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Abstract

Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens 

(HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. 

The extreme diversity of this interaction is genetically determined, having evolved in the 

ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further 

facilitated by their independent segregation on separate chromosomes. That fetal implantation 

relies on many of the same types of immune cells as infection control, places certain constraints 

on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations 

of receptors and ligands may predispose to specific immune mediated diseases, including 

autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success 

rates of immunotherapy directed to these diseases. Progress towards both etiopathology and 

predicting response to therapy is being achieved through detailed characterization of the extent 

and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is 

more tractable with the development of integrated analyses of molecular evolution, function and 

pathology that will establish guidelines for understanding and managing risks. Here we present 

what is known about the co-evolution of KIR with HLA class I and the impact of their complexity 

on immune function and homeostasis.
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The ability of the immune system to distinguish healthy from unhealthy cells is critical for 

the effective control of pathogens and aberrant cell growth. The system must also diversify 

to survive in the face of emerging and evolving challenges. Killer cell immunoglobin-like 

receptor (KIR) interactions with their cognate ligands, human leukocyte antigen (HLA) class 
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I molecules, adapt to these challenges through intricate co-evolution. Unlike the molecular 

mediators of adaptive immunity, KIR and HLA polymorphism is genetically driven, and 

therefore subject to natural selection, but with consequences for immune-mediated disease. 

Evidence of historic and possibly ongoing co-evolution of receptors with ligands comes 

from their front-line roles during infection control and reproduction. That these survivalist 

functions lead to extreme diversity and plasticity of the genomic regions is shown through 

comparative studies across species and among human populations. The impact of natural 

selection in fostering this diversity is identified through high-resolution population genetic 

and molecular analyses.

KIR comprise a family of up to 13 distinct, highly polymorphic, modulators of cytotoxic 

cell activity1 (Fig. 1). They are expressed on the surface of natural killer (NK) cells and 

some T cells and regulate immune effector functions through signal transduction2, 3. Unlike 

T or B-cell receptors, there is no somatic rearrangement of KIR, and clonal diversity 

is determined through expression of multiple genetically encoded receptors4. Most KIR 

interact with specific subsets of the HLA class I molecules that are expressed by healthy 

nucleated tissue cells. The major role of KIR interaction with HLA class I is to facilitate the 

recognition and destruction of unhealthy cells, whilst preventing the same from happening to 

healthy cells5. Thus, inhibitory KIR prevent cytotoxic immune cells from killing tissue cells 

unless their HLA class I is lost or altered by infection or mutagenesis, whereas activating 

KIR help identify diseased cells. Another important role of KIR-modulated cytotoxicity is 

to regulate antigen presenting6 or autoantigen-specific cells7. In these scenarios it is easy to 

envision how the interaction of KIR with HLA class I is critical towards both maintaining 

homeostasis and preventing over-reactive immunity.

Much of the work characterizing KIR interactions with HLA class I has been centered on 

NK cells. NK cells fight infections and some cancers through cytotoxicity and cytokine 

release and also have key roles in pregnancy8-10. Cognate interactions of inhibitory KIR 

with HLA class I educates, arms, or licenses, NK cells to expect the same ligand on 

tissue cells11-14. The education process correlates with accumulation of cytotoxic and other 

effector abilities15, 16. Because they are highly variable and inherited independently, a 

given individual may not carry fully corresponding pairs of inhibitory KIR and HLA class 

I ligands17, 18. Accordingly, compound KIR and HLA class I genotypes predisposing to 

strong education of NK cells through KIR provide the greatest potential for infection 

control19, whereas NK cells that lack this interaction during their development have a 

comparably diminished missing-self response20. The genetic polymorphism that determines 

combinatorial diversity of cognate ligand receptor pairs within a given individual is 

complex21. KIR diversity across individuals is defined by gene content variation at the 

KIR locus and enhanced by allelic variation (Fig. 2). Similarly, not every HLA class I can 

be a KIR ligand, and identical KIR binding sites can be present on distinct HLA class 

I molecules (Fig. 2). Somatic NK cell receptor diversity is also complex, with thousands 

of NK cell subsets observed within a given individual22. NK cells acquire receptor 

expression essentially at random during development and may express multiple KIR20, 23. 

In mature NK cells, including those that express inhibitory and activating receptors for 

the same ligand, the inhibitory signal dominates homeostatic function24. Although the 

focus here is NK cells, it has long been acknowledged that T cells can also acquire KIR 

Pollock et al. Page 2

J Allergy Clin Immunol Pract. Author manuscript; available in PMC 2023 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression25, 26. This expression correlates with increased maturity both of cellular function 

and the individual27. Like NK cells, the specific KIR that are acquired appears random, but 

fewer are present per cell and education via HLA class I is not observed28. Whereas the 

role of activating KIR on T cells is unknown, inhibitory KIR expression likely dampens 

autoreactivity27 and help strengthen and control T cell responses to virus infections29, 30.

The importance of functional interaction of KIR with HLA is exemplified by the range 

and quantity of examples where it can go wrong21. Specific KIR and HLA allotype 

pairs are associated with susceptibility to infection or cancer, or poor fetal nourishment10. 

Conversely, other pairs are associated with stronger responses to specific infections, control 

of tumor formation, or with larger babies10. These extremes highlight the tenuous balance 

driving KIR and HLA class I co-evolution 31, 32, where further associations with immune-

mediated diseases33 may represent a form of collateral damage. Their evolution in the 

face of such pressures, also likely explains why the HLA and KIR genomic regions have 

become the most complicated and diverse of the human genome34. Highly polymorphic 

KIR and HLA class I genotypes can distinguish individuals, and there are few in common 

across even closely-related populations35, 36. Dynamic patterns of demographics and 

population structure add further complexity to KIR and HLA class I co-evolution37-41. 

These distinctions may manifest in differential disease susceptibility associations across 

human populations.

KIR Polymorphism

Gene content variation of the KIR locus42 has significant consequences for cellular 

immunity. In addition to gene presence/absence, specific alleles are not expressed, and 

certain KIR genes may be fused or duplicated43-45. KIR gene quantity determines the 

number of KIR expressing cells and can correlate with effectiveness of immunity to 

infection29, 46-48. Additional to gene content variation, KIR sequence variation acts directly 

on effector functions through altering critical properties of the receptor, including ligand 

affinity or specificity and signal transduction ability49-56. The nomenclature used for KIR 
genes and alleles is given in Figure 1. Even a single nucleotide substitution can change 

receptor specificity from one HLA class I ligand to another or affect signal transduction. 

Such polymorphism can also drastically reduce the surface expression of the receptors, by 

affecting promoter activity, translation, or intracellular trafficking21. NK cell engagement 

with tissue cells is thus highly variable among individuals and these differences relate 

directly to immune function53, 57.

HLA polymorphism

There are three HLA class I molecules that form the major ligands for KIR (HLA-A, 

-B, and -C). They are highly polymorphic, with over 20,000 alleles known in total58, 59. 

The nomenclature used for HLA alleles with respect to KIR ligands is given in Figure 2. 

The common HLA-A, -B, and -C allotypes are distinguished from each other by multiple 

amino acid substitutions. Like KIR, HLA class I polymorphism both within and outside 

the direct binding site, and genomic variants affecting the steady state expression level are 

all key modulators of NK cell sensitivity31, 60-62. The role of HLA class I is to sample 
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peptide fragments from intracellular protein production and present them at the cell surface 

for surveillance by NK or T cells. In this role, HLA class I polymorphism diversifies the 

specific peptide repertoires63. Because the binding footprint of KIR overlaps with that of 

the TCR, this means that KIR binding can also be dependent on variations of the presented 

peptide sequence64. This peptide specificity may increase the sensitivity for inhibitory KIR 

to detect infection65, but is likely most critical for activating KIR, which may then recognize 

infected cells that retain HLA class I expression but carry foreign peptides66, 67. Differential 

peptide specificity also creates an opportunity for pathogen exploitation whereby a given 

pathogen peptide may bind more strongly to inhibitory KIR, protecting infected cells from 

being killed by cytotoxic cells68-70.

Less-polymorphic HLA class I molecules -F and -G can also form ligands for KIR3DS1 

and 2DL4, respectively71, 72. Although little is known of the implications for combinatorial 

diversity of these interactions, the receptors are also less polymorphic than other KIR. 

KIR2DL4 has two main phenotypes, defined by a single nucleotide deletion that prevents 

cell-surface expression of approximately 50% alleles73. Of the multiple KIR3DS1 allotypes 

(Fig. 2), only two (3DS1*013 and *014) have been observed at appreciable frequency 

in any population74. Of interest, the amino acid substitution that distinguishes 3DS1*013 

from *014 occurs in the ligand-binding region and may influence its specificity for HLA/

peptide complex75. One further mechanism of diversity is the leader peptide from some 

HLA-B allotypes, in addition to -A and -C allotypes, can be presented by HLA-E. Through 

interaction of HLA-E with the NKG2/CD94 family of receptors, NK cells are then able to 

monitor polymorphic HLA class I expression through a more conserved complement to the 

KIR/HLA system76, 77.

KIR and HLA genotyping

Methods to genotype HLA to allele level are well established and adopted by clinical 

laboratories worldwide, providing ample material for the multitude of candidate gene 

association studies34. Because structural complexity of the locus (Fig. 2) has hindered 

similar attempts, gene presence/absence variation has been the method of choice78 for most 

studies investigating KIR diversity in human health. Because gene-content variation is the 

major component of KIR mediated NK cell functional diversity, these studies have been 

highly informative and generally reproducible but can be conflicting, particularly across 

ancestry-distinct cohorts. A critical need then remains to refine this knowledge through 

considering gene dose numbers and allele diversity of the genes in question. As examples, 

an allele that is not expressed likely has the same phenotype as an absent gene, and the 

distinct expression phenotype, ligand affinity or even specificity that characterizes a given 

allele is not visible to gene-content only methods. For these reasons, methods have been 

developed to measure the KIR gene copy number79, allele sequences80, or both at once81, 82. 

Methods are also described to analyze both KIR and HLA allele diversity in a combined 

workflow targeted to high-throughput studies83-85. For much larger studies that are currently 

impractical to approach through DNA sequencing, imputation from whole-genome SNP data 

provides an alternative to analyze KIR gene content86, or allele diversity87. As for HLA, the 

imputation methods are less accurate than direct sequencing, especially for some ethnicities 

or ancestry groups including Africans and South Asians87, 88.
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Combinatorial diversity of KIR and HLA class I influences infection control.

Because interactions of KIR with HLA modulate activity for some of the first cells to 

respond to infection, they have a critical role in ensuring survival to reproductive age, 

and are targets for natural selection89, 90. It is often difficult to test epidemiologically 

whether there are specific genotypes that confer resistance to a given infection91. Thus, 

although there are some recognized associations with pathogen clearance92, it is with 

course or severity of chronic infection that specific KIR and HLA allotype pairs have 

the greatest recognized impact30, 93-95. The now classic example is HIV-1, where specific 

combinations of KIR3DL1/S1 and HLA class I allotypes can reduce viral load or prolong 

the time to development of AIDS96-99. Among other viral infections differentially controlled 

by KIR and HLA class I diversity, herpes viruses are the most prominent 100-102. Of 

these, Epstein-Barr virus (EBV) likely has the greatest impact on human health103, and 

specific combinations of KIR with HLA class I ligand allotypes can influence whether an 

EBV infection is controlled or leads to complication104-107. Importantly, specific pathogen 

infections can leave an imprint on NK cell clonal diversity and receptor expression, with 

implications for subsequent maintenance of homeostasis108, 109.

Combinatorial diversity of KIR and HLA class I influences reproductive 

success

Effective fetal trophoblast invasion that occurs in the early stages of placentation is mediated 

by maternal uterine NK (uNK) cells. These cells are distinct from peripheral blood NK 

cells110, 111, exhibiting little cytotoxicity, and interact with the fetal cells to mediate maternal 

spiral artery remodeling112. Inefficiency at this stage can lead to malnourished fetus, and 

preeclampsia in the latter stages of pregnancy. Of the three highly polymorphic HLA class I, 

only HLA-C is expressed by fetal extravillous trophoblasts. As evidenced through highly 

reproducible studies of life-threatening pregnancy disorders, including preeclampsia10, 

KIR interaction with HLA-C is therefore a second target for natural selection acting 

on the combinatorial diversity of receptor and ligand allotypes. Indeed, specific alleles 

and combinations of KIR and HLA class I provide the most consistent genome-wide 

determinants of preeclampsia113.

Rapid evolution of KIR and HLA

Structural divergence of the respective genomic regions among closely related species 

identifies KIR and HLA to be evolving comparatively faster than the remainder of the 

genome114. The mode of genomic expansion to contain multiple KIR genes is unique to 

primates, and among primates very few direct orthologues of a given KIR gene are present. 

For example, all but one of the KIR specific for HLA-A, -B or -C are unique to humans115. 

The impressive expansion of the KIR locus is captured in macaques, where almost 60 

distinct KIR genes are known32, with corresponding duplication of genes encoding their 

ligands116. In the context of these expansions, gene duplication leads to sequence homology 

that facilitates further reshuffling of gene segments to create receptors and ligands of 

novel functions117. This structural diversification of the KIR locus is likely ongoing in 

humans and frequent enough to be detected in population cohorts of relatively modest 
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size118-121. In terms of emergence, the ancestors of highly polymorphic HLA class I are 

ancient, tracking with jawed vertebrates, whereas KIR may be restricted to mammals, and 

not functional in some of them122-124. That different and sometimes overlapping gene 

families have expanded similarly in other mammals125 indicates the critical need to retain 

the interaction, whilst presenting a moving target to any pathogen able to evolve evasion 

mechanisms. The intricacy of this co-evolution is likely best characterized by HLA-C, which 

evolved from a duplication of an HLA-B equivalent in an ancestor of hominids (humans, 

gorillas, chimps, orangutans)31. Accordingly, genomic expansion and diversification of the 

KIR that bind HLA-C and its orthologues is unique to hominids 126. Although HLA-C can 

elicit some T cell responses, it has become specialized for interaction with KIR-expressing 

cells127. It is unknown if the specialization occurred during or since the emergence of this 

receptor/ligand pair. However, in modern humans, KIR interaction with HLA-C is the only 

KIR/HLA interaction present in every individual, with rare exceptions highly prone to virus 

infections128. Low frequency of KIR interactions with HLA-A or -B in Amerindians129 

suggest KIR interactions with HLA-C may now have a greater impact on human survival 

than those with HLA-A and -B.

One unique feature of human KIR locus expansion has been development of two 

functionally distinct families of KIR haplotypes35 (Fig. 2). The KIR-A haplotype encodes 

every inhibitory KIR specific for polymorphic HLA class I, KIR2DL3 (C1), KIR2DL1 

(C2), KIR3DL1 (Bw4) and KIR3DL2 (A3/11). The KIR-A haplotype encodes only one 

activating receptor, KIR2DS4, and this is often disabled by a 22bp deletion common 

to multiple alleles119, 130. The KIR-A haplotype therefore conveys maximal NK cell 

educating potential. By contrast, KIR-B haplotypes encode fewer inhibitory receptors and 

a greater number of activating receptors131, in this case the inhibitory receptors often 

having reduced function53. Their functional distinctions manifest in the form of disease 

association, where KIR-A haplotypes in concert with their ligands reduce impact of virus 

infection and cancer132-134, but predispose to preeclampsia135, whereas KIR-B haplotypes 

associate with better fetal nourishment136. Consequently, although there is an incredible 

diversity of haplotype structures within and across human populations79, 137, 138, KIR-A 
and -B haplotypes are represented at high frequencies in every human population139. That 

KIR-A and -B have both been carried through multiple population bottlenecks that otherwise 

restrict genome-wide diversity indicates they are maintained in humans through natural 

selection140, 141.

Evolution of interactions between KIR and HLA Class I

The evolutionary mechanism that maintains KIR-A and -B in humans is often termed 

balancing selection. Balancing selection embodies frequency fluctuations of genetic variants 

accompanying the relative selective advantage of their respective phenotypes. In this respect 

KIR-A haplotypes have arisen to very high frequency in East Asian and Amerindian 

populations through positive natural selection41, 129, 142, 143, presumably in response to 

specific pathogens. However Hiby et al. first noticed that the preeclampsia pregnancy 

syndrome is most prevalent in women who are homozygous for KIR-A and who also 

carry a C2-ligand fetus135. This disadvantage to reproductive fitness, replicated in multiple 

populations136, 144-146, has produced an inverse correlation of KIR-A and C2+HLA-C 
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frequencies across these populations135. The assumption is that KIR2DL1, which is carried 

by KIR-A haplotypes and interacts strongly with C2+HLA-C147, is driving the phenomenon. 

Indeed, the observations become more pronounced when known distinctions of ligand 

binding and signal transduction strength across KIR2DL1 allotypes are considered148, 149. 

Inverse correlation of allele frequencies is observed also for genetic variants impacting 

the relative cell surface expression levels of KIR2DL1 and C2+HLA-C150. Finally, the 

haplotypes that offer protection from preeclampsia vary across populations, but all of them 

carry activating KIR that can bind C2+HLA-C144, 146, 151, 152. Indicating a tenuous balance, 

too many activating KIR may predispose to further pregnancy complications such as acute 

atherosis153. These findings identify a unifying concept across infection and reproduction, 

whereby specific receptors or ligands that increase in frequency due to a selective advantage 

may then become a disadvantage due to the high frequency of the respective pairing. This 

form of co-evolution through balancing selection manifests in multiple guises across the 

distinct pairs of KIR and HLA class I ligands66, 140, 154. In populations with high pathogen 

exposure, natural selection acting for and against specific KIR and HLA class I allotype 

pairs likely remains ongoing129, 155-157.

Diversification through admixture

Exemplifying the inverse correlation between KIR-A and C2+HLA are East Asians, where 

the frequency of C2+HLA-C is low and, although the preeclampsia risk remains, incidence 

is also low145. It is likely that the lack of C2+HLA, whether through selection or genetic 

drift, has allowed interactions of HLA-A and -B with KIR to proliferate to an unusually 

high level in East Asia41. Here, there are no ‘null’ alleles of inhibitory KIR and the 

allotypes that have attenuated function are rare158. Accompanying this fully equipped KIR 
locus is a distinctly high ratio of HLA class I haplotypes carrying KIR ligands at either 

HLA-A or -B or both 41. The HLA-A and -B alleles most frequent in Chinese Southern 

Han have ancestry distinct from their flanking genomic sequence, showing they were 

obtained relatively recently from admixture with neighboring populations, before rising 

to high frequency through natural selection41. Because HLA-A and -B are specialized for 

diversification of peptide presentation, this amplification likely serves to enhance both T 

cell and NK cell responses to intracellular pathogens. That adaptive introgression of HLA 
haplotypes is seen in other populations159, suggests the phenomenon is also widespread and 

ongoing. Introgression from ancient humans was likely a major contributor to the current 

HLA class I allele spectrum chiefly of East Asia and Oceania160. Although the ancestral 

populations that KIR alleles have been obtained from are more difficult to trace, in many 

cases the receptors have accompanied the ligands during the admixture events41, 160. An 

example may be the recently identified open reading frame variants of HLA-H pseudogene, 

which were obtained from admixture with ancient humans161. These variants are expressed 

and functional and have a presently unidentified receptor expressed by NK cells162.

Adaptation through diversification

As the C ligand evolved with the ancestors of modern hominids, it split into C1 and C2 

forms31. In humans C1 and C2 are defined by a single amino acid substitution at residue 

80, where C1 have asparagine and C2 have lysine. A subset of HLA-B molecules (B*46 
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and B*73) also carry the C1 motif, making them good at interacting with NK cells as well 

as presenting unique peptide repertoires to T cells49, 163. The motif was obtained through 

genomic recombination, which may have occurred in ancient humans prior to admixture 

with modern humans41, 115, 160. Subsequently, the amino acid residues that interact with 

KIR drive balancing selection of HLA-C that is stronger than that observed for HLA-A 

or -B154, 164. The C2-specific KIR emerged on multiple occasions115, and are similarly 

defined by substitutions at a single amino acid residue, this time at position 44. The human 

inhibitory KIR specific for C1+HLA-C have lysine, and those specific for C2+HLA-C have 

methionine165. Phylogenetic based molecular diversity analyses, in conjunction with species 

divergence time estimates, show that residue 44 of C-ligand specific KIR evolves under 

positive diversifying selection115. Again, this mechanism of natural selection is evident in 

modern humans. Studies of indigenous Southern Africans identified a variant of KIR2DL1, 

frequent in the ≠Khomani population, that has lysine instead of methionine at residue 

44166. The allotype (2DL1*022) is then able to bind C1+HLA-C, instead of C2+HLA-C 

that is recognized by other KIR2DL1 allotypes. In the neighboring Nama population, a 

different frequently-occurring substitution disables KIR2DL1 expression148. For reasons 

unknown, the frequency of C2+HLA-C is uniquely high in southern Africa, suggesting 

the convergent emergence and natural selection of the two variants148 occurred here to 

restore the evolutionary balance in favor of reproduction. Similar analyses of other KIR 

have identified examples of positively-selected single amino acid substitutions affecting 

interactions with their HLA class I ligands74, 140, 167.

These simple nucleotide mutations can affect immunity to infection. It has long been 

known that HIV infected individuals who possess the HLA-B*57:01 allotype develop 

T cell immunity, but only some are protected from progression to AIDS168. Somewhat 

independently, allotype specific interactions of KIR3DL1 with Bw4+HLA-B also affect 

disease progression134. Among KIR3DL1 allotypes, those having valine at residue 47 were 

recently shown to distinguish the B*57:01 non-progressors from progressors169. Valine 47 

allotypes had no effect on carriers of HLA-B*57:03, which differs by two amino acids 

from B*57:01169. Likely explaining this difference, the two substitutions mean that HLA-

B*57:01 can present the same peptides as HLA-B*57:03, but at an orientation that enhances 

interaction with KIR3DL160. This complex scenario shows how single amino acid variations 

of receptor or ligand can underlie subtle functional changes that have dramatic effect on 

control of infection.

KIR/HLA in autoimmunity

The functional changes arising from selection-driven co-evolution of KIR with HLA class 

I have clear potential to drive or modulate immune-mediated disease. The often-stated 

adage that autoimmune disease has minimal effect on survival to reproductive age, is likely 

strengthened by the role of KIR and HLA interaction in reproduction itself. The majority 

of studies in this regard were performed before the technology to analyze KIR at high 

resolution became available33, 170. Nevertheless, these analyses are helping to unravel the 

incomplete penetrance observed for many autoimmune disease associations with HLA, and 

in some cases, revealing further complexity. A summary of associations is given in Table 

1. A key example is psoriasis, where the established association with HLA-C*06:02 was 
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initially strengthened by including the KIR2DS1 activating receptor, which can bind to 

HLA-C*06:02171, 172. A recent study revealed further independent contributions to psoriasis 

susceptibility from other receptor/ligand pairs and that ligand heterozygosity increases the 

risk173. We may predict that high resolution analysis of KIR allotypes83, 85, 87 will shed 

further light on these relationships. Indeed, the limited number of analyses to date have 

revealed, as for infection, that certain ligand and receptor combinations associate with 

severity rather than predisposition to disease. Here, high cell surface expressing allotypes 

of KIR3DL1 can protect against the severest symptoms both of Parkinson’s and Behçet 

disease, and only in the presence of their Bw4 ligand174, 175. In fact, the same allotypes 

(KIR3DL1*015 and *002) that associate with HLA-B*57:01 HIV non-progressors 169 

are implicated. One of the most recently identified examples is atopic dermatitis, where 

distinct compound genotypes associate respectively with susceptibility and progression of 

disease176-178. These types of relationships are likely to be recapitulated in further immune-

mediated diseases such as multiple sclerosis (MS), which has established associations with 

KIR and HLA combinatorial diversity176, 179. The recent confirmation that MS is triggered 

by EBV infection180, 181, places cytotoxic immune effector cells in context both of initiation 

and progression of the disease.

KIR/HLA in immune therapy

Based on the principle that inhibitory KIR educate NK cells to expect specific HLA 

class I ligands, carefully directed mismatching between donor and recipient can improve 

the success rate of transplantation therapy for certain leukemias. Particularly for acute 

myelogenous leukemia (AML), donor-derived NK cells can protect from relapse when 

they have been educated in the donor towards HLA class I ligands absent from the 

patient, likely through killing leukemic cells182, 183. A further advantage is that, unlike 

T cells, NK cells do not promote graft-vs-host disease. Multiple groups have adopted 

and enhanced KIR-ligand mismatching protocols184-187 (a recent extensive review is given 

elsewhere188), which have helped pave the way towards targeted NK cell therapies for 

the same leukemias and other cancers189-191. Nevertheless, effect differences remain across 

transplant centers or treatment regimens192, and further refinement of matching protocols 

will likely be aided through refinement of the genotyping methods193, 194. The above 

findings, together with the established links between peripheral NK cell quantity and disease 

course, also imply that NK cells can be harnessed to treat autoimmune and other chronic 

diseases, as they have for malignancies195-198. That presence of KIR3DS1 is significantly 

associated with resistance to PD-1 blockade199 for example, and KIR3DL1 interaction with 

Bw4+HLA affects monoclonal antibody therapy200, 201 demonstrates that knowledge of 

the receptor and ligand genotype may also inform these therapy decisions202. Moreover, 

and resulting from the rapid and population-specific evolution, all the described allotype 

combinations are highly variable across populations. For example, KIR3DS1 is rare in 

Africa and Asia, yet highly prevalent in Oceania, indicating differential disease associations 

and therapy responses related to genomic ancestry are to be expected. Medical genetic and 

association studies have largely neglected non-European populations203-205, an exclusion 

that continues despite the knowledge that inclusion of multiple ancestries increases power of 

such studies206. For all these reasons it is imperative that we can accurately characterize 
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combinatorial diversity of KIR and HLA at high resolution and scale83, 85, 87, whilst 

encompassing all human diversity. With innovative new methods of evaluation such as 

KIR and HLA interaction scores29, 148, 174 that evaluate the strength of binding and signal 

transduction as a proxy to infer NK cell function, it may be possible to shape the treatment 

or even prevent certain immune-mediated diseases based on knowledge of individual KIR 

and HLA compound genotypes.

In summary, combinatorial diversity of KIR and HLA class I is driven by diversifying 

selection through confrontation with pathogens. The exceptional variation, both within 

and of interactions between them, being reinforced by population demography, including 

admixture events that may also be adaptive. Coexistence of functionality to support healthy 

pregnancies and prevent the unnecessary destruction of tissues has resulted in evolutionary 

patterns constrained by tradeoffs between these functions and controlling infection. For 

human health, this means that medical interventions and disease severity can differ across 

individuals and ancestries; a quandary that can be mitigated by characterizing the functional 

diversity of KIR and HLA class I and understanding how this diversity impacts disease and 

the efficacy of medical interventions.
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Figure 1. KIR Nomenclature and Function
KIR nomenclature incorporates both structure and function. KIR can have either two (2D) 

or three (3D) extracellular immunoglobulin domains accompanied by either a long (L) or 

short (S) cytoplasmic tail; KIR2DL1 or KIR3DS1 for example. Inhibitory KIR have long 

cytoplasmic tails containing immune tyrosine-based inhibitory motifs (ITIMs), whereas the 

KIR with short cytoplasmic tails are activating receptors that associate with the DAP12 

signaling molecule via a positively charged lysine residue in their transmembrane domain. 

DAP12 carries immunoreceptor tyrosine-based activation motifs (ITAMs). KIR2DL4 is an 

exception, having an ITIM domain but also an arginine residue in the transmembrane 

domain that associates with the activating molecule FcεRI-γ207. The alleles of each KIR are 

named in order of discovery, with the first three digits distinguishing each unique protein 

coding sequence, the fourth and fifth digits depicting synonymous differences in the coding 

sequence, and the sixth and seventh digits depicting differences in the surrounding introns58. 

‘Allele’ refers to each distinct DNA sequence of a given KIR (or HLA) gene, and when this 

encodes a distinct polypeptide sequence then this is termed an ‘allotype’.
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Figure 2. Genomic Arrangement of KIR and List of Cognate Ligands
A: The KIR genomic region contains up to 13 distinct genes, encoding inhibitory KIR 

(yellow), or activating KIR (blue). Below each gene is shown the number of alleles (distinct 

DNA sequence) and allotypes (distinct polypeptide sequence) of each KIR (as of February 

2022)58. The known KIR ligands are shown underneath. KIR3DL3 and KIR2DL5A/B do 

not have known HLA ligands; B7H7208 is a member of the B7 family and PVR209 is the 

polio virus receptor. The ligand for KIR2DS3 remains unknown. KIR2DL2 and KIR2DL3 
where originally described as distinct genes but are now known to be alleles of the same 

locus, annotated as KIR2DL2/3. The same is true for KIR3DL1 and KIR3DS1 (KIR3DL1/
S1). Here KIR3DL1 and KIR3DS1 are shown separately to differentiate between their 

known ligands.

B: Lists the HLA class I allotypes that carry specific amino acid motifs enabling their 

function as KIR ligands. The Bw4 motif is characterized by residues 77-83 (N, L, R, I/T, 

A, L, R) in the external-facing α1-helix210 of the listed HLA-A or -B allotypes. Residues 

77-80 characterize the C1 (S, L, R, N) and C2 (N, L, R, K) motifs of HLA-C and some 

HLA-B allotypes. The specific A3/11 motif is unknown. (B*13 may not bind to KIR3DL1 

due to specific polymorphism outside of the Bw4 motif61). HLA alleles are named by colon-

separated field; the first field denotes serology type, second field polypeptide sequence 

(allotype), and subsequent fields depict synonymous and intron variants respectively.

C. Shown is a representation of the KIR genomic region, with five examples of haplotypes 

distinguished by their gene content. Here, haplotype refers to the configuration of genes 

and/or alleles inherited from one parent. The KIR-A haplotype encodes the maximum 

number of inhibitory KIR specific for HLA class I (KIR2DL1, 2DL3, 3DL1 and 3DL2). The 

KIR-B haplotype is more diverse in gene content and encodes a greater number of activating 

receptors. The red dashed box spanning KIR2DS3 to KIR3DS1 on the lower haplotype is to 

highlight a known segmental duplication that can occur on the KIR-B haplotype44.
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Table 1:
KIR/HLA associations with infection diseases, reproductive health and autoimmunity

Shown are associations of specific KIR and HLA allotype combinations with infection, reproductive health, or 

autoimmunity. The alleles found to have the greatest effect on the association are given where reported (most 

studies to date have analyzed KIR gene content only). Associations were included if they represent known 

receptor ligand combinations, the p values were corrected for multiple testing, and if there was no reported 

and/or observed inaccuracies in the statistical analysis or methods. Additional individual KIR and HLA 

associations are collated in the KIR and Diseases Database170.

Condition KIR HLA Allele(s) of 
greatest
effect

Risk/
Protective

Study population Reference

Infectious diseases

HIV-1 3DL1 Bw4+HLA High 
expressing 
3DL1 
(e.g.*015)

Protective USA mixed ancestry 131, 149

3DS1 Bw4+HLA Protective USA mixed ancestry 211 

Hepatitis C virus 2DL3 C1+HLA-C Protective USA mixed ancestry 133 

2DS2 HLA-C*01:02 Protective UK 67 

Hepatitis B virus 2DL3 C1+HLA-C Protective Han Chinese 212 

Human 
cytomegalovirus

KIR-A 
haplotype

Bw4+HLA Risk Italy 213 

2DL1 C2+HLA-C Protective Germany 214 

Human T-cell leukemia 
virus -I

2DL2 HLA-C*08 Protective Japan 30 

Dengue virus 2DS2 HLA-C*01:02 Protective UK 67 

3DL1 HLA-B*57 Risk Thailand 215 

Ebola 3DL1 Bw4+HLA Low-affinity 
Bw4Thr80

Risk Guinea 216 

3DL1 Bw4+HLA High-affinity 
Bw4Ile80

Protective Guinea 216 

Malaria 2DL3 C1+HLA-C Risk Thailand, North India 157, 217

2DL1 C1+HLA-C Protective Uganda 218 

Human papilloma 
virus (Causing cervical 
cancer)

3DS1neg Bw4+HLA, C2+HLA-
C

Protective USA mixed, Puerto 
Rico

219 

Kaposi’s sarcoma 2DS1 C2+HLA-C Risk Italy 220 

Epstein-Barr virus 
associated Hodgkin 
lymphoma

2DL2, 2DS2 C1+HLA-C Protective Netherlands 104 

Bacterial infection 
(RecA+)

2DS4 HLA-C*05:01 Protective n/a (functional study) 66 

Reproductive health

Pre-eclampsia 2DS1 C2+HLA-C (fetal) Protective UK 221 

KIR-A 
haplotype

C2+HLA-C (fetal) Risk UK, Uganda 135,144

2DS5 C2+HLA-C (fetal) 2DS5*006 Protective Uganda 144 
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Condition KIR HLA Allele(s) of 
greatest
effect

Risk/
Protective

Study population Reference

Infectious diseases

2DL1 C2+HLA-C (fetal) KIR-A 
haplotype 
2DL1 (*001, 
*002, *003)

Risk UK 149 

Recurrent miscarriage 2DS1 C2+HLA-C Protective UK 222 

2DL1 C2+HLA-C Protective India 223 

2DS2 C1+HLA-C Risk India 223 

Low birth weight 2DS1 C2+HLA-C (fetal) Protective UK, Norway 136 

Endometriosis 3DL1 Bw4+HLA Risk Japan 224 

2DS5 C2+HLA-C Protective Poland 225 

Autoimmunity

Psoriasis 2DS1 HLA-C*06 Risk Poland 172 

3DS1 Bw4+HLA Risk European 226 

Psoriatic arthritis 2DS1, 2DS2 HLA-C Risk Canada 227 

2DS2 C1+HLA-C Risk Canada 228 

Multiple sclerosis 2DS1 C2+HLA-C Protective Italy 229 

2DL1 C2+HLA-C Risk Spain 230 

3DL1 Bw4+HLA Protective Spain, African 
American

230, 179

2DL3 C1+HLA-C Protective Germany 231 

Crohn’s disease 2DL2 C1+HLA-C Protective Brazil 232 

2DL3 C1+HLA-C Risk Spanish 233 

2DL2/3 C1+HLA-C Risk USA European/ 
Jewish

234 

2DL2/3 C2+HLA-C Protective USA European/ 
Jewish

234 

3DL1 Bw4+HLA Risk Japan 235 

Ulcerative colitis 2DL2 C1+HLA-C Protective Brazil 232 

3DL1 Bw4+HLA Risk Japan 235 

2DL1 C2+HLA-C Protective Japan 235 

Systemic lupus 
erythematosus

2DS1 C2+HLA-C Risk Han Chinese 236 

2DS2 C1+HLA-C Risk Italy 237 

Type 1 diabetes 2DS2 C1+HLA-C Risk Netherlands, Latvia 238, 239

2DL2/L3 C1+HLA-C Risk Latvia 239 

2DL1 C2+HLA-C Protective Saudi, Brazil 240,241

Pemphigus Foliaceus 3DS1 Bw4+HLA Protective Brazil 242 

3DL2 HLA-A*03/*11 3DL2*001 Risk Brazil 243 

Ankylosing spondylitis 3DS1 Bw4+HLA Risk Spain, Portugal 244 

3DL1 Bw4+HLA Protective Spain, Portugal, Iran 244, 245

2DS1 C2+HLA-C Risk Iran 245 
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Condition KIR HLA Allele(s) of 
greatest
effect

Risk/
Protective

Study population Reference

Infectious diseases

Atopic dermatitis 2DS5, 2DS1 C2+HLA-C Risk USA mixed 177 
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