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Progressive neuronal plasticity in primate visual cortex
during stimulus familiarization
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David A. Leopold1,3*

The primate brain is equipped to learn and remember newly encountered visual stimuli such as faces and
objects. In the macaque inferior temporal (IT) cortex, neurons mark the familiarity of a visual stimulus
through response modification, often involving a decrease in spiking rate. Here, we investigate the emergence
of this neural plasticity by longitudinally tracking IT neurons during several weeks of familiarization with face
images. We found that most neurons in the anterior medial (AM) face patch exhibited a gradual decline in their
late-phase visual responses to multiple stimuli. Individual neurons varied from days to weeks in their rates of
plasticity, with time constants determined by the number of days of exposure rather than the cumulative
number of presentations. We postulate that the sequential recruitment of neurons with experience-modified
responses may provide an internal and graded measure of familiarity strength, which is a key mnemonic com-
ponent of visual recognition.
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INTRODUCTION
The neocortex of the mammalian brain processes complex sensory
information (1) and stores memory for subsequent recognition
across specialized circuits (2, 3). Primates have an advanced capacity
for the visual comprehension of objects and social stimuli, which is
reflected in specialized visual regions of the inferior temporal (IT)
cortex (4, 5). Neurons in IT are known to exhibit experience-depen-
dent response plasticity following repeated exposure to the same
visual stimulus (6–8). This plasticity is often manifest as diminished
responses to familiar visual objects compared to novel ones, partic-
ularly in the late phase of the response (9–14). At the same time,
methodological restrictions have limited our mechanistic under-
standing of visual response plasticity, including its temporal dy-
namics and its coordinated emergence within a neural
population. What is the time frame for the establishment and per-
sistence of neuronal plasticity? Is the rate of plasticity governed
principally by the accumulation of exposures to a given visual stim-
ulus? Do neighboring neurons in a local population exhibit experi-
ence-dependent changes in concert? The answers to these and
related questions are unknown because it is difficult to longitudinal-
ly record the activity of single neurons across multiple sessions, par-
ticularly from deep structures in the brain.

Here, we examined the unfolding of neural plasticity in a face-
selective region of the IT cortex of the macaque by tracking respons-
es of isolated single neurons for periods of up to 5 weeks of daily
exposure to visual stimuli. During these periods, we randomly

interleaved presentations of 120 visual stimuli that were initially un-
familiar to the animals and 60 stimuli that were highly familiar from
the first presentation. Longitudinal tracking with a flexible micro-
wire electrode array allowed us to observe how electrophysiological
responses of neurons gradually signaled the memory for individual
stimuli across recording days (Fig. 1, A and B). We report that
during periods of familiarization with new stimuli, neurons’ late-
phase spiking responses to a given stimulus diminished gradually,
with time constants of days to weeks. Moreover, neighboring
neurons in a local population exhibited highly distinct characteristic
time constants for plasticity. Control experiments revealed that
these time constants depended primarily on the number of expo-
sure days to a given stimulus, rather than the accumulated
number of presentations. We discuss the potential bearing of the
observed plasticity on the familiarity component of visual
recognition.

RESULTS
We used flexible microwire brush array electrodes to record single
neuron activity longitudinally over weeks. Before any visual expo-
sure to the stimuli, the electrodes were surgically implanted into the
functional magnetic resonance imaging (fMRI)–defined anterior
medial (AM) face patch (Fig. 1, A, C, and D). The AM face patch
is the most anteroventral node in the macaque IT face processing
network, sitting adjacent to the perirhinal cortex, and is thought
to play an important role in processing facial identity (15). The mi-
crowires permitted isolation and tracking of the same neurons
during the experimental sessions over weeks (Fig. 1E and fig. S1)
(16–18). We carried out longitudinal recordings from the AM
face patch from two animals through four extended experimental
sessions, each ranging from 11 to 37 days of continuous recording.
Throughout these sessions, we isolated a total of 4874 neural wave-
forms over 90 days of recordings (54.8 ± 5.4 isolated neurons/day).
We restricted analysis to 139 neurons that were longitudinally re-
corded between 7 and 37 days (fig. S2). These neurons were respon-
sive to at least one stimulus (P < 0.05, t test versus baseline response
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Fig. 1. Experimental design and population response to the stimuli. (A) Overview of the experiment. Neurons were recorded from AM face patch, while stimuli were
repeatedly shown to the monkeys over the course of 2 to 5 weeks. (B) Three categories (novel N-10, novel N-40, and familiar) of visual stimuli. (C) Electrode tip of the
microwire brush array. Scale bar, 1mm. (D) Recording location of eachmonkey, shown in sagittal section of MRI. Arrows indicate AM face patch. (E) Examplewaveform of a
neuron recorded over 36 days. (F) Response of recorded neurons to each stimulus on the first day of the recording. Neurons were sorted according to the response to face
stimuli compared to other stimuli. (G) Time course of responses to novel and familiar stimuli (human face, monkey face, and whole monkey) on the first day. Shaded area
indicates standard error frommean (SE). (H) Average response to each category of stimulus on the first day during the late sustained response. Ordinate, absolute value of
normalized responses. Error bars indicate SE. **P < 10−14, paired t test; t138 = 8.95 (human face), 9.79 (monkey face), and 11.85 (whole monkey). Because of privacy right
reasons, we display mock stimulus images for human faces in A and B, which were generated by artificial intelligence (https://this-person-does-not-exist.com/en).

Koyano et al., Sci. Adv. 9, eade4648 (2023) 24 March 2023 2 of 11

SC I ENCE ADVANCES | R E S EARCH ART I C L E

https://this-person-does-not-exist.com/en


with Bonferroni correction). Of 139 neurons, 117 (84.2%) were face
selective (face-selective index > 0.33; see Materials and Methods and
fig. S3).

Consistent with previous reports, population responses on the
first experimental day were larger to novel stimuli than to familiar
stimuli (Fig. 1F), and this difference was expressed primarily during
the late sustained response (Fig. 1G and see figs. S4 and S5) (10–14).
Similar patterns of late-phase response suppression were observed
for familiar images of human faces, monkey faces, and whole
monkeys (Fig. 1H and fig. S6).

Figure 2A shows the responses of an example neuron to four
stimuli recorded daily over a period of 5 weeks, starting on
October 22. Two of the stimuli were initially novel and then present-
ed 10 times/day. The other two were highly familiar (presented 685
times through 48 days; see Materials and Methods) and also pre-
sented 10 times/day. The novel stimuli at first elicited sustained
spike trains, lasting well beyond the removal of the stimulus (696
and 602 ms from stimulus onset for image 145 and 153, respectively;
see also fig. S7). However, these sustained responses decreased very
gradually, over the course of several days, until they were no longer
detectable after 2.5 weeks, around November 10 (Fig. 2A, left two
columns). The early visual response between 100 and 200 ms after
the stimulus onset was comparatively unchanged during this period
and still evident on November 26, after 5 weeks of exposure to the
novel stimuli (see also figs. S8, C and G, and S9 for slight increase of
the early visual response in some cases). Responses of the same
neuron to familiar stimuli were much weaker relative to the novel
stimuli beginning on the first experimental day, a finding that was
representative across the population (Fig. 1, F to H), and relatively
constant through the 5 weeks (Fig. 2A, right two columns).

To examine these response changes across the population of
neurons, we analyzed recording sessions that were conducted over
a period of greater than 4 weeks in each monkey. Across a popula-
tion of 54 neurons recorded at least 20 of the first 28 days (mean
recording days during the first 28 days = 26.0 ± 2.5 days), a
gradual decline in late-phase responses was evident (Fig. 2, B and
C, and see also fig. S8 for other example neurons and figs. S10 to
S12 for additional quantifications). Analysis revealed that the sus-
tained responses to novel stimuli decreased significantly
(P < 10−6, t46 = 5.85, paired t test between first and last 2 days;
Fig. 2, B and C, left), while the corresponding responses to familiar
stimuli did not (P = 0.25, paired t test, t46 = 1.16; Fig. 2, B and C,
right). The fraction of novel stimuli whose population responses
were affected by this form of experience-dependent plasticity
grew to reach 31.9 ± 3.3% after 4 weeks (Fig. 2D, left, mean ± SE;
see also figs. S13 and S14). In contrast, the fraction of the affected
familiar stimuli was minimal (Fig. 2D, right). While most changes
were expressed during the sustained period, early transient respons-
es did show a small response increase for a subset of novel stimuli
(11.4 ± 1.6% at 4 weeks later, mean ± SE; fig. S9). The observed re-
sponse change could not be attributed to nonspecific factors, such
as a general adaptation of the cell or a loss of spike isolation over
time, because a new set of novel stimuli introduced in the middle
of the experimental session initially elicited strong sustained re-
sponses, which subsequently declined over time (fig. S15). The re-
sponse change tended to be larger for stimuli that elicited stronger
responses (figs. S12, S14, S16, and S17), maintaining a relatively un-
changing stimulus selectivity and response sharpness over the
course of visual exposures (figs. S16 and S17).

To quantify the time constant of the response decay following
the introduction of novel stimuli, we fit the responses of each
neuron to each stimulus with an exponential function (Fig. 2E
and see also figs. S18 to S20), matching the observed response
decay and eventual attainment of a stable value. We restricted our
analysis to responses from 1367 neuron × stimulus combinations
that could be fit well with an exponential through the course of
the session of 11 to 36 days (see Materials and Methods for detailed
criteria). As only a subset of stimuli showed this behavior for a given
neuron, this criterion limited analysis to 16.4% of all possible
neuron × stimulus combinations. Consistent with the observed de-
crease in mean response (Fig. 2C), these fits also showed that the
polarity of the change was mostly decreasing (fig. S21). We
defined the time constant τ as the time point when the neuron’s re-
sponse decreased to 1/e, or 36.8%, of the response on the first day
(green dotted line in Fig. 2E). Across the 1367 combinations, the
distribution of τ had a long tail, ranging from 2 days to nearly 30
days. The median τ value was 4.23 days (Fig. 2F), after which re-
sponses are estimated to decrease by 95% after 12.7 days. This
range of time constants for stimulus familiarity is broadly consistent
with estimations from previous studies tracking multi-unit respons-
es (19) and responses of different neurons (20) across days. There
was no clear relationship between the time constant and magnitude
of the response change (fig. S22). Quantifying the time constant of
individual IT neurons enabled us to further evaluate important
factors for the time course and population dynamics as described
in the following sections.

The response to novel stimuli decreased with repeated daily ex-
posure to the same stimuli. Would these changes proceed faster if
more repetitions were presented each day? We tested this question
by conducting an additional longitudinal experiment in both
animals comparing the time constant between two novel stimulus
sets, one shown 10 times/day (N-10 stimulus set) and the other
shown 40 times/day (N-40 stimulus set). Figure 3A shows the re-
sponses of an example cell for two stimuli, including one from N-
10 and one from the N-40 stimulus sets. Both sets of stimuli show
gradually decreasing sustained responses over weeks. To weigh the
relative contribution of total days versus total number of presenta-
tions, we computed both time- and trial-based exponential models
for the N-10 and N-40 stimuli (Fig. 3B). This analysis revealed that
the number of days determined the rate of response change to a
much higher degree than did the number of presentations. In this
example, this can be seen in the similar day-based time constant
(τday; Fig. 3B, left) but strongly divergent trial-based time constant
(τtrial; Fig. 3B, right).

Across the population, the number of days, rather than the
accrued number of stimulus presentations, was the critical determi-
nant of response adaptation rate (Fig. 3C). For the N-40 and N-10
stimulus sets, the overall distributions of τday for all neuron × stim-
ulus combinations was highly similar, although there was a small
difference (median 3.31 versus 4.24 days; P < 10−6, Mann-
Whitney U test). In contrast, the median distributions for τtrial dif-
fered approximately by a factor of 4 (median 135.2 versus 42.7 trials;
P < 10−121, Mann-Whitney U test).

Comparing the mean time constants of individual neurons of
both animals for the N-10 and N-40 stimuli similarly indicated
that day was the critical variable (Fig. 3D and see also fig. S11C).
Neurons had very similar τday values for the two conditions and
were thus distributed near the unity line (Fig. 3D, left, black
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regression line, slope of 1.22); however, τtrial values differed by ap-
proximately nearly a factor of 4 (Fig. 3D, right, black regression line,
slope of 0.31). We also confirmed that day was the critical factor
from the beginning of the visual exposure and later period (fig.
S23). These results indicate that the number of elapsed days
during periods of visual exposure critically determines the rate of
response plasticity among single neurons.

Most of the analysis thus far considered the temporal dynamics
of plasticity regarding all possible neuron × stimulus combinations.
Given the broad distribution of well-modeled time constants, we
next asked whether the rate of plasticity is set by individual
neurons or by individual stimuli. For example, if each neuron has
a unique and fixed time constant, then a given neuron should show
the same rate of plastic changes for multiple different stimuli. On

Fig. 2. Decrease of late, sustained responses over multiple days of visual exposure to initially
novel stimuli. (A) Response of an example neuron over five weeks of recording, showing adapting
responses to novel (left) but not familiar (right) stimuli. (B) Population-averaged spike density
functions for novel (N-10) and familiar stimuli. Responses are normalized with response to the best
stimulus and baseline activity. (C) Change of response during late sustained period of 200 to 500ms
from stimulus onset over 4 weeks. All presentation trials are plotted in order, with days indicated at
bottom. Black dots on the top indicate trials whose responses are significantly different from the
responses of first 2 days (paired t test, P < 0.05 with Bonferroni correction). Gray shaded area in-
dicates SE frommean. Colored shaded area indicates difference frommean response of first 2 days.
(D) Mean fraction of stimuli showing significant population response changes from first 2 days (t
test, P < 0.05). (E) An example of exponential fitting and computation of τ for response changes for
a given neuron × stimulus combination across the extended recording session. (F) Distribution of
time constants τ for all neuron × stimulus combinations in the novel (N-10) stimulus set.
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the other hand, if the rate of plasticity is determined principally by
details of the stimulus, then the entire neural population should
adjust its activity in concert. In that case, a given neuron could
exhibit vastly different plasticity time constants for different stimuli.

We thus analyzed the plasticity time constants as a function of
both neurons and stimuli (Fig. 4). We found that neural identity had
a much stronger role in determining the rate of plasticity than did
stimulus identity. For individual cells, the plasticity rate was compa-
rable for different stimuli; however, for a given stimulus, the plastic-
ity rate varied widely across different neurons (Fig. 4A and see also
fig. S24B for high variance of plasticity rate for individual stimulus).
Across the population of the 1367 neuron × stimulus combinations,
cell identity had a very strong and significant effect on the time

constant (P < 10−33, Kruskal-Wallis test; Fig. 4B and see also figs.
S11D, S19C, and S24 to S26). The main effect of cell identity was
robust and reproduced in each experimental session (P < 0.02 to
P < 10−8, fig. S24; P < 0.0005 to P < 10−16, fig. S25) and for the
N-40 stimuli (P < 10−29). The main effect of stimulus identity was
weaker and significant only in some recording sessions (figs. S24
to S26).

These results indicate that the population of neurons in the AM
face patch has a broad range of unique cell-specific time constants
governing their plasticity. These time constants ranged from 2 days
to more than 20 days (Fig. 4C and see also fig. S19B). Following the
introduction of new stimuli, the number of neurons showing mod-
ified responses to the stimuli thus increases over time. Figure 4D

Fig. 3. Primary factor of day on the rate of visual response plasticity. (A) Response change of an example neuron for one of N-40 and N-10 stimuli. (B) Exponential
fitting used to calculate day-based (left) and trial-based (right) decay rates. Top two plots: Example for the N-40 stimulus. Bottom two plots: Example for the N-10 stimulus.
The good correspondence between day-based decay rates and divergent trial-based decay rates for the N-40 and N-10 stimuli indicate that day is the critical factor. (C)
Population distribution of estimated decay rates for each cell × stimulus combination. Left: Day-based decay rate (τday). Right: Trial-based decay rate (τtrial). *P < 10−5 and
***P < 10−122, Mann-Whitney U test. (D) Within-cell comparison between N-10 and N-40 stimuli. Each dot represents a cell. The τ values of each cell are themean of all the
stimuli with valid exponential fit. The black regression line is calculated from observed τ with a linear regression model y = ax.
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shows that, depending on the criterion for response modification,
the proportion of participating neurons grows gradually over days
and weeks. In the case of the AM face patch, nearly 20% of the re-
corded neurons, on average, eventually exhibited plasticity to the
face and body stimuli we showed.

DISCUSSION
The observation that individual IT neurons have unique time con-
stants for visual plasticity suggests a division of labor that may bear
on the graded nature of familiarity in visual recognition (21, 22).
The brain’s internal signal for stimulus familiarity is thought to
be continuous and to increase with increasing exposure. Our find-
ings suggest that visual face-selective neurons may contribute to this

Fig. 4. Progressive neuronal plasticity during the repeated presentation of stimuli across weeks. (A) Example neurons highlighting thewide range of plasticity time
constants across the population. The colors indicate the τday for each stimulus depicted in the color scale in (B). Gray traces correspond to stimuli that did not elicit
significant plasticity. Neurons were sorted with average time constant, from gradual plasticity neurons (top) to rapid plasticity neurons (bottom). The average time cons-
tant is calculated from the colored traces which exhibit change of responses and fulfills criteria of fitting quality. (B) Time constant for all cell × stimulus combinations
across the population, showing dependence of the length of time constant on neuron’s identity. Black squares correspond to stimuli that do not exhibit change of
responses or do not meet the criteria of fitting quality. Neurons had similar time constants for multiple stimuli, whereas individual stimuli did not show shared time
constants across neurons (see also figs. S24 to S26). (C) Distribution of mean τ of each neuron, calculated from the stimuli, which exhibit change of responses and fulfills
criteria of fitting quality. (D) Ratio of neurons exceeding 50, 75, and 95% decay threshold over days, which is estimated from τ of each neuron × stimulus combination. The
fraction of neurons is calculated for each stimulus and then averaged. Shaded area represents SE. Inset: Definition of time when a neuron exceeds decay thresholds.
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internal signal through a sequential progression of neuronal com-
mitment to the familiarity of a stimulus. According to this hypoth-
esis, the most rapidly adapting neurons we observed are specialized
to identify and remember new experiences, perhaps opening the
door to the recruitment of additional neurons following further ex-
posure. With increasing experience playing out across days, neurons
with longer plasticity time constants join the subpopulation of af-
fected neurons. Over time, this progression of neural plasticity
across the population creates an internal and gradually intensifying
stimulus-specific signal of familiarity that could serve visual
recognition.

One might attribute the diminishing of responses over time to
waning attention, as monkeys are known to prefer looking at
novel stimuli, similar to humans (23, 24). However, the wide
range of observed plasticity time constants, spanning from 2 to 30
days, makes any straightforward explanation involving a time
course of attention seem unlikely. Moreover, an analysis of pupill-
ometry failed to detect significant change of attention-related pupil
dilation over the stimulus exposure period (fig. S27, A and B). Not-
withstanding, familiarity and attention are mutually related psycho-
logical factors, as seen in the animal’s natural preference to novel
objects. The strength of familiarity might drive animal’s attention.
Although it is difficult to quantify the intensity of subjectivefami-
liarity, especially in animals (fig. S27C), the development of im-
proved psychological measures may enhance understanding of the
specific relationship between fading attention and strengthening fa-
miliarity, as well as the neural contribution of the two factors.

The psychological variable of familiarity is most frequently asso-
ciated with the perirhinal cortex (9, 20, 25–28) and has recently been
associated with an adjacent region in the temporal pole (29). None-
theless, the evidence for involvement of IT cortex in this process is
also strong (9–14). For example, IT neurons are more selective (11,
14, 30, 31), respond more reliably (13) to, and show sharper
dynamic responses (12) for familiar stimuli, suggesting that experi-
ence has the capacity to shape high-level sensory processing in favor
of known stimuli. Reduced responses to familiar visual stimuli were
also reported in the prefrontal (32, 33) and earlier visual areas (19),
suggesting involvement of brain-wide network to represent the
effect of familiarity. Given the delayed onset of the familiarity
signal during the late sustained response observed in this and pre-
vious (14, 19) studies, familiarity is likely to be represented through
inter-areal interaction, such as the back propagation signals from
higher areas (34). Future studies using simultaneous recording
from multiple areas of the brain would further elucidate the mech-
anism of the plasticity network across the whole brain.

The face patch AM, from which we recorded, is directly adjacent
to the perirhinal cortex and is most commonly associated with the
encoding of individual face identity (15, 35). In AM and several
other lateral and ventral face patches, Landi and Freiwald (28)
found diminished fMRI activation for visually familiar versus non-
familiar faces. By contrast, face patches far away from this region,
such as those in the superior temporal sulcus (STS), showed
weak, if any, effects of familiarity. Perhaps for this reason, an
earlier longitudinal recording from the anterior fundus (AF) face
patch showed little evidence of response changes over several
months (16, 17). Face patches in the STS fundus region may be prin-
cipally concerned with dynamic aspects of facial behavior and may
therefore offer less contribution to visual recognition (36–38).
Whether attending to changing aspects of faces, such as motion,

gaze, and expression contributes to long-term plasticity in such
areas is a question for the future. Future studies examining the
neural expression of familiarity in other IT subregions can clarify
whether the plasticity observed here reflects the position of the
AM face patch or generalizes to other IT locations.

A potentially unexpected finding was that the rate of plasticity
was determined principally by the number of exposure days,
rather than by the cumulative number of stimulus exposures. This
finding suggests that there may be an upper limit on the number of
stimulus exposures that can contribute to plasticity in a given day,
which resonates with the known importance of rest and sleep after
the learning to consolidate the acquired memory (2). The slow de-
velopment of response change over days might reflect accumulation
of learned information, discretized over a nightly process of
consolidation.

Primates are highly social animals that form large groups and
interact competitively with other groups. Accurately learning and
retaining knowledge about individuals, including their facial struc-
ture and behavior, is a critical aspect of daily survival. Our findings
that AM neurons in the adult brain exhibit progressive plasticity for
faces may tie directly to primates’ lifelong capacity to learn new in-
dividuals or to improve their capacity to read and interpret the faces
of their conspecifics. It is notable that the plasticity observed in the
present study was manifested during the late-phase response,
similar to the late-phase responses involved in analyzing the
details of facial identity (39) or in discounting average facial struc-
ture in theories of norm-based encoding (40, 41). It is possible that
plasticity of late-phase responses in the AM face patch additionally
serves the continual updating of an internal model of facial statistics
to aid in identifying individuals or interpreting facial behavior. Pre-
vious studies reported sharpening of response selectivity to unfa-
miliar objects in IT neurons with visual exposure (11, 14, 30, 31).
In contrast, we found that the neurons in AM face patch keep
their stimulus selectivity constant during the development of the
familiarity signal. This discrepancy may be partly because this
study had not designed to evaluate change of parameters within
the face feature space and partly because of a unique property of
face-selective neurons that have pre-existing specialization. Future
studies specifically designed to investigate face identity learning
using parameterized face stimuli may elucidate changes in facial en-
coding such as axis coding (42) and norm-based coding (40).
Similar to the familiarity signal, this process may benefit from the
gradual commitment of neurons to identity dimensions over visual
experience and may thus share overlapping neural mechanisms
with the gradual familiarization of novel stimuli studied here. For
example, during the learning process, rapidly adapting neurons
can quickly modulate their tuning for new identities, amid a
larger population of more stable neurons that maintains codes for
reliable recognition. The mixture of stable and flexible information
may be a universal property of adaptable systems in the brain, as
similar principles appear to be present in other structures, such as
the basal ganglia (43) and hippocampus (44).

MATERIALS AND METHODS
Subjects
Two rhesus monkeys (Macaca mulatta, both male, monkey W and
M weighing 8.5 and 9.3 kg, respectively) were used in this study. All
animals were surgically implanted with an MRI-compatible head
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post and with a chronic microwire electrode bundle in an AM face
patch (Fig. 1D), which was functionally localized using a standard
fMRI block design using movie clips (45, 46) and/or a naturalistic
movie watching paradigm (47). The apparatus and surgical implan-
tation protocol have been described in detail previously (17). All
surgeries were performed under aseptic conditions and general an-
esthesia under isoflurane, and animals were given postsurgical an-
algesics and prophylactic antibiotics. During participation in the
recording experiment, the animals were on water control and re-
ceived their daily fluid intake during their testing (see below).
The weight and hydration level of each subject were monitored
closely and maintained throughout the experimental testing
phases. All the experimental procedures and animal welfare were
in full compliance with the Guidelines for the Care and Use of Lab-
oratory Animals by U.S. National Institutes of Health and approved
by the Animal Care and Use Committee of the U.S. National Insti-
tutes of Mental Health/National Institutes of Health.

Behavioral task and visual stimuli
The animals were not required to perform a behavioral task that re-
quired cognitive efforts for recognition of identities. With the
passive viewing paradigm, neurons were examined for sensory pro-
cessing of visual face stimuli. The monkeys sat in a primate chair in
front of a light emitting diode (LED)/organic LED (OLED) monitor
with their head position stabilized by means of an implanted head
post. They were required to maintain their gaze on a fixation point
of 0.2° × 0.2° at the center of the monitor through a trial. In each
trial, visual stimuli of 15° diagonal length (7.3° to 12.9° × 7.6° to
13.1°) were presented for 300 ms in pseudo-random order followed
by a 400-ms interstimulus interval. The monkeys were rewarded
with fruit juice for successfully maintaining fixation within a
window of 1.5° to 2°, while their eye position was monitored
using an infrared tracking system (EyeLink II, SR Research). Pupil
diameter is also monitored and collected in two of the experimental
series (series W-1 and W-2; fig. S27). Stimulus presentation, eye po-
sition monitoring, and reward delivery were controlled by Monkey-
Logic software (48) or NIMH MonkeyLogic Software (49). The
monitor (either a ViewSonic 18″ LCD monitor or LG 55″ OLED
monitor, both 60-Hz refresh rate) was placed 90 cm in front of
the monkey. The timing of stimulus presentation was recorded by
a photodiode sensor that received signal from a small white square
displayed on a corner of the screen at the same time of stimulus
presentation.

The main stimulus set comprised three groups of stimuli, each of
which included 60 images (Fig. 1B). One stimulus set was highly
familiar to the animals, and the other two stimulus sets were
novel to the animals at the beginning of each series of experimental
session. The familiar stimulus set includes images from six catego-
ries: human face, monkey face, whole monkey, object, scene, and
bird (10 images from each category). Each of the two novel stimulus
sets includes images from three categories: human face, monkey
face, and whole monkey (20 images from each category). The
human face images were drawn from the FEI face database (50),
and monkey faces and bodies were provided courtesy of O. Dal
Monte. Images from all other stimulus categories were assembled
from Web searches or iPhone applications (17). Because of
privacy right reasons, we display mock stimulus images for
human faces in Fig. 1 and figs. S1, S8, S15, and S24, which were gen-
erated by artificial intelligence (https://this-person-does-not-exist.

com/en). The original stimulus images used in the experiments
can be provided upon request. The images of the familiar stimulus
set had been used to confirm neurons’ consistent responses across
days (also see the “Electrophysiology” section below) in other
studies and repeatedly presented to the animals before starting
the first data collection of this study. For monkey M, the familiar
stimuli had been presented 68,948 times in total (mean: 1149
times per each stimulus) through 65 experimental days before the
first data collection of this study. For monkey W, the familiar
stimuli had been presented 41,102 times in total (mean: 685 times
per each stimulus) through 48 experimental days before the first
data collection of this study. We continued to use the same familiar
images during data collection in this study. The images of the novel
stimulus sets had never been shown to the animals until starting
data collection for this study, and we prepared new stimuli when
starting new series of experimental session. The same novel
stimuli were used for both animals (One novel stimulus set was
used in experimental series W-1 and M-1, and another novel stim-
ulus set was used in experimental series W-2 and M-2; see also fig.
S2). The familiar stimulus set and one of the novel stimulus sets (N-
10) were shown to the animals 10 times/day, while the other novel
stimulus set (N-40) was shown 40 times/day. In addition to the three
major stimulus sets described above, another “intermittent” novel
stimulus set was also shown to the animals 10 times on the first
day and on the 11th or 12th day. In one series of experimental
session (session W-2), this intermittent stimulus set was also
shown to the animal on days 19, 26, 33, 36, and 37. The detailed
stimulus presentation schedule is shown in fig. S2. There are total
of four series of experimental sessions, each of which continued for
11, 11, 28, and 37 days, respectively. In two longer series of exper-
imental sessions, (sessions M-2 and W-2), additional new novel
stimulus sets (N-102, N-103, and N-104) were introduced at the
middle of the experimental sessions on days 13, 19, and 26. These
additional novel stimulus sets were shown 10 times a day. To keep
the total number of image presentation per day the same, 15 images
were randomly dropped from N-40 stimulus set each time when the
new stimulus set was introduced. In one of the recording sessions
(W-1), familiar and intermittent stimulus sets were presented 1 day
before and 1 day after the series of the experimental session only
because the animal could not complete larger number of trials
during that time.

Electrophysiology
Extracellular neuronal signals were recorded with 64 chronically
implanted NiCr wires (Microprobes; Fig. 1C) that permitted track-
ing of individual neurons over multiple recording sessions (16–18).
The recorded neuronal signals were amplified and digitized at 24.4
kHz in a radio frequency–shielded room by PZ5 NeuroDigitizer
(Tucker-Davis Technologies) and then stored to an RS4 Data
Streamer controlled by an RZ2 BioAmp Processor (Tucker-Davis
Technologies). A gold wire inserted into a skull screw was used
for ground. Broadband signals (2.5 to 8 kHz) were collected from
which individual spikes were extracted offline using the WaveClus
software (51) after filtering between 300 and 5000 Hz. Of the 139
units we analyzed, most of the units (131, 94.2%) had broad
spikes that exhibited spike trough-to-peak time longer than 0.8
ms. Considering that neurons with broad spikes constitute ~85%
of the neurons in the cortex, the higher ratio of broad spike
neurons in this study suggests potential bias of electrophysiological
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isolation by the brush array electrodes toward broad spike neurons
(fig. S17). Event codes, eye positions, and a photodiode signal were
also stored to a hard disk using OpenEX software (Tucker Davis
Technologies).

The method for longitudinal identification of neurons across
days was described in detail previously (16, 17). The spikes recorded
from the same channel on different days routinely had closely
matching waveforms and interspike interval histograms and were
provisionally inferred to arise from the same neurons across days.
This initial classification based purely on waveform features and
spike statistics was further tested against the pattern of stimulus se-
lectivity and temporal structure of the neurons’ firing evoked by
visual stimulation with the familiar stimulus set (fig. S1). We used
the distinctive visual response pattern to the familiar stimuli gener-
ated by isolated spikes as a neural “fingerprint” to further disambig-
uate the identity of single units over time (40, 52). The stability of
stimulus selectivity was assessed by calculating a correlation coeffi-
cient for two firing rate vectors for the 60 familiar stimuli between
two consecutive days (fig. S1, D and G). In addition, the consistency
was confirmed by the stability of firing rate strength during the
baseline period (−100 to +50 ms relative to stimulus onset; fig.
S1E) and mean response to the familiar stimuli (60 to 350 ms
from stimulus onset; fig. S1G). For subsequent analysis we used
139 neurons which were isolated at least for 7 days (fig. S2). Some
neurons were isolated throughout a series of recording sessions,
while some other neurons disappear, emerge and reappear during
the recording session.

Quantification and statistical analysis
Stored neuronal response data were analyzed offline with MATLAB
software (MathWorks, MA). All the data in the text were expressed
as means ± SD unless otherwise stated. Error bars in figures are SE
unless otherwise stated. All the t test statistics were two-tailed.
When a neuron was not isolated on a given day and the data are
missing, we perform statistics without the data (Fig. 2B, seven
neurons were not isolated on the first or last two days and excluded
from the t test; fig. S1E, three neurons were not isolated on the first
or last 2 days in session W-1 and excluded from the t test). Firing
rate responses of neurons to each stimulus were calculated for the
following periods: baseline period, 150 ms before the stimulus onset
to 50 ms after stimulus onset; response period, 60 to 350 ms after the
stimulus onset; late sustained period, 200 to 500 ms after the stim-
ulus onset; and early transient response period, 50 to 150 ms after
the stimulus onset. Significant responses to each stimulus were eval-
uated by t test with Bonferroni correction for firing rate responses
between the baseline and response period. All the 139 neurons
showed significant response to at least one stimulus of the 180
novel or familiar stimuli and were considered as responsive to the
stimuli. Population-averaged tuning was calculated by averaging
normalized firing rate response, which was calculated from the
maximum and baseline responses of each neuron. Maximum re-
sponse was defined as the response to the stimulus that elicited
the largest response during the response period, either excitation
or suppression, as compared to the baseline response. The response
for each stimulus was normalized by subtracting the baseline re-
sponse and then dividing it by the absolute difference between
the baseline and maximum response of the neuron, resulting in nor-
malized firing rate value that ranges from −1 to 1 (−1 or 1 corre-
sponded to the maximum response and 0 corresponded to the

baseline response). Neurons whose mean response was less than
the baseline were considered as suppressive neurons (n = 13,
9.4%), and the sign of their normalized firing rates was inverted
before calculating the population-averaged response. Spike trains
were smoothed by convolution with a Gaussian kernel (σ = 10
ms) to obtain spike density functions (SDFs) for each stimulus.
SDF was normalized as the normalized firing rate response by sub-
tracting the baseline response and then dividing it by the absolute
difference between the baseline and maximum response of the
neuron. Face selectivity index (FSI) (53, 54) was calculated from
the mean baseline-subtracted responses to familiar faces (Xfaces)
and familiar nonface images (Xnonface) as: FSI = (Xfaces – Xnonface)/
(|Xfaces| + |Xnonface|). In case FSI > 1, FSI = 1. In case FSI < −1,
FSI = −1. FSI = −FSI when both Xfaces and Xnonface are negative
to incorporate inhibitory face-selective response. FSI varies
between −1 and 1. When the FSI of a neuron was larger than
0.33, the neuron was considered as face selective. Selectivity index
(55) was calculated from number of stimuli k and response to i-th
stimuli in as: Selectivity index = [k−(Σn=1,k in/imax)]/(k – 1). Selec-
tivity (14, 30) was Michelson contrast between the responses to the
best and worst stimuli, which was calculated as: (Responsebest –
Responseworst)/(Responsebset + Responseworst). Sparseness (11) was
calculated from number of stimuli k and response to i-th stimuli in
as: Sparseness = (1 – A)/(1 – 1/k), where A = (Σn=1,k in/k)2/Σn=1,k
(in2/k). Kurtosis was calculated as a measure of tuning sharpness
(56, 57).

Time constants of response changes of each neuron were calcu-
lated for each stimulus by fitting the responses over the series of ex-
perimental session with an exponential function: y = a + b · ec(x−1),
where x is the day after new stimuli introduced, y is firing rate, and e
is Euler’s number. We used exponential function because the re-
sponse change is expected to reach a stable value at some time
point, and it actually fit well with many of the changing responses
(e.g. Fig. 2E). The optimal modeling parameters for a, b, and c were
estimated by least squares technique with a maximum of 2000 iter-
ations, within a predefined limited range to avoid overfitting: [−500
to 500] for a, [−1000 to 1000] for b, and [−10 to 10] for c. Then, we
defined the time constant τ as |1/c|, which corresponds to the time
point when the neuron’s response decreased to 1/e, or 36.8%, of the
response on the first day.

For the population-averaged plot of normalized firing rate, we
performed the analysis for neurons, which was recorded at least
for 70% of total length of evaluated period. For the longer recording
sessions of both animals (sessions M-2 and W-2; fig. S2), 54 (81.8%)
out of 66 neurons fulfilled this criterion for the first 28 days of re-
cording (Fig. 2, B to D). We limited our analysis of the time constant
τ only for good fitting of exponential function: Exponential fitting
was evaluated if the coefficient of determination (R2) value of the
fitting is larger than 0.3 (42.3% of all fitting), if the neuron is record-
ed at least 7 days during first 10 days (95.0% of all fitting), and if the
neuron’s response firing rate to the stimulus is larger than 2 Hz
(78.4% of all fitting). In addition to the criteria above, we applied
two more criteria to evaluated τ only when the neuron’s response
changes during the experimental period: We evaluated τ if the
neuron’s firing rate is significantly different between first and last
2 days by t test (P < 0.05, 24.9% of all fitting) and if τ is smaller
than 30 days. The second criteria were applied to exclude fitting
with very long τ that change the response very slowly [this excluded
254 (3%) cases whose τ was 884.7 ± 637.7 days] and thus difficult to
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be evaluated from our experiment of less than 40 days. Fitting with
negative τ values, which do not reach plateau response, was also ex-
cluded (10 cases, 0.1%). With the criteria above, 1367 (16.4%) fitting
of 8340 neuron × stimulus combinations (139 neurons × 60 stimuli)
were considered (Figs. 2, E and F; 3C; and 4). Of 139 neurons, 124
(89.2%) have at least one fitting to a stimulus and was considered
(Fig. 4B). For the time constant τtrial, R2 value threshold of 0.05
was used instead of 0.3, because the data are not averaged each
day and thus noisier than that of τday. For Fig. 3D, if the neurons
have at least 10 stimuli, which fulfilled the above criteria of expo-
nential regression in both N-10 and N-40 stimulus sets, τ values
were averaged across stimuli and used for the analysis of the
scatter plot (n = 56 for τday and n = 32 for τtrial).

Kruskal-Wallis test was performed to evaluate the effect of cell
identity on τ values. To quantify the effect of cell identity and stim-
ulus identity on τ values at the same time, τ values were log-trans-
formed and then two-way analysis of variance (ANOVA) was
applied with cell identities and stimulus identities as main factors.
Interaction between the two factors was not incorporated in the
ANOVA model because each of stimulus × cell combination had
a single τ value. Explained variances by each factor were calculated
using R2 statistics from the ANOVA table.

Supplementary Materials
This PDF file includes:
Figs. S1 to S27
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