were digitized (Digidata 
1322A Digitizer, Molecular Devices) at 50 kHz 
(I-V, steady state inactivation protocols and non- 
stationary fluctuation analysis) or 20 kHz 
(5-s pulse), low-pass filtered at 2 kHz or 10 kHz 
(non-stationary fluctuation analysis), and subse
quently analyzed using pClamp 10.2 software 
(Molecular Devices) and custom-made Matlab 
(The Mathworks Inc., MA, USA) script. 
Compensation was applied for 60–90% of the ser
ies resistance. Currents were leak subtracted online 
using P/4 subtraction or offline. The current- 
voltage relationships (I-V) were acquired by appli
cation of a 50-ms square pulse to different test 
potentials starting from a holding potential (HP) 
of −89 mV. I – V curves were fitted to the 
equation: 

I ¼
Gmax� V � Vrevð Þ

1þ e
V0:5 � V

k 

where Vrev is the extrapolated reversal potential, 
V is the test potential, I is the peak current ampli
tude, Gmax is the maximum slope conductance, 
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V0.5,act is the half maximal activation voltage and 
k is the slope factor. The activation time constant 
tau (α) and the time to peak were extrapolated by 
fitting with mono-exponential function to the ris
ing phase of each I-V sweep. The voltage- 
dependence of activation was obtained by calculat
ing the conductance at each voltage-step and com
paring them to the maximal conductance Gmax: 

G ¼ �
I�1000

Vrev þ V 

The sweep at the reversal potential, where no net 
current flow was observed, was used to measure 
the ON-gating charge (QON), by integrating the 
first 2 ms of the test pulse. Steady-state inactiva
tion was assessed by calculating the ratio between 
current amplitudes of a 50 ms test pulse to Vmax 
before and after holding cells for 5 s at various 
conditioning test potentials. The steady-state inac
tivation curves were analyzed employing the fol
lowing Boltzman relationship: 

I ¼ ISS þ
1 � ISS

1þ eV�
V0:5;inact

kinact 

Iss is the non-inactivating fraction and kinact is the 
slope factor. Ion current inactivation was deter
mined by calculating the ratio between the peak 
and the residual current after 250 ms (r250) apply
ing 300 ms square pulse at different potentials 
(Δ10 mV) using 15 mM Ca2+ or Ba2+ as charge 
carrier. To investigate the inactivation kinetics of 
the channels, we pulsed the cells to Vmax for 5 s.

Non-stationary fluctuation analysis (NSFA) was 
applied to calculate single-channel currents as well 
as to quantify channels expressed in the cell sur
face and the open probability. As a guide, the 
following tutorial was used [46]. Here, cells were 
depolarized from a HP of − 79 to+41 mV for 10 or 
50 ms to maximally activate the channels before 
stepping back to −49 mV for 10 ms. 3 µM 
BayK8644 (BayK) was used during NSNA record
ings to increase the channels opening time. The 
mean current and variance of 250–500 traces were 
calculated. To prevent capacitive transient inter
ference, we started the analysis shortly after the 
peak tail current reached its maximum. The var
iance as a function of the mean current resulted in 
a parabolic curve that could be fitted by the fol
lowing equation: 

σ2 ¼ i � I �
I2

N
þ b 

where σ2 is the variance of the mean tail current, 
i the single channel current, I the mean tail cur
rent, N is the number of channels, and b is the 
background fluctuation described by the variance 
offset. To calculate the single conductance, the 
derivative of the prior function needed to be 
taken in order to quantify the smallest alteration 
in variance. 

dσ2

dI
¼ i �

2I
N 

When all channels are open, we can substitute i*N 
for I, solving the function and computing -I and 
thereafter N. Opening probability P0 was assessed 
by comparing the maximum mean currently mea
sured against the theoretical maximal mean cur
rent. The number of channels per cell was 
normalized to the cell size assuming 
a capacitance of 1 μF/cm2.

Homology modeling

Structures of the WT Cav1.4 VSD III and VSD IV, 
and the two mutant channels RG and RL were 
modeled in the activated/inactivated and in the 
resting state by generating homology models 
based on the available high-resolution cryo- 
electron microscopy (EM) structures of voltage- 
gated Cav and Nav pore-forming subunits [47– 
49]. The following structures were used as tem
plates: inactivated state: Cav1.1 α1-subunit struc
ture (PDB accession code: 5GJV); resting state: 
NavAb disulfide crosslinked mutant α-subunit 
(PDB accession code: 6P6W).

Homology modeling has been performed using 
Rosetta and MOE (Molecular Operating 
Environment, version 2020.09, Molecular 
Computing Group Inc., Montreal, Canada). 
Additionally, ab initio Rosetta was used to model 
structures for loops that were not resolved in the 
original templates. The structures for the mutations 
were derived from the respective wild-type model by 
replacing the affected amino acid residue followed by 
a local energy minimization using MOE. The 
C-terminal and N-terminal parts of each domain 
were capped with acetylamide (ACE) and 
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N-methylamide to avoid perturbations by free 
charged functional groups. The structure models 
were embedded in a plasma membrane consisting 
of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phos
phocholine) and cholesterol in a 3:1 ratio, using the 
CHARMM-GUI Membrane Builder. Water mole
cules and 0.15 M KCl were included in the simula
tion box. Energy minimizations of WT, RG, and RL 
structures in the membrane environment were per
formed. The topology was generated with the LEaP 
tool of the AmberTools20, using force fields for 
proteins and lipids, ff14SBonlysc, and Lipid14, 
respectively. All structures were gradually heated 
from 0 to 300 K in two steps, keeping the lipids 
fixed, and then equilibrated over 1 ns. Then molecu
lar dynamics simulations were performed for 500 ns, 
with time steps of 2 fs, at 300 K and in anisotropic 
pressure scaling conditions. Van der Waals and 
short-range electrostatic interactions were cut off at 
10 Å, whereas long-range electrostatics were calcu
lated by the Particle Mesh Ewald (PME) method. 
PyMOL was used to visualize the key interactions 
and point out differences in the wild-type and both 
mutant structures (The PyMOL Molecular Graphics 
System, Version 2.0 Schrödinger, LLC).

To quantify the number of water molecules in the 
wildtype and substituted VSD III and VSD IV, we 
calculated water density profiles [50]. We used the 
positions of water molecules along the z-axis perpen
dicular to the membrane plane over 300 ns simula
tions. To quantify flexibility of the S4 helix, we 
calculated the B-factor based on the Cα atoms by 
using cpptraj [50]. Also, Cα-Cα distances have been 
calculated with cpptraj. Additionally, we calculated 
the secondary structure content with cpptraj.

Statistics

All values are presented as means ± SEM for the 
indicated number of experiments (n). For compar
isons of two groups, data were analyzed by 
unpaired t-test or Mann-Whitney U-test, depend
ing on whether our data were normally distributed. 
One-way ANOVA with Bonferroni post hoc or 
Kruskal-Wallis with Dunn’s post hoc test was used 
to test the statistical difference between more than 
two groups. Statistical significance was set at p <  
0.05. A power analysis was performed in Sigmaplot 
14.5 to estimate the required sample size.

Results

Structural characteristics and expression of two 
gating charge neutralizing Cav1.4 variants

Two previously reported missense mutations in 
the coding sequence of Cav1.4 that lead to the 
substitution of Arg964 by glycine (RG) or 
Arg1288 by leucine (RL) have first been described 
in a Danish retrospective single-center study [42]. 
Both arginines are located in the voltage sensor (S4 
helix) of the channel’s voltage-sensing domain 
(VSD) (Figure 1A). They belong to a group of 
positively charged amino acids in this helix, 
which are crucial for sensing electrical field 
changes and relocate accordingly to open and 
close the α1 pore. In the channels’ activated state, 
three arginines (R1, R2, and R3) are located above 
the hydrophobic constriction side. In the resting 
state model, we find that R2 is at the same height 
as the conserved phenylalanine residue, which is 
one of the most important residues within the 
hydrophobic restriction site [51,52] (F904; 
Figure 1B).

Looking closer on the molecular details, homol
ogy modeling predicted a supporting role of R964 
in the resting state due to an interaction with the 
negative counter charge E907 in the same domain, 
thus, stabilizing the voltage sensor (Figure 1B). On 
the other hand, R1288 is indicated to stabilize the 
S4 helix in the activated state by forming a salt 
bridge with D1257 (Figure 1C). Both amino acid 
substitutions, RG and RL, would neutralize the 
positive charge in the S4 helix in domains III and 
IV, respectively. This could lead to the loss of 
interaction with corresponding negative counter 
charges and a destabilization of the S4 helix in 
the membrane.

Destabilization of the S4 helix could lead to 
altered biogenesis, resulting in changes in total 
protein expression as shown in potassium chan
nels [53]. To test this hypothesis, we co- 
expressed α1, α2δ-1 and β3 subunits in tsA-201 
cells together the fluorescent protein mEmerald 
to account for variations in transfection effi
ciency and allow for normalization to an exo
genous protein (Figure 2A). RG levels reached 
42% and RL 35% of that of wild type (WT) 
channel expression (Figure 2B), showing 
a significant decreased protein abundance in 
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the membranous fraction. This finding is in 
accordance with the reduced Ca2+ and Ba2+ cur
rent density in RG or RL channels; with the 
strongest also attributed to RL (Figure 2C and 
D, SupplFig. 1 (Ba2+), Table 1).

Unaltered protein stability in RG and RL

In addition to a decrease in cellular protein 
abundance, both amino acid substitutions could 
also lead to altered channel stability resulting in 
a reduction of current density. To test this pos
sibility, cycloheximide (CHX) chase experiments 
were conducted. CHX is a translation inhibitor, 
thus is a compound that stops the synthesis of 
new proteins [54,55]. Like this, the level of pro
teins can be monitored over a time span and 
compared to its initial abundance [21]. Cav1.4 

protein levels were normalized to Na/K-ATPase 
or co-transfected mEmerald, which were both 
stably expressed over the course of 8-hours 
post CHX addition (Figure 3A). At all time
points examined, the relative channel levels 
were comparable for RG, RL, and WT channels 
(Figure 3B, Suppltable 1). Thus, these data do 
not indicate differences in protein stability due 
to substitution of the targeted arginine com
pared to WT.

Changes in single channel properties

Besides channel quantity, also single-channel 
activity affects macroscopic ion currents. In this 
study, we performed NSFA to deduce single- 
channel properties, as well as open probability, 
and number of channels on the cell surface from 

Figure 1. Cav1.4 amino acid substitutions in voltage sensor domains III and IV. (A) Location of R964G and R1288L substitution sites 
in the third (III) and fourth (IV) S4 voltage-sensing domain of Cav1.4, respectively (UNPROT O60840–2). (B) Homology model of 
voltage sensor domain III: whereas in its active conformation (left), Arginine 3 (R3, 964) in the III-S4 helix R3 did not interact with 
negative counter charge, R3 formed a salt bridge with E907 in the channel resting state (right). (C) Homology model of voltage 
sensor domain IV: while Arginine 2 (R2, 1288) in the IV-S4 helix formed a salt bridge with D1257 in the channel active state (left), R2 
did not interact with negative counter charges in the channel resting state (right).
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the fluctuation observed in whole-cell recordings 
[21,46]. To do so, we activated the channels by 
depolarizing the cells to 41 mV and measured 
the tail current by a hyperpolarization to −49  
mV. Because the open probability of Cav1.4 
channels is low [21] we used measured channel 

activity in the presence of the calcium channel 
activator BayK. Collecting 250–500 sweeps of the 
tail current enabled us to calculate the variance 
from the mean at each time point after the peak 
of the tail-current (Figure 4A). The resulting 
parabolic profile is explained by the fact that 

Figure 2. Neutralization of gating charges reduced functional channel expression. (A) Representative western blot of wild type (WT) 
compared to Cav1.4-R964G (RG) and Cav1.4-R1288L (RL) channels expressed in tsA-201 cells. As negative control (neg. ctrl.) were 
cells expressed Cav1.4 that lacked an HA-tag. (B) Mean protein expression after four independent transfections normalized to 
mEmerald levels: WT (3.46 ± 0.50), RG (1.84 ± 0.54; p = 0.0366) and RL (1.22 ± 0.24; p = 0.0186). Data are shown as mean ± SEM. 
Statistical analysis: One-way ANOVA with Bonferroni post-hoc test; *p < 0.05. (C) Current densities of WT, RG and RL heterologously 
expressed in HEK-293 cells. 15 mM Ca2+ was used as charge carrier. (D) Representative Ca2+ currents mediated by of WT, RG and RL 
channels. Data are shown as mean ± SEM for the indicated number of experiments. Statistical analyses: see table 1.

Table 1. Biophysical parameters and statistical comparison of wild type (WT), Cav1.4-R964G (RG) and Cav1.4-R1288L (RL). 
Abbreviations: CD, current density; V0.5,act, half maximal voltage of activation; k0.5,act, steepness of activation curve; Vmax, 
voltage of maximal current density; act thresh, voltage at 5% of current density; Vrev, reversal potential; V0.5,inact, half 
maximal voltage of inactivation; k0.5,inact, steepness of inactivation curve. 15 mM calcium or barium was used as charge 
carrier. Data are presented as mean ± SEM. Statistical analysis: One-way ANOVA with Bonferroni post hoc or Kruskal-Wallis 
with Dunn’s post hoc test.

Ca2+ WT RG RL

CD [pA/pF] 25.99 ± 4.18, n = 29 6.20 ± 0.80, n = 20, p = 0.0003 3.21 ± 0.33, n = 21, p < 0.0001
V0.5, act [mV] 1.48 ± 0.39, n = 29 2.63 ± 0.98, n = 20, p = 0.2321 7.88 ± 0.82, n = 21, p < 0.0001
k act 8.69 ± 0.17, n = 29 10.42 ± 0.24, n = 20, p < 0.0001 10.66 ± 0.31, n = 21, p < 0.0001
Vmax [mV] 13.31 ± 0.34, n = 29 13.47 ± 0.73, n = 20, p = 0.5547 19.00 ± 0.509, n = 21, p < 0.0001
act thresh [mV] −32.85 ± 0.71, n = 29 −40.58 ± 1.48, n = 20, p < 0.0001 −36.31 ± 1.22, n = 21, p = 0.0525
Vrev [mV] 60.25 ± 0.83, n = 29 55.12 ± 1.98, n = 20, p = 0.0112 61.66 ± 1.82, n = 21, p = 0.4540
V0.5, inact [mV] −16.00 ± 1.05, n = 8 −12.07 ± 2.89, n = 10, p = 0.2624 −7.49 ± 1.51, n = 11, p = 0.0005
k inact −6.73 ± 0.66, n = 8 −10.94 ± 1.21, n = 10, p = 0.0119 −11.49 ± 2.74, n = 11, p = 0.0006
Ba2+
CD [pA/pF] 20.64 ± 3.20, n = 19 5.90 ± 0.86, n = 27, p < 0.0001 2.53 ± 0.38, n = 12, p = 0.0001
V0.5, act [mV] −9.67 ± 0.62, n = 19 −8.75 ± 1.12, n = 27, p = 0.5220 −2.06 ± 2.16, n = 12, p = 0.0003
k act 7.74 ± 0.12, n = 19 9.71 ± 0.19, n = 27, p < 0.0001 10.21 ± 0.33, n = 12, p < 0.0001
Vmax [mV] 1.31 ± 0.65, n = 19 2.07 ± 0.33, n = 27, p = 0.6855 6.70 ± 1.06, n = 12, p = 0.0002
act thresh [mV] −38.26 ± 0.73, n = 19 −48.55 ± 0.72, n = 27, p < 0.0001 −45.85 ± 0.85, n = 12, p < 0.0001
Vrev [mV] 43.25 ± 1.06, n = 19 42.80 ± 1.52, n = 27, p = 0.8001 44.08 ± 3.09, n = 12, p = 0.7657
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there is no fluctuation in channel opening and 
closing when all channels are either opened or 
closed while variation is highest when 50% of 
the channels are opened. Calculating the smallest 
change in variation allows to acquire single- 
channel currents and also the total number of 
channels expressed in the plasma membrane. By 
knowing single-channel currents and quantity of 
channels, the maximum open probability can be 
determined [46]. Our data suggested that single- 
channel currents were significantly decreased in 
RL, reaching only 28% of WT levels. RG on the 
other hand, also elicited a smaller current (47% 
of WT); however, this difference did not reach 
statistical significance (Figure 4B, left). The 
number of channels expressed on the cell surface 
did not vary, and the open probability was also 
comparable to WT (Figure 4B, middle and right 
panel, respectively). These analyses implied that 
lower current densities in RG and RL might be 
due to a reduction in ions permeating single 
channels.

Changes in the voltage-dependence of activation 
and inactivation

Seeing that S4 helices shape activation and inac
tivation properties of voltage-gated ion channels 
and neutralization of positive charges lead to 
changes in channel gating [32,37–40,56], we 
determined the functional properties of both 
channel variants in HEK-293 cells using whole- 
cell patch-clamp recordings. Both RG and RL 
activated at more hyperpolarized potentials and 
showed a decrease in the slope factor of the 
activation curve affecting the half maximal vol
tage of activation in RL but not RG channels 
(Figure 5A; Table 1 for Ca2+ and Ba2+ currents). 
We further characterized the activation time 
constants at different test potentials, as the 
destabilization of the S4 voltage sensor might 
change the kinetics of channel opening [40,57]. 
The opening of the RG channels slowed down 
compared to WT, an effect that was not seen in 
RL channels (Figure 5B). Our steady-state 

Figure 3. Cav1.4 gating charge mutations did not affect protein. (A) Representative western blot of wild type (WT), Cav1.4-R964G 
(RG) and Cav1.4-R1288L (RL) channels expressed in membranes of tsA-201 cells 0, 2, 4 and 8 hours after cycloheximide (CHX) 
addition. Co-expressed mEmerald and endogenous Na/K-ATPase have been used as loading control. (B) Channel expression levels 
were normalized to co-transfected mEmerald (left) or Na/K-ATPase expression (right) and their relative expression was displayed 
compared to 0 hour. Mann Whitney U test was applied at all time points resulting in no significant difference between WT and either 
of the two mutations. Data presented as mean ± SEM for three independent parallel transfections.
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inactivation protocol elicited a significant 
increase in the slope factor causing a shift in 
the steady state inactivation to more positive 
voltages which was significant for RL but not 
for RG channels (Figure 5C, Table 1 for Ca2+ 

currents). We also compared the current at 40  
mV as a measure of the plateau phase to evalu
ate inactivation properties and found a statistical 
difference in the remaining fraction between WT 
(0.46 ± 0.02) and RG (0.58 ± 0.03, p = 0.0063, 
unpaired t-test) but not compared to RL (0.51  
± 0.02, p = 0.1520, unpaired t-test) (Figure 5C). 
Current inactivation during a 5-s depolarizing 
test pulse to Vmax, showed no significant differ
ences in the residual currents at the end of the 
test pulse (Figure 5D; SupplFig. 2B). One of the 
hallmarks of Cav1.4 channels, the lack of cal
cium-dependent inactivation (CDI), was seen in 
RG and RL compared to WT channels 
(SupplFig. 2C). Therefore, substitution of differ
ent arginines can have dissimilar effects on the 
biophysical properties of Cav1.4 channels.

Reduction in gating current

We quantified gating currents because neutralizing 
one positive charge was previously shown to 
reduce upward movement of the S4 helix, which 
could alter coupling to the opening of the α1 pore 
[38]. We measured ON gating currents (QON) at 
the reversal potential and found a drastic reduc
tion for both, RG and RL channels (Figure 6A–C). 
While this result could be explained also by 
a lower surface expression of the channel, our 
analysis of the non-stationary fluctuation 
(Figure 4B) and Cav1.4 gating charge mutations 
affected both voltage-dependent activation and 
inactivation properties. Expression of wildtype 
(WT), Cav1.4-R964G (RG) and Cav1.4-R1288L 
(RL) channels in HEK-293. (A) I-V of calcium 
currents, normalized to currents at Vmax. (B) 
Time course of calcium current activation mea
sured upon 50 ms depolarizing steps 
(I-V protocol). τ values, which came from the fit 
with exponential function, were plotted against 
their voltage. Mono-exponential function better 

Figure 4. Mutations RG and RL reduced Cav1.4 single channel currents. (A) Exemplar variance was plotted against the mean current 
amplitude for wildtype (WT), Cav1.4-R964G (RG) and Cav1.4-R1288L (RL) (B) Left: single channel current for WT (4.56 ± 1.178), RG 
(2.13 ± 0.261, p = 0.0571) and RL (1.27 ± 0.347, *p = 0.0357). Middle: channel density on cell surface for WT (0.97 ± 0.153), RG (0.57 ±  
0.118, p = 0.1143) and RL (0.56 ± 0.134, p = 0.1429). Right: open probability of WT (0.80 ± 0.052), RG (0.59 ± 0.097, p = 0.2286) and RL 
(0.64 ± 0.062, p = 0.1429). Data are given as mean ± SEM. Statistical analysis: Mann Whitney U test.
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described the course of activation for the majority 
of the traces. WT: 25 out of 29; RG: 20 out of 20; 
16 out of 21. Data for the remaining traces that 
better fit by a bi-exponential fit were omitted. (C) 
Voltage-dependence of inactivation. For details see 
Table 1. (D) Calcium current inactivation kinetics. 
Residual current after 5-s inactivation pulse to 
Vmax. Ca2+: WT (0.42 ± 0.028), RG (0.49 ±  
0.037, p < 0.1794), and RL (0.44 ± 0.038, p =  
0.6904). Data are given as means ± SEM. 
Statistics: unpaired t-test. Chase experiments 
(Figure 3B) hint at a comparable channel expres
sion. Plotting the normalized QON against the cell 
´s Imax (Figure 6C) implicated that the QON-ICa 

relationship followed different slopes: RL had 
a 2-fold decrease of the slope compared to WT, 
in good agreement with the significant smaller 
single-channel conductance (Figure 4B): The 
2-fold increase of the slope of RG might, however, 

be an indication for efficient coupling between 
voltage gating and channel opening also reflected 
by the negative shift of the activation threshold 
(Figure 5A, Table 1).

The possibility of ω-currents

Numerous studies conducted on ion channels with 
S4-amino acid substitutions reported ω-currents, an 
additional, disease-driving ion-flux through one of 
the VSDs (for review see [36]). To test whether the 
substitution of RG or RL could enable ω-currents, we 
modeled the respective VSD in the activated and 
resting state. For the WT VSD III simulations, we 
found that only single water molecules can enter the 
hydrophobic constriction site; however, the gating 
charges (R1-R4) which formed salt-bridge interac
tions with negative counter charges in the S2/S3 
helices (Figure 1C), prohibited the formation of 

Figure 5. Cav1.4 gating charge mutations affected both voltage dependent activation and inactivation properties. Expression of 
wildtype (WT), Cav1.4-R964G (RG) and Cav1.4-R1288L (RL) channels in HEK-293. (A) I-V of calcium currents, normalized to currents at 
Vmax. (B) Time course of calcium current activation measured upon 50 ms depolarizing steps (I-V protocol). τ values, which came 
from the fit with exponential function, were plotted against their voltage. Mono-exponential function better described the course of 
activation for the majority of the traces. WT: 25 out of 29; RG: 20 out of 20; 16 out of 21. Data for the remaining traces that better fit 
by a bi-exponential fit were omitted. (C) Voltage-dependence of inactivation. For details see table 1. (D) Calcium current inactivation 
kinetics. Residual current after five second inactivation pulse to Vmax. Ca2+: WT (0.42 ± 0.028), RG (0.49 ± 0.037, p < 0.1794) and RL 
(0.44 ± 0.038, p = 0.6904). Data are given as means ± SEM. Statistics: unpaired t-test.
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a water wire (Figure 7A and B). Furthermore, inter
actions between the gating charges and the con
served phenylalanine residue contributed to sealing 
the hydrophobic core (Figures 1C and 7A and B).

For RG, MD simulations revealed an increase in 
flexibility of the S4 helix in the activated state as 
obvious by the increase in the B-factor and an 
unfolding of the lower part of the S4 helix in the 
resting state (SupplFig. 2). This unfolding was 
reflected in a loss of secondary structure content 
in the S4 helix by 15% and 35% in the activated 
and resting state, respectively. Due to these unfold
ing events, we could not reliably quantify the water 
molecules entering the VSD in RG channels. Yet, 
we found indications for state-dependent ω- 
currents for the RL VSD-IV. The substitution 
resulted in an increased water occupancy in the 
activated state (Figure 7C). In the WT activated 
state, R2 formed a stabilizing salt bridge interac
tion with D1257 (Figure 1B, dotted lines). Upon 
substitution to leucine, the volume occupied by the 

side chain of R2 decreased and the salt bridge 
interaction between D1257 and R2 was replaced 
by water molecules. Also, the Cα-Cα distance 
between RL and D1257 increased from 6.5� 0.7 
to 9.1� 0.8 Å, indicating that the S4 helix moved 
away from the S3 and S2 helices, allowing for more 
water molecules to enter the VSD. We found an 
increase in water density in the RL activated state 
(Figure 7C), compared to the WT (water mole
cules: WT: 3.3� 0.4, RL: 11.4� 1.7). In the resting 
state of RL, we detected continuous water wires 
(Figure 7D), also reflected in a substantial increase 
of water molecules entering the hydrophobic gate 
(water molecules: WT: 2.5� 0.7, RL: 9.3� 1.1).

Discussion

The characterization of disease-causing alterations 
in Cav1.4 channels is of interest to get a better 
understanding on how pathology might be caused 

Figure 6. Gating currents were reduced in RG and RL channels. (A) ON-gating currents (QON) were measured at Vrev, where no net 
current flow was observed. QON current for each cell was normalized to its capacitance, in pA*ms/pF: WT 432.0 ± 99.2; RG 145.5 ±  
40.9, ***p = 0.0007; RL 73.6 ± 7.3, ****p < 0.0001. Statistics: Mann Whitney U test. (B) Representative QON evoked by voltage pulses 
to the reversal potential, taken from the recordings shown in Fig. 2D. (C) Left, plot of Imax as a function of the total charge 
movement (QON) as in panel A. The inset on the right shows the area highlighted by the dashed line. Wildtype (WT), Cav1.4-R964G 
(RG) and Cav1.4-R1288L (RL). Slope: WT: 45.9 ± 5.4, RG: 105.2 ± 24.9 RL: 25.1 ± 3.8. Data are given as mean ± SEM.
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by distinct mutations. In this study, we aimed to 
shed light on two pathological Cav1.4 variants, RG 
and RL [42], both of which lose a positive gating 
charge in their S4-helix. Such gating charge neu
tralizations in other voltage-gated ion channels are 
connected to diseases and have been characterized 
in silico and in vitro [32,35,37–40].

Our study determined channel membrane 
expression in a heterologous system because mis
folding could be causing disturbances in biogenesis 
and faster degradation as shown with potassium 
channels carrying an amino acid substitution in 
a conserved S4 arginine [53]. We concluded that 
total protein expression in both arginine- 
substituted channels was significantly reduced com
pared to WT channels (Figure 2A and B). 
Additionally, Ca2+-current densities were also smal
ler in both RG and RL channels (Figure 2C). This 
reduction in current densities fits with data from 
HypoPP-causing Cav1.1-R1239H channels (RL 

analogue, IV-R2), in which the second arginine of 
VSD-IV is also affected and was a general observa
tion in most of the tested L-type calcium channel 
mutations [32,35,37,40]. One explanation could be 
a reduced stability of Cav1.4 channels, as seen pre
viously L860P Cav1.4 channels [21]. However, our 
CHX-chase experiments suggested that none of the 
amino acid substitutions lead to a faster degrada
tion of the channel population compared to WT 
(Figure 3). This finding holds true as long as pro
teins with differential regulatory function for WT 
and pathological variants are not altered by the fact 
that CHX per se is cytotoxic as it disrupts the whole 
natural cellular physiology [58,59].

Nevertheless, a reduction in the current density 
can also be explained by a smaller single-channel 
conductance, less channel expression at the cell- 
surface and reduced channel open probability. Our 
NSFA data indicated a statistically significant 
decrease in single-channel Ba2+ currents for RL 

Figure 7. Mutation RL increased water occupancy in the voltage sensing domain IV. Homology modeling demonstrate a difference 
in water occupancy (cyan) in the VSD-IV activated (A and C) and resting (B and D) state between WT (A and B) and RL (C and D). The 
leucine in RL is indicated by a red arrow.
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channels, as well as a trend toward a decrease in 
RG channels (Figure 4B). Even though the addi
tion of BayK as channel activator could mask 
differences in channel open probability, we 
assumed that such effect might not be seen here 
because we knew from previous analyses that the 
fold-increase of WT and mutant Cav1.4 currents is 
different [21]. NSFA also indicated that channel 
densities in the plasma lemma were slightly, but 
not significantly, decreased in both mutations 
(Figure 4B center), fitting the western blot results 
(Figure 2).

Since to date no III-R3 substitution in voltage- 
gated calcium channels has been characterized, the 
only RG-analogous substitution is the HypoPP- 
causing mutations Nav1.4-R1135C/H [57]. Similar 
to RG (Figure 5A and C, Table 1), both substitu
tions in Nav channels elicited an increase in the 
slope of the activation and inactivation curve (as 
seen in RG and RL), whereas only Nav1.4-R1135H 
also slowed channel activation. Nav1.4-R1135C also 
caused a left-shift of the half maximal voltage of 
activation. Of note, a left-shift was also discovered 
in Cav1.1-R1239H (IV-R2), which would be the 
arginine substitute analogue in RL [37]. This find
ing is in contrast to our data, which indicate a right- 
shift of V0.5,act, Vmax and V0.5,inact for RL (Table 1). 
A right shift of voltage-dependence, however, was 
measured in Cav1.3- R990H (III-R3) [35] and 
Cav1.1-R900G (III-R2) [40]. These data tell us 
that each VSD and each arginine substitution 
should be examined individually to understand 
their functional consequences.

We also looked at the possibility of ω-currents, 
which were detected in Nav1.4-R1135C/H and 
numerous Cav1.1 channels (summarized here 
[40]:), as well as in Cav1.3 [35]. In our model of 
the WT VSD-IV in its activated and resting state, 
we found that water occupancy was reaching zero 
closer to the hydrophobic plug, thus no ions 
should be passing. Substitution of the second argi
nine to leucine resulted in the increase of water 
molecules in the VSD (Figure 7C and D), which 
could give rise to ion currents, especially in the 
closed state, in which R1 and R2 substitutions 
were shown to be prone for ω-currents. We also 
modeled the RG substitution in VSD-III but found 
that the glycine might break the S4 helix in open 
and resting state creating an undesirable 

environment for water occupancy measurements 
(not shown). This loss of integrity might explain 
the slow activation of the α1 pore as tight coupling 
is missing, while increasing the flexibility of the S4 
helix (Suppl.fig. 2).

Overall, RG and RL channels have lost function
ality as Ca2+ influx is reduced. In an in vivo mouse 
model expressing non-conducting Cav1.4, 
Maddox et al. found that the lack of Ca2+ signaling 
was shown to still generate the proper molecular 
construction of the rod axon terminals [60]. 
Postsynaptic partners, however, were inefficiently 
recruited. A similar, but less drastic effect might 
occur at those synapses as some Ca2+ is still able to 
be conducted. Also, the nob2 mouse, in which an 
N-terminally cleaved Cav1.4 channel is expressed 
at low abundance, showed aberrant synaptic signal 
transmission apparent by reduced ERG b-waves 
but ribbons were still mostly preserved and elon
gated [61,62]. An additional effect, driving Cav1.4 
mediated retinal diseases like CSNB2 or AIED, 
could be the hyperpolarization shift of activation 
as seen in Cav1.4-I745T mice [3,63–65]. WT chan
nels utilize the full voltage range of photoreceptors 
while the observed reduction in current density in 
both RG and RL channels significantly reduces the 
change in Ca2+ influx within this range [14]. 
Moreover, the activation threshold of RG substi
tuted channels is significantly left shifted com
pared to WT, suggesting that Ca2+ dynamics 
might even be more reduced due to the higher 
Ca2+ influx at hyperpolarized potentials 
(Figure 5A; please note that the voltage depen
dence of activation and inactivation was shifted 
by 15 mV to positive voltages under our recording 
conditions; 15 mM Ca2+ as charge carrier [18]). In 
RL, the change in Ca2+ dynamics might rather be 
due to the difference in current density because 
the fraction of current activated within the physio
logical voltage range of a photoreceptor was simi
lar to WT (Figure 5A; fraction of current activated 
was 1% (WT), 1.3% (RG), and 1.8% (RL) and 
18.4% (WT), 25% (RG), and 18.9% (RL) at −55 
and −20 mV, respectively).

Conclusion

We biophysically characterized Cav1.4 RG and RL 
channels in vitro. The changes in their functional 
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properties could account for defects in synapse 
development due to reduced Ca2+ signaling 
thereby affecting signal transmission. To the best 
of our knowledge, this is the first study that adds 
ω-currents to the equation of pathological factors 
in addition to channel gating changes. ω-currents 
would add one further retinal stressor, very likely 
changing the fine-tuned synaptic environment and 
axon terminal physiology. A limitation of our lat
ter conclusion is that we deduce in vivo implica
tions by interpreting in silico and in vitro data 
which should be evaluated in a retinal environ
ment. Specifically identifying the effect of possible 
ω-currents on the synaptic milieu would be of 
great interest in addition to developmental studies, 
which track synaptogenesis.
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