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Abstract 
The HLA region is the major genetic risk determinant of Type 1 diabetes. How non-HLA loci contribute to the genetic risk is incompletely 
understood, but there are indications that at least some impact progression of asymptomatic autoimmunity. We examined whether SNPs in 
7 susceptibility loci (INS, SH2B3, PTPN2, PTPN22, CTLA4, CLEC16A, and IL2RA) could improve prediction of the progression from single to 
multiple autoantibody positivity, and from there on to diagnosis. SNPs were genotyped in persistently autoantibody positive relatives by allelic 
discrimination qPCR and disease progression was studied by multivariate Cox regression analysis. In our cohort, only the CTLA4 GA genotype 
(rs3087243, P = 0.002) and the CLEC16A AA genotype (rs12708716, P = 0.021) were associated with accelerated progression from single to 
multiple autoantibody positivity, but their effects were restricted to presence of HLA-DQ2/DQ8, and IAA as first autoantibody, respectively. The 
interaction of CTLA4 and HLA-DQ2/DQ8 overruled the effect of DQ2/DQ8 alone. The HLA-DQ2/DQ8-mediated risk of progression to multiple 
autoantibodies nearly entirely depended on heterozygosity for CTLA4. The SH2B3 TT genotype (rs3184504) was protective for HLA-DQ8 
positive subjects (P = 0.003). At the stage of multiple autoantibodies, only the CTLA4 GA genotype was a minor independent risk factor for 
progression towards clinical diabetes (P = 0.034). Our study shows that non-HLA polymorphisms impact progression of islet autoimmunity 
in a subgroup-, stage- and SNP-specific way, suggesting distinct mechanisms. If confirmed, these findings may help refine risk assessment, 
follow-up, and prevention trials in risk groups.
Keywords: autoimmunity, CLEC16A, CTLA4, prediction, SH2B3, Type 1 diabetes
Abbreviations:  autoAb: autoantibody; autoAb+: autoantibody positive; BDR: Belgian Diabetes Registry; FDRs: first-degree relatives; GWAS: genome-wide 
association studies; IA-2A: insulinoma associated-2 autoantibodies; IAA: insulin autoantibodies; ZnT8A: zinc transporter 8 autoantibodies.

Introduction
Genetic factors, amongst other variables, affect both the risk 
of developing islet autoimmunity and its subsequent pro-
gression to overt Type 1 diabetes [1]. HLA polymorphisms 
account for a major part of the genetic risk, but genome-wide 
association studies (GWAS) have also identified about 60 
different non-HLA loci each delivering a relatively small, al-
beit significant, contribution to genetic risk [2–5]. How these 
non-HLA loci modulate disease progression, is not yet fully 
understood. However, there are indications that at least some 
non-HLA polymorphisms may have a relatively large im-
pact in specific subgroups and disease stages in time-to-event  
analysis [6–11].

In a registry-based cohort of islet autoantibody positive 
(autoAb+) first-degree relatives (FDRs) our group has shown 
that the factors that modulate progression of asymptomatic 
autoimmunity differ according to the autoAb profile present 
[12, 13], in line with observations by others [14, 15]. At the 
immune activation stage, heralded by single autoAb posi-
tivity, we found that disease progression is driven by HLA 
Class II-inferred risk, the presence of IAA as first autoAb, 
and younger age, culminating in the development of mul-
tiple autoAbs. In contrast, once the stage of multiple autoAb 
positivity—considered to represent asymptomatic Type 1 
diabetes [16, 17]—is reached, the progression rate towards 
clinical onset is mainly influenced by HLA Class I-inferred 
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risk and the presence of autoAbs directed against IA-2 (IA-
2A) and/or zinc transporter 8 (ZnT8A) [13]. Our group pre-
viously reported statistical models built by Cox regression 
to predict progression through both these stages [10, 12].

Our goal now is to further disentangle the genetic basis of 
disease progression by studying the possible contribution of 
selected Type 1 diabetes-associated SNPs—alone or through 
interactions with known stage-specific risk factors—in single 
and multiple autoAb+ FDRs separately. This may help to 
better understand mechanisms underlying disease progres-
sion, and to identify those subjects who are at the highest 
risk of entering the next disease stage and likely to benefit 
most from participation in novel stage-specific prevention 
trials. We therefore selected eight SNPs in non-HLA loci (INS, 
SH2B3, PTPN2, PTPN22, CTLA4, CLEC16A, and IL2RA) 
to be tested on a cohort of Belgian autoAb+ FDRs under 40 
years of age [10]. This selection was based on the relatively 
high odds ratios for Type 1 diabetes in several GWAS [3]. 
Moreover, these SNPs were reported to affect the develop-
ment or the progression of asymptomatic islet autoimmunity 
in other specific study populations, although sometimes with 
contradictory findings [6–9, 11, 18–21]. Little is known about 
the stage-specific impact of non-HLA SNPs. We thus inves-
tigated whether any of these Type 1 diabetes non-HLA risk 
markers affected disease progression in the Belgian cohort of 
autoAb positive relatives and their potential improvement of 
stage-specific risk assessment based on multivariate time-to-
event analyses.

Methods
Participants
Between March 1989 and December 2015, BDR followed 
461 persistently autoAb+ siblings and offspring (<40 years of 
age) of Type 1 diabetes patients among a group of 7029 FDRs 
enrolled after informed consent from the relatives or their 
legal representative. This study was ethically approved under 
nr. BUN143201939922 by the institutional review board 
of Universitair Ziekenhuis Brussel (IRB UZB). The Belgian 
Diabetes Registry (BDR) provided pseudonymized clinical, 
anthropometric, and biological data. Blood and DNA samples 
(−80°C) were available from its associated biobank (IRB UZB 
nr BUN143201524128). The study was conducted in accord-
ance with the guidelines of the Declaration of Helsinki [22]. 
The cohort of autoAb+ FDRs developed the first confirmed 
autoAb positivity at a median (IQR) age of 11.6 (6.4–19.3) 
years and had a median (IQR) follow-up time of 72 (35–129) 
months. Blood sampling was performed at study entry, and as 
a rule, yearly thereafter.

Analytical methods
HLA-DQ and HLA-A haplotypes were previously deter-
mined by allele-specific oligonucleotide hybridization and 
autoAbs against insulin (IAA), GAD65 (GADA), insulinoma-
associated protein 2 (IA-2A), and ZnT8A were determined 
by liquid-phase radiobinding assays [12, 13]. INS rs689, 
INS rs1004446, PTPN2 rs45450798, PTPN22 rs6679677, 
CTLA4 rs3087243 (CT60), SH2B3 rs3184504, CLEC16A 
rs12708716, and IL2RA rs2104286 were genotyped by 
allelic discrimination using TaqMan SNP genotyping as-
says C_1223317_10, C_1223303_10, C_86382390_10, 
C_29537457_10, C_3296043_10, C_2981072_10, 

C_31075342_10, and C_16095542_10 respectively (cat 
no 4351379, Applied Biosystems, Foster City, CA) on a 
QuantStudio™ 12K Flex Real-Time PCR System (Applied 
Biosystems). Controls without DNA were included in each 
run. Genotype calling was performed by the software.

Statistical analyses
Stage-specific impact on progression rate was evaluated for 
each individual SNP. Both univariate and multivariate Cox 
regression analysis of survival was used to assess progres-
sion from single to multiple autoAb positivity, and from 
there on to disease onset. Besides SNP genotype, other 
stage-specific independent predictors were included in the 
analysis that were previously determined in the present co-
hort [12], together with their respective alleged interactions 
with SNP genotype (for multivariate analysis). Since BMI 
was previously shown not to represent a significant factor 
for progression in this cohort [12], it was not included in 
the present analyses. For progression from single to multiple 
autoAb positivity the variables include age at first autoAb 
positivity, and absence/presence of HLA-DQ8, HLA-DQ2/
DQ8, HLA-A*24, and IAA. For progression from mul-
tiple autoAb positivity to diabetes these variables include 
age at first multiple autoAb positivity, absence/presence of 
HLA-A*24 and IA-2A/ZnT8A, and being offspring of a dia-
betic mother. Multivariate analysis was performed in dom-
inant, recessive, and additive inheritance models per SNP. 
Significant interaction effects were visualized by Kaplan-
Meier survival curves, which in turn were analyzed with the 
log rank test. Next, a combined Cox model was constructed 
for the immune activation stage, starting from a base model 
including three main variables: age at first autoAb positivity, 
HLA-DQ2/DQ8, and HLA-A*24. Identified interaction ef-
fects and the previously reported protective interaction effect 
between female sex and ERBB3 GG [10] were added to this 
model in a conditional forward approach. The goodness of 
fit of the models was tested using the Akaike information 
criterion (AIC), which represents an estimate of information 
not explained by the model and includes a penalty for the 
number of variables [23]. Models are compared by the rela-
tive likelihood calculated from the differences in AIC values 
[24]. Differences in AIC values of >4 between two models 
indicate that the model with the higher value is less plaus-
ible, while, with differences of >10, the model with the higher 
AIC value can be omitted [24]. AIC values were calculated 
for each step, to assess to what extent the predictive model 
could be improved. Stepwise conditional forward modeling 
was performed in SPSS version 27.0 software (IBM, 
Armonk, NY). Two-tailed statistical tests were performed 
and P-values <0.05 were considered significant. We did not 
correct for multiplicity (Bonferroni correction) when per-
forming comparisons between groups but used multivariate 
Cox regression to adjust for possible confounders. Figures 
were prepared using GraphPad Prism version 9 for Windows 
(GraphPad Software, San Diego, CA).

Results
SNP genotyping
In our cohort of 461 persistently autoAb+ FDRs, 448 could 
be genotyped for at least one of the eight studied SNPs; 
13 could not, due to unavailable DNA. During a median 
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follow-up time (IQR) of 60 (24–130) months 69 of 261 ini-
tially autoAb+ relatives developed one or more additional 
autoAb, and 18 of them progressed towards diagnosis 
without first developing additional autoAbs, as visualized 
in Supplementary Fig. 1. Progression towards Type 1 dia-
betes could be monitored in 256 FDRs (187 FDRs with mul-
tiple autoAb positivity at study entry and 69 initially single 
autoAb+ FDRs after developing a second autoAb), of whom 
145 progressed to clinical onset during a median follow-up 
time (IQR) of 56 (28–96) months (Supplementary Fig. 1). 
All eight SNPs tested had call rates above 98%, and all SNP-
genotypes followed Hardy-Weinberg equilibrium (data not 
shown). The amount of missing data per SNP is presented in 
Supplementary Table 1.

Progression from single to multiple autoAb 
positivity
Univariate Cox analysis confirmed that age at first autoAb 
positivity (P < 0.0001), HLA-DQ8 (P = 0.013), HLA-DQ2/
DQ8 (P = 0.001), HLA-A*24 (P = 0.023), and IAA as first 
autoAb (P = 0.022) impacted the progression from single 
to multiple autoAb positivity in our cohort, in line with our 
previous findings [12], and indicated that none of the SNPs 
could influence the progression rate when tested as single in-
dependent variable (Supplementary Table 2). To further in-
vestigate the possible impact of each of the eight SNPs on 
disease progression, multivariate Cox regression models were 
built using a conditional forward approach. While younger 
age at immune activation, presence of HLA-DQ2/DQ8 
haplotype, and absence of HLA-A*24 genotype, remained 
independent predictors of faster progression towards mul-
tiple autoAb positivity in the cohort (Table 1), as previously 
reported [12, 13], none of the eight SNPs emerged as add-
itional determinants of progression in this model (Table 1, 
and data not shown). However, some SNPs (CTLA4, SH2B3, 
CLEC16A, and INS rs689) contributed to the regression 
model via interaction effects with the determinants identified 

in the univariate analysis. The INS rs689 TT genotype ap-
peared to affect progression from single to multiple autoAb 
positivity in HLA-DQ8 positive participants, although, this 
effect was only borderline significant (P = 0.050), and it was 
not observed for INS rs1004446. The CTLA4 GA genotype 
accelerated progression to multiple autoAbs only when the 
high-risk haplotype HLA-DQ2/DQ8 was present (P = 0.002, 
HR = 4.929, Table 1), while, in turn, HLA-DQ2/DQ8 was 
no longer an independent predictor in this model (Table 1). 
For the SH2B3 TT genotype, progression to multiple autoAb 
positivity occurred more rapidly in IAA positive FDRs  
(P = 0.043, HR = 3.550, Table 1). In addition, a more pro-
nounced interaction with HLA-DQ8 was observed, resulting 
in a delay in progression in individuals positive for both 
HLA-DQ8 and the SH2B3 TT genotype (P = 0.003, HR 
= 0.122, Table 1). Lastly, IAA positive FDRs carrying the 
CLEC16A AA risk genotype progressed faster to the stage of 
multiple autoAbs (P = 0.021, HR = 1.986, Table 1). No inter-
action effects were found for IL2RA, PTPN2, and PTPN22. 
Given our previous findings on the interaction between locus 
ERBB3 and female sex [10], we also tested all eight SNPs 
for interaction with the sex variable, but no interactions were 
found (data not shown).

Cox regression thus suggested interactions between SNPs and 
specific population variables to affect the rate of progression 
from single to multiple autoAb positivity. Kaplan-Meier ana-
lysis confirmed that progression towards multiple autoAb posi-
tivity was strongly accelerated by the CTLA4 heterozygous GA 
genotype in HLA-DQ2/DQ8 positive participants (P < 0.001, 
GA vs. AA+GG, Fig. 1a and b). The progression tended to be 
slower in presence of the SH2B3 TT genotype (TT vs. CC+TC) 
in HLA-DQ8 positive participants (P = 0.016, Supplementary 
Fig. 2 a and b), single autoAb+ participants without IAA  
(P = 0.062, Supplementary Fig. 2 c and d), and even more so in 
HLA-DQ8 positive participants without IAA (P = 0.014, Fig. 
1c and d), as suggested by the Cox regression (Table 1). For 
CLEC16A, the association of the AA genotype with more rapid 
progression towards multiple autoAb positivity in IAA positive 

Table 1: CTLA4 GA, SH2B3  TT, and CLEC16A AA genotypes in Cox regression analysis of the progression from single to multiple autoAb positivity in 
FDRs

 CTLA4 (GA vs. GG+AA) SH2B3 (TT vs. CC+TC) CLEC16A (AA vs. GG+AG)

Variable P HR [95% CI] P HR [95% CI] P HR [95% CI] 

Age first autoAb+ <0.0001 0.915 [0.884−0.948] <0.0001 0.908 [0.876−0.941] <0.0001 0.913 [0.882−0.946]
IAAb (0/1a) — — — — — —
Non-(HLA-A*24) (0/1a) 0.028 2.295 [1.093−4.822] 0.007 2.845 [1.329−6.091] 0.016 2.480 [1.183−5.198]
HLA-DQ8 (0/1a) — — 0.024 1.981 [1.092−3.593] — —
HLA-DQ2/DQ8 (0/1a) 0.824 0.021 2.122 [1.120−4.023] <0.0001 3.112 [1.811−5.349]
SNP (0/1a) — — — — — —
SNP × age first autoAb+ — — — — — —
SNP × IAA — — 0.043 3.550 [1.041−12.110] 0.021 1.986 [1.109−3.556]
SNP × non-(HLA-A*24) — — — — — —
SNP × HLA-DQ8 — — 0.003 0.122 [0.030−0.498] — —
SNP × HLA-DQ2/DQ8 0.002 4.929 [1.783−13.632] — — — —

a0/1: no/yes.
bIAA as first autoantibody.
—, not retained in conditional forward model (P > 0.050). P values, hazard ratio’s (HR) and 95% confidence intervals are presented. No significant 
interaction effects were found for INS rs1004446, PTPN2, PTPN22, and IL2RA. A borderline effect was found for INS rs689 × HLA-DQ8 (P = 0.05, HR 
= 1.727).

http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad002#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad002#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad002#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad002#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad002#supplementary-data
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Figure 1: impact of CTLA4, SH2B3, and CLEC16A on the progression from 1 to ≥2 autoAbs in first-degree relatives of T1D patients. Kaplan-Meier 
survival curves for relatives with or without genotype CTLA4 GA (a and b), SH2B3  TT (c and d) and CLEC16A AA (e and f). Strata are indicated above 
the graphs; they correspond to subpopulations of FDRs with (left panels) or without (right panels): (a and b) HLA DQ2+/DQ8+ (DQ2/DQ8+); (c and d) 
HLA-DQ8+ and no IAA as first autoAb (DQ8+ and IAA−); (e and f) IAA as first autoAb (IAA+). P values (P) of log rank tests are presented and numbers of 
individuals at risk indicated below the time-axis. For each arm the genotype and number (cases/events) are shown above the graph. 
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participants did not reach significance in Kaplan-Meier analysis 
(P = 0.169, AA vs. GG+AG, Fig. 1e and f).

To examine whether population risk of progression to-
wards the stage of asymptomatic Type 1 diabetes could be 
influenced by a combined impact of these SNPs, we assessed 
the possibility of building a multivariable Cox regression 
model, including the significant interaction effects for each 
SNP (Table 1) as well as the previously reported interaction 
between ERBB3 and female sex [10]. All these interactions 
remained independent predictors for the progression rate 
from single to multiple autoAb positivity (CLEC16A AA × 
IAA, P = 0.035 and HR = 1.871; CTLA4 GA × HLA-DQ2/
DQ8, P = 0.002 and HR = 4.869; SH2B3 TT × HLA-DQ8, 
P = 0.045 and HR = 0.302; ERBB3 GG × female, P = 
0.021 and HR = 0.334), except for SH2B3 × IAA (Table 
2). Again, the high-risk haplotype HLA-DQ2/DQ8 was no 
longer an independent predictor in this combined model 
(P = 0.473, Table 2). Without considering interactions be-
tween non-HLA SNPs and previously confirmed predictors 
of autoimmune progression, the Cox model identified age 
at first autoAb positivity, absence of HLA-A*24, and pres-
ence of HLA-DQ2/DQ8 as significant risk factors, yielding 
an AIC value of 692.8 (Table 2); stepwise addition of the 
abovementioned SNP-based interactions into the model pro-
gressively decreased the corresponding AIC values to 648.1 
(Table 2); this decrease in AIC by >40 points suggested 
model improvement [24].

Progression from multiple autoAb positivity 
towards clinical onset
At the stage of multiple (≥2) autoAb positivity (Supplementary 
Table 3), positivity for IA-2A and/or ZnT8A (P < 0.001), 
presence of HLA-A*24 (P = 0.019), and younger age (P = 
0.045), were all associated with accelerated progression to-
wards clinical onset in univariate Cox regression analysis, 
while being offspring of a diabetic mother was found to 
confer protection (P = 0.014), in line with previous reports 
[12, 13, 25, 26]. None of the tested SNPs individually affected 
progression towards diagnosis (Supplementary Table 3). In 
multivariate Cox regression, CTLA4 GA emerged as an in-
dependent predictor of accelerated progression in this disease 
stage (P = 0.034, HR = 1.444, Table 3), while INS, SH2B3, 
PTPN2, PTPN22, CLEC16A, and IL2RA showed no effect, 
either alone or in interaction with aforementioned main vari-
ables. The interaction between the CTLA4 GA genotype and 
HLA-DQ2/DQ8 was no longer significant at this stage (data 
not shown) and the suggested association of the CTLA4 GA 
genotype with a faster progression rate to clinical onset in 
Cox regression analysis could not be confirmed in Kaplan-
Meier survival (P = 0.144, Fig. 2).

Discussion
In our Belgian cohort of FDRs at risk, polymorphisms at the 
non-HLA loci INS, CTLA4, SH2B3, CLEC16A, PTPN2, 

Table 2: Cox regression analysis of the progression from 1 to ≥2 autoAb including all interaction effects identified so far between non-HLA SNPs and 
main predictive variables in the FDRs cohort: ERBB3 GG × female sex (10), CLEC16A AA × IAA, CTLA4 GA × HLA-DQ2/DQ8, SH2B3  TT × HLA-DQ8, 
SH2B3  TT × IAA

Variable P HR (95% CI) Step AIC 

Age first autoAb+ <0.001 0.910 [0.878−0.944] 1 692.8
Non-(HLA-A*24) (0/1a) 0.031 2.275 [1.080−4.792] 1 692.8
HLA-DQ2/DQ8 (0/1a) 0.473 1 692.8
HLA-DQ8 (0/1a) NM
CTLA4 GA × HLA-DQ2/DQ8 0.006 4.226 [1.526−11.706] 2 660.0
CLEC16A AA × IAA 0.030 1.904 [1.064−3.410] 3 657.0
ERBB3 GG × sex (0/1b) 0.021 0.334 [0.132−0.848] 4 652.9
SH2B3 TT × HLA-DQ8 0.045 0.275 [0.085−0.889] 5 648.1
SH2B3 TT × IAA NM

a0/1: no/yes.
b0/1: male/female.
NM, not retained in model. P values, hazard ratio’s (HR) and 95% confidence intervals are presented for each variable and interaction effect, as well as 
model AIC values at the indicated step in the model construction by conditional forward approach.

Table 3: CTLA4 in Cox regression analysis of the progression from multiple autoAb positivity to clinical onset in FDRs

Variable P HR (95% CI) 

Age multiple autoAb+ 0.015 0.971 [0.949−0.994]
IA-2A and/or ZnT8Aa (0/1b) <0.0001 2.499 [1.734−3.602]
HLA-A*24 (0/1b) 0.001 1.969 [1.308−2.962]
No diabetic mother (0/1b) 0.032 1.852 [1.054−3.252]
CTLA4 GA (0/1b) 0.034 1.444 [1.029−2.026]

aHigh risk autoAb profile.
b0/1: no/yes. P values, hazard ratio’s (HR) and 95% confidence intervals are presented. For INS (rs689 and rs1004446), SH2B3, PTPN2, PTPN22, 
CLEC16A, and IL2RA no significant effects or interaction effects were retained.

http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad002#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad002#supplementary-data
http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad002#supplementary-data
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PTPN22, and IL2RA did not impact the progression of 
asymptomatic islet autoimmunity when considered in iso-
lation, but our multivariate analysis unveiled that CTLA4, 
SH2B2, and CLEC16A could exert distinct effects in a sub-
group-, stage- and SNP-specific way through interaction with 
established risk factors of disease progression. Thus, for 3 
out of 7 non-HLA loci investigated we found evidence that 
polymorphisms are associated with progression of islet auto-
immunity.

Our most important observation was the striking acceler-
ation of progression from single to multiple autoAb positivity 
due to the interaction effect between HLA-DQ2/DQ8 and the 
heterozygous CTLA4 (rs3087243 or CT60) GA genotype, 
which even overruled the effect of HLA-DQ2/DQ8 alone. 
Furthermore, CTLA4 GA was a minor independent risk 
factor for progression towards clinical diabetes at the stage 
of multiple autoantibodies. To our knowledge, these effects 
have not been reported before in other longitudinal studies 
[6, 8, 9, 21]. This may relate to our approach consisting of 
looking for interactions with established risk factors at dis-
tinct disease stages, or to differences between various cohorts 
in terms of age range of participants, family history of Type 
1 diabetes, preselection based on HLA-DQ/DR-inferred risk, 
and prevalence of risk alleles in the background population 
[6, 7, 9]. If confirmed in other populations, the strong inter-
action between the HLA-DQ2/DQ8 and CTLA4 GA geno-
types, occurring in about 50% of the HLA-DQ2/DQ8 cases, 
may impact risk assessment in autoAb+ individuals and in-
clusion criteria for participation in future prevention trials, 
especially at the stage of antigen spreading. Our finding 
also warrants further investigation into the mechanisms 
underlying disease progression at the molecular and cellular 
level. CTLA4 has been reported to be associated with Type 
1 diabetes in general [27, 28], and in a subset of patients 
with autoimmune thyroid disease [29, 30]. Interestingly, the 
TEDDY Study Group reported that gestational respiratory in-
fections interacted with offspring HLA and CTLA4 to modify 
the nature of the first appearing beta cell autoAb specificity, 
with a consistent protective influence on the development 

of IAA among children with specific CTLA4 Ala17 geno-
types [31]. The gene product of CTLA4 acts as a negative 
regulator for T-cell proliferation [32, 33]. Its activity may be 
modulated by soluble CTLA4, an isoform lacking the exon 
encoding the transmembrane region, whose expression level 
appears to correlate with CTLA4 CT60 [34]. Additionally, 
heterozygous germline CTLA4 mutations have been linked to 
immune response overactivation [35]. Furthermore, CTLA4 
is a target gene in cancer therapy, with immune checkpoint 
blockade-induced diabetes as a common side effect, often in 
patients with HLA-DQ risk haplotypes [36, 37]. Apart from 
Type 1 diabetes, CTLA4 gene polymorphisms have been 
shown to be associated with other autoimmune diseases [33, 
38–42], with notable parallelisms regarding their impact on 
other endocrinopathies. For instance, an interaction between 
CTLA4 polymorphism (Ala17) and HLA-DQ has been re-
ported in Addison’s disease [43]. Moreover, in an Italian 
population, CTLA4 CT60 (rs3087243) polymorphism was 
found to be associated with Addison’s disease, only in hetero-
zygous (A/G) individuals [44].

For SH2B3, epitope spreading was accelerated in IAA 
positive FDRs. However, an even more pronounced inter-
action with HLA-DQ8 was observed, resulting in a de-
layed disease progression in individuals positive for both 
HLA-DQ8 and the SH2B3 TT genotype. The protein SH2B3 
acts as a negative regulator of cytokine signaling and is ne-
cessary for lymphoid hematopoiesis [45]. SH2B3 genotypes 
have been linked to activation levels of the NOD2 pathway 
[46], a pathway known to induce proinflammatory response 
and impaired insulin signaling, and to be upregulated in kid-
neys of diabetes patients [47]. The TEDDY study reported 
the risk allele SH2B3 T to be linked with initial autoanti-
body development [8, 9]. However, other large studies did 
not observe significant associations with preclinical diabetes 
progression [6]. As far as we know, no primary autoantigen- 
or HLA genotype-dependent association has been reported 
before for this SNP.

Our results also suggest that the CLEC16A AA risk geno-
type selectively increases epitope spreading in IAA positive 
FDRs. This gene is involved in mitophagy, and mutations 
can cause impaired glucose-stimulated insulin release [48]. 
Additionally, the studied SNP within CLEC16A appears to 
affect thymus-specific splice regulation [49]. With regards to 
diabetes disease progression, Krischer et al. [9] reported an 
association between CLEC16A with the appearance of any 
islet autoimmunity, but not Type 1 diabetes, within 6 years 
of age, while Lempainen et al. [6] reported no significant as-
sociations for this SNP in their cohort followed for a median 
time of 11 years.

At variance with other time-to-event studies, we did not 
find any significant association between disease progres-
sion and polymorphisms at IL2RA, PTPN22, PTPN2, and 
INS (rs1004446), neither when studied alone nor via inter-
actions [6–9]. We only noted a borderline significant inter-
action between INS rs689 and DQ8. Possible explanations 
for these conflicting results include our different study de-
sign (not pre-selecting for HLA-DQ risk haplotypes, and 
studying relatives instead of the general population), or the 
fact that SNP allelic distributions often vary based on geo-
graphic and demographic factors. Additionally, our study 
population contains subjects of relatively older age com-
pared with other large studies in this field. Although this 
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may complicate comparisons, it also provides a unique in-
sight in the less studied disease progression in adults and 
may thus be considered as a strength of our study. Other 
strengths include the long-term recruitment and follow-up 
of FDRs of diagnosed Type 1 diabetes patients and the 
low amount of missing data (Supplementary Table 1). 
The underrepresentation of young children may consti-
tute a limitation. Also, for many subjects the exact time 
of seroconversion is unknown, as they were already single 
or multiple autoAb positive at study entry. However, pre-
vious studies by our group have shown that omitting these 
subjects from the analysis did not significantly impact its 
conclusions [50].

Interestingly, almost all the interactions mentioned above 
remain independent predictors of initial autoAb development 
rate when combined into one all-encompassing multiple re-
gression model, except for the increased risk of SH2B3 geno-
type in IAA positive FDRs. Once again, the interaction effect 
of CTLA4 GA and HLA-DQ2/DQ8 overruled the effect of 
HLA-DQ2/DQ8 alone. None of the SNPs showed an inter-
action effect with the non-A*24 variable in the progression 
from one to multiple autoAbs, therefore, there is no indica-
tion that being negative for A*24 does affect the outcome of 
the SNP on the progression of autoimmunity. On the other 
hand, being positive for A*24 independently slows the pro-
gression from one to multiple autoAbs in our cohort regard-
less of the unveiled SNP interactions (Table 1, and [12]). This 
is in line with a previous report showing attenuated humoral 
responses in HLA-A*24 positive individuals at risk [51]. 
After addition of the SNP interaction effects (steps 2–5 in 
Table 2) to the previous predictive model (step 1 in Table 2) 
the AIC values decreased from 692.8 to 648.1, which makes 
our previous model rather less likely to contain the same 
amount of information [24] than the new model including 
interactions. This suggests that the non-HLA polymorphisms 
can indeed enhance our predictive models in a subgroup- and 
stage-specific way.

To conclude, our observations on non-HLA genes could 
provide additional tools to differentiate between rapid and 
slow progressors in the different stages of preclinical dia-
betes. They also emphasize the importance of stratification 
when analyzing time-to-event data or when preparing pre-
vention trials, as non-HLA SNPs could induce significant ef-
fects in very specific subgroups. When assessing the risk of 
non-HLA polymorphisms in future studies, e.g. by composing 
risk scores for predicting preclinical progression rate, we 
thus suggest a stratified approach according to these specific 
subgroups, in contrast to a generalized approach where sus-
ceptibility genotypes are equally weighted in an entire study 
population. Of course, our findings now require confirmation 
in an independent cohort, but we hope that they can eventu-
ally contribute to the improvement of our understanding of 
the elusive hidden disease phase.

Supplementary data
Supplementary data is available at Clinical and Experimental 
Immunology online.
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