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Abstract

Proteins sample an ensemble of conformers under physiological conditions, having access to 

a spectrum of modes of motions, also called intrinsic dynamics. These motions ensure the 

adaptation to various interactions in the cell, and largely assist in, if not determine, viable 

mechanisms of biological function. In recent years, machine learning frameworks have proven 

uniquely useful in structural biology, and recent studies further provide evidence to the utility 

and/or necessity of considering intrinsic dynamics for increasing their predictive ability. Efficient 

quantification of dynamics-based attributes by recently developed physics-based theories and 

models such as elastic network models provides a unique opportunity to generate data on 

dynamics for training ML models towards inferring mechanisms of protein function, assessing 

pathogenicity, or estimating binding affinities.

Introduction

Recent years have seen a growing number of machine learning (ML)-based approaches 

that assist in advancing structural biology research, especially in structure prediction [1]. 

A prime example is the development of a neural network (NN)-based tool, AlphaFold, by 

DeepMind [2,3]. This artificial intelligence (AI) system has now predicted the structures 

of 200 million proteins listed in UniProt, a breakthrough compared to the deposition of 

<200,000 structures in the Protein Data Bank since its inception in 1976 [4].
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ML applications in biology were originally made in the realm of sequence comparisons; 

this is how the field of bioinformatics emerged [5]. The extension to 3D structures naturally 

arose with ML’s powerful pattern recognition and computer vision algorithms that apply 

equally well to 3D shapes, not only a string of letters. Further development of sequence-

based deep learning (DL) methods, especially those based on sequence co-evolution [6,7] or 

genome-scale genetic data demonstrated remarkable success in structure prediction [8]. The 

purpose of this opinion is to discuss how the progress made in physics-based computational 

evaluation of structural dynamics, not only structure, can be leveraged if used in conjunction 

with ML or DL methods.

It is now established that knowledge of a single structure provides useful but incomplete 

insights into the mechanisms of function. A 3D structure only provides a single snapshot 

from amongst a multitude of conformations that the protein can sample during its function. 

The bridge between structure and function is structural dynamics [9,10], in accord with the 

sequence → structure → dynamics → function paradigm. Structural dynamics refers to 

fluctuations between (microscopic) conformations accessible near the folded (macro)state. 

These motions range from cooperative domain movements typical of allosteric machines 

to highly localized fluctuations at densely packed regions. They collectively form the 

intrinsically accessible ‘spectrum of modes of motions’ that enable adaptation to different 

environments and interactions and are often recruited to accomplish function while retaining 

the 3D fold [10,11].

Analyses based on elastic network models (ENMs) provide an effective description of 

the anisotropic fluctuations of proteins in agreement with experimental data [12], and 

robust evidence on the functional significance of structural dynamics [10,11,13,14]. Several 

examples of functional motions, e.g., opening and closure for binding and stabilizing a 

substrate, transition between outward-facing and inward-facing states of the transporters, 

allosteric structural changes in response to ligand binding, or simply breathing motions 

enabling the channeling of ions or small molecules through pores or cavities, are predictable 

by ENMs as highly probable modes of motions uniquely defined by the inter-residue 

contact topology. Such structure-encoded intrinsic dynamics pre-exists, independent of 

substrate/ligand binding. Ligand binding simply exploits these pre-existing mechanisms of 

reconfiguration to enable function.

Given the importance of protein dynamics, it is not surprising that ML studies that leverage 

structural dynamics data increasingly gain traction. The merger of ML and structural 

dynamics theory and methods is expected to be mutually beneficial (Fig. 1): dynamics 

data incorporated into ML algorithms can increase the accuracy of functional inferences, as 

exemplified by a recent pathogenicity predictor [15]; conversely, DL methods put to use for 

analyzing full-atomic simulations can help extract information on proteins’ kinetics [16]. In 

both cases, the confluence of ML/DL and structural dynamics data is expected to generate 

knowledge that will help close the gap between experimental and computed quantities. We 

point below to such recent developments and their prospective utilities.
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Structural dynamics is a determinant of mutation pathogenicity

Single amino acid variants (SAVs) or point mutations are associated with more than half 

of human inherited diseases. They may directly compromise the active sites or have 

allosteric effects, and act as ‘latent drivers’ associated with cancer development and drug 

resistance [17]. The growing SAV data has led to the development of databases and ML 

frameworks for predicting pathogenicity [18-23]. We recently explored whether considering 

the intrinsic dynamics of the protein might improve the accuracy of SAV pathogenicity 

prediction [15]. A simple random forest (RF)-based ML tool benchmarked against >20,000 

SAVs indeed confirmed that this is the case [15] (Fig. 2b). The tool, implemented in 

Rhapsody [20], shows that while sequence-based features make the largest contributions 

to predictions, dynamic features also make important contributions (e.g., larger than solvent-

accessible surface area, SASA) (Fig. 2a). Among dynamics features, allosteric signaling 

effectiveness emerged as an important factor. More recently, the Rhapsody feature set has 

been expanded to incorporate sixteen additional features from Rosetta (excluding SASA) 

[24]; and dynamics-based attributes in Rhapsody have been used along with sequence- 

and structure-based attributes to construct an XGBoost classifier within the LYRUS tool to 

predict pathogenicity [25].

Fig. 2c-d illustrates the application of Rhapsody to p53. The heatmap in c displays the 

in silico saturation mutagenesis results for a 100-residue portion (see the complete map 

at Rhapsody interface; and detailed description in the figure caption). Several SAVs are 

‘newly’ evaluated here, in the sense that they were not included in the training set. Panel 

d displays some of them (residues in green spheres) that are confirmed to be pathogenic 

according to the data reported in the literature; residues shown in green sticks are variants of 

unknown significance that are predicted to be pathogenic, waiting for validation.

ENMs such as the anisotropic network model (ANM) [12,29] and the Gaussian network 

model (GNM) [30] that are most broadly used in the literature (and in Rhapsody) provide 

residue-level information on structural dynamics and lack amino acid specificity. Atomic-

level residue-specific information on the role of conformational dynamics in disease-causing 

missense mutations, on the other hand, can be inferred from MD trajectories, as illustrated 

in a recent study [31]. A recent ML- and MD-based study showed how the pathogenicity 

of mutations at sites that are neither evolutionarily conserved nor directly involved in 

biochemical activity could be explained by dynamic couplings [32]. Therein, the data 

from MD were used to train a feedforward NN for pathogenicity prediction. In another 

study, attributes extracted from MD were used in a rule-based classifier to predict the 

pathogenicity of unclassified variants of BRCA1 BRCT repeats [33]. Similarly, a K-nearest 

neighbor predictor of disease specificity was built for calmodulin variants, as well as Aβ 
peptide variants, using the distributions of (φ, ψ) angles and the root-mean-square deviations 

(RMSDs) and fluctuations (RMSFs) in atomic positions observed in MD simulations 

conducted for the two wild type proteins and the corresponding sets of variants [34]. The 

DL tool DiffNets, on the other hand, predicts the biochemical differences between variants 

using self-supervised autoencoders that learn the associated latent space from MD-sampled 

structural ensembles [35].
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Note that residue-specificity can also be incorporated within the ENMs. DynaSig-ML is a 

package that utilizes elastic network contact model (ENCoM)-predicted modes and ML to 

predict biomolecular function and proved useful in a recent prediction of the evolutionary 

fitness of a bacterial enzyme [36]. ENCoM differs from the elastic network models ANM 

and GNM by the inclusion of residue-specificity through contact surface evaluation for 

interacting pairs [37]. It is worth noting that there are also other ENMs that are residue-

specific, such as the ANM with inter-residue spring constants proportional to the number of 

atom—atom contacts, introduced in modeling the Markovian diffusion of allosteric signals 

[38], and even the original ENM of Tirion where uniform harmonic potentials were used 

between all atom pairs [39].

Overall, recent studies highlight the utility of using structural dynamics data, at either low 

or high resolution (e.g., ENMs or MD), in ML platforms, to accurately predict the effect of 

SAVs on (dys)function.

Neural networks help learn molecular properties from MD trajectories

Recent studies point to the utility of NNs for learning from MD trajectories [16]. The NNs 

take as input the coordinates of all atoms (or α-carbons in coarse-grained MD), and output 

properties such as potential energy surface or operating force fields. ML models trained 

on MD trajectories can learn the “latent space” accessible to the protein, and predict new 

trajectories or conformations not observed in the original MD runs [40,41], allowing for 

rapid and more complete sampling of conformational space.

Methods of unsupervised learning applied to MD data further assist in transition kinetics 

modeling [42]. The last decade has seen a broad use of Markov state models (MSMs) 

for analyzing MD trajectories [43]. While the underlying stochastic theory and Master 

equation formalism go back to early 1900s, its use for characterizing ensembles of protein 

conformations to define states (or substates) and their transition kinetics took center 

stage in the last two decades. We demonstrated the utility of this formalism for mapping 

conformational space and kinetics in the early 2000s using toy models for proteins [44,45]. 

MSMs are now broadly used for extracting functional information from multiple or long 

MD runs. While their use originally required significant human input, DL algorithms can 

now automatically determine the significant features for defining representative states, e.g., 

VAMPNets [46] provides a fully automated framework to evaluate collective variables 

and MSM transition matrices [47,48]. Recently, Zhu and coworkers used GNNs to predict 

allosteric communication pathways from MD simulations [49].

Confluence of structural dynamics and DL methods in drug discovery

Binding affinity at constant temperature and pressure, quantified as the Gibbs free energy 

change ΔG associated with binding, depends on the accompanying changes in enthalpy (H) 

and entropy (S) as ΔG = DH - TΔS. An important source of ΔS is the conformational 

entropy change upon binding. ΔS scales with ln [det(σb)/det(σu)] [50] where det(σb) is 

the determinant of the positional covariance matrix of the protein in ligand-bound form, 

and det(σu) is that in the unbound form. Thus, the equilibrium dynamics of the protein, 

manifested by covariance in the fluctuations of residues/atoms, is an inseparable part of 
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any binding event. In fact, entropic effects are so salient that many proteins evolved to 

co-localize their ligand-binding sites with global hinge centers [14], associated rotation axes 

[51] or domain interfaces [52] where entropy loss upon ligand binding is minimal.

ML-aided drug screening approaches have shown success in recent years. For example, a 

generative tensorial reinforcement learning model [53] outperformed adversarial models and 

identified novel potent inhibitors of DDR1 kinase, which were experimentally validated. 

In a later version, generating 3D structures of drug-like compounds were conditioned on 

a receptor binding site and validated on receptors with mutations [54]. However, these 

and most of ML approaches for drug screening do not adequately consider the protein 

intrinsic dynamics (while the translational and rotational motions of the small molecule 

are thoroughly sampled). One of the exceptions is AtomNet [55], a structure-based deep-

convolutional NN, trained on multiple poses of active compounds bound to a single target 

site as well as experimentally verified inactive compounds, which proved to outperform 

established scoring functions. In another study, inclusion of MD descriptors was shown to 

improve the discrimination of good caspase-8 inhibitors from poor ones [56].

In contrast, recent ML algorithms for predicting drug-resistant mutations do utilize structural 

dynamics data from MD [57,58] to generate dynamics-based features that are trained, 

often by RF and feedforward multilayer perceptron, using labels of ~1000 drug-sensitive 

or -resistant mutants extracted from the Platinum database [59]. Similarly, SUSPECT-RIF 

uses a residue-specific version of ENM (ENCoM) [60] to take account of dynamics in 

predicting drug resistance [61]. ENMs provide an efficient platform to uniformly generate 

data on equilibrium dynamics by virtue of their applicability at omics scale without bias 

[62], as validated by comparisons with NMR-sampled equilibrium dynamics [63] and X-ray 

crystallographically solved ensembles of structures for the same protein in different states 

[13].

ML-based methods are not necessarily more accurate than MM/GBSA evaluation of binding 

free energy [64]. The value of ML-based methods in drug screening lies in their efficiency. 

ML methods may also be subject to challenges including applicability to new cases as well 

as uncertainties in experimental data (e.g., affinity data reported for the same protein-ligand 

complex may differ by orders of magnitude). Yet, ML-based docking [65] or re-ranking 

scheme [55] could be efficiently adopted together with a conformational sampling scheme 

for a first screening (also called ensemble docking) before performing (for selected cases) 

MD-based free energy evaluations. The latter could be even used for screening purposes 

[66], empowered by the accelerations enabled by GPUs. Finally, data-driven ML efforts 

could be advantageously redirected to areas where first principles of physical sciences 

fall short, such as predictions of cell toxicity and PK/PD in animals, which are important 

elements of drug development.

Ensemble analyses based on equilibrium dynamics are yet to be routinely used in ML-
based stability predictions

Despite advances in computational methods, in silico predictions for changes in Gibbs free 

energy (ΔΔG) of folding associated with SAVs still suffer from limitations and challenges 

[67]. As mentioned above, the entropic contribution to ΔΔG, which directly relates to the 
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distribution of residue fluctuations, or the curvature of the energy minimum near equilibrium 

is often overlooked. Among ML studies for predicting the effect of mutations on stability, 

DynaMut [68] is distinguished, as it utilizes the changes in vibrational entropy predicted by 

ENCoM [60].

For illustrative purposes, we examined how well a simple gradient boosting regressor 

exclusively trained on equilibrium dynamics data predicts the changes in stability (ΔΔG 

values) associated with point mutations (Fig. 3a). The regressor uses ESSA scores as a 

measure of the impact of mutation on the global modes’ frequency dispersion or on the 

energy minimum curvature in the subspace of essential motions [69], in addition to residue 

MSFs, and perturbation response scanning [70] and mechanical stiffness data trained on 

2,298 mutations in the S2648 database [71]. The predictions tested on 350 mutations yield 

a PCC of 0.61 with experimental data together with an RMSE of 1.24 kcal/mol. Around 

77% of tested cases are correctly identified to be destabilizing (ΔΔG <0). The fact that 

this much can be achieved by equilibrium dynamics-based attributes exclusively points to 

the unexploited potential of equilibrium dynamics in improving the predictions of ΔΔG (or 

ΔΔS).

We further posit ML models may be improved upon considering properties based on 

ensemble of conformers accessible under equilibrium conditions, as opposed to a single 

structure. For example, in Fig. 3b, show that the SASA of hen egg-white lysozyme Asn46 

varies from 0.04 to 0.86 across two intrinsically accessible states (the full range is 0 ≤ 

SASA ≤1, from completely buried and completely exposed). A regressor trained on a fixed 

SASA score in this case would thus be misleading. Fig. 3c displays the distribution of the 

difference in SASAs for all residues in all proteins in the S2648 database, obtained by 

generating 40 conformers for each case using ClustENMD. Similarly, Fig. 3 panels d and e 
show that the hydrophobic packing density and the number of hydrogen bonds near mutating 

residues may vary considerably across intrinsically accessible states. The availability of 

hybrid simulation methods [72] enables a high-throughput generation of such ensembles of 

conformers. Using such ensembles, the variance of different physicochemical attributes, not 

only their means, may be used in ML algorithms to help design better ΔΔG predictors.

The prediction of the change in stability due to insertions/deletions (InDels) of amino acids 

in proteins is another important but neglected area. The ML tool PROFOUND [73] was 

recently introduced to predict the change in stability associated with multiple (contiguous) 

amino acids deletions. As the dependence on residue specificity is lower for deletions 

than substitutions, we explored the change in stability predicted by PROFOUND using 

ENM-based attributes. We found that the dynamics-based attributes could adequately predict 

the change in stability (recall = 78.0% on 10-fold cross-validation on positive-unlabeled-

learning). Upon combining dynamics-based features with the PROFOUND features, we 

could achieve a recall of 84.3%. Fig. 3f shows that equilibrium dynamics/ensemble-based 

attributes contribute 72.3% to classification. This further highlights the importance of 

considering equilibrium dynamics for in silico prediction of change in stability.
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Conclusion

ML methods have been taking advantage of the rapid growth in structural data in the PDB, 

and soon they may take advantage of the accumulation of ensembles of structures for a 

given protein. With the increased generation of alternative conformers for a given protein, 

using either full atomic simulations such as MD, coarse-grained approaches such as those 

based on elastic network models, or hybrid models, it is conceivable that NNs will be trained 

for each protein or homologous proteins on their ensemble of conformers. Such models 

would predict the changes in distances, potentially at multiple scales, not only between 

amino acid pairs, but also entire domains or subunits, and enable a more comprehensive 

mapping of the space of conformational dynamics, thus providing new tools for bridging 

structure and function. Integration of ML techniques with data on structural dynamics are 

likely to uncover disease mechanisms that are otherwise intractable by experiments alone, as 

demonstrated in a recent study [74].

Notably, ENM-predicted structural dynamics depend on inter-residue contact topology. The 

latter has been pointed out to be a major a descriptor that discriminates pathogenic human 

variants [22]. The significance of contact topology is also borne out by the predictive 

performance of Rhapsody that incorporates ENM-derived descriptors (Fig. 2b). ENMs 

further reveal the pre-existing paths of collective reconfiguration of proteins.

It is important to note, however, that ENMs such as the ANM and the GNM are agnostic 

to the chemical nature of amino acids and cannot predict the effect of specific substitutions/

mutations in amino acids. Despite its lack of amino acid specificity, the GNM proved useful 

when used within pathogenicity predictors such as Rhapsody. One way to explain this 

dichotomy is that ENMs identify critical sites or specific positions in the 3D structure, which 

could play an important mechanical role, or a critical site for allosteric communication, and 

thus would not tolerate mutations irrespective of the specific substitution. We previously 

demonstrated for example that the location of enzyme active sites can be inferred from 

GNM-predicted mechanical hinges even in the absence of the coordinates of amino acid side 

chains [14,62]; and such hinge sites tend to be evolutionarily conserved [62]. Mutations at 

those sites, either enhancing or reducing local flexibility, may impair the enzyme activity 

[75]. Dynamics-based features thus provide information on the adaptability of specific 

positions to substitutions purely based on 3D topology (a collective structural property). 

Sequence conservation, substitution, or co-evolution properties further shed light on the 

likelihood of (or tolerance to) specific substitutions at those positions along the sequence (or 

on the 3D structure). In other words, structural dynamics provides an overall estimate for the 

specific position (as can be seen by the vertical red or blue slabs that show little dependence 

on specific amino acid type in Fig. 2C), and sequence information further discriminates 

between different types of substitutions.

It is conceivable that if a structure is available for the mutant, and if this structure is 

sufficiently different from the native fold, ENMs could be applied to both structures to 

deduce the effect of mutation. However, some amino acid substitutions may have minimal 

effect on the protein backbone while altering the protein specificity or functionality. 

For example, at a solvent-exposed substrate-recognition site, the change in amino acid 
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may not affect the overall fold/topology but may impair the substrate recognition and 

cause a loss of function. While sequence-specific ENMs (such as ENCoM) may help 

in discriminating between amino acid types, an assessment of gain or loss of function 

may further require knowledge of substrate-binding sites, or protein-substrate interaction 

interfaces. Existing databases permit us to learn about protein—protein interaction interfaces 

using ML methods. Thus, inclusion of such knowledge of interaction interfaces between 

pairs of proteins, learned by ML methods, may be a future direction for further improving 

our evaluation of missense variants.

In summary, ENMs may indirectly contain the effects of sequences and structure following 

the sequence-encodes-structure-encodes-dynamics paradigm, and this may partially explain 

their success in predicting the pathogenicity of SAVs or the effect of indels on stability. 

However, a direct consideration of sequence properties, including both conservation and 

co-evolution behavior, which is best achieved by ML methods, is essential to the success 

of existing predictors. Comprehensive mapping of the conformational dynamics space, 

potentially at multiple scales, will help build increasingly powerful ML tools for bridging 

structure and function.
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Figure 1. Utility of combining microscopic time-dependent features predicted by structure-based 
models, methods, and simulations with ML frameworks for making functional inferences.
The confluence of the structural dynamics (molecular) data (left part of the circle) with ML 

methods (right part of the circle) enables us to evaluate macroscopic properties (observables) 

from molecular properties.
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Figure 2. ML-based pathogenicity predictor Rhapsody takes account of structural dynamics, 
yields highly accurate predictions, and can be used to generate in silico saturation mutagenesis 
heatmaps.
(a) Descriptors used in Rhapsody: sequence (conservation (entropy), position specific 

independent counts (PSIC) and change in PSIC (ΔPSIC), amino acid substitution 

(Blosum62), mutual information (MI)), structure (SASA) and structural dynamics (mean-

square fluctuations (MSF) of mutated residue, propensity to serve as effector or sensor 

of allosteric signals (see previous work [26]), and mechanical stiffness). The bars display 

the percent contribution of these descriptors to the trained classifier. A set of five bars is 

displayed for each descriptor, corresponding to subsets of proteins of different sizes, with 

numbers of residues lying in the ranges [150–249] (orange), [250–361] (gray), [362–520] 

(yellow), and [521 –3636] (light blue). The first bar (dark blue) in each group refers to 

the entire set. The corresponding percent contributions of different features are listed in 

the light blue box. (b) Prediction performance based on different metrics. (c) In silico 

saturation mutagenesis heatmap. These are pathogenicity probabilities (see the scale bar on 

the right) evaluated for all 19 substitutions (ordinate) at each residue position (abscissa), 

shown here for a 100-residue segment of p53. Structural and dynamic features are based on 

the tetrameric structure (PDB id: 3KMD) [27]. The curves underneath are the averages over 

all 19 substitutions for each residue, predicted by Rhapsody (red dots), PolyPhen-2 (dark 
blue) [28] and EVMutation (green) [19]. The Pearson correlation coefficient (PCC) between 

each pair of results is around 0.74; whereas that between PolyPhen-2 and EVMutation is 

0.58. (d) Color-coded pathogenicity results for p53 monomer. Mutations at sites colored red 

are highly susceptible to be pathogenic. A few such residues are labeled. These are reported 

in ClinVar to be pathogenic (green spheres), likely pathogenic (olive spheres), or unknown 

(green sticks).
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Figure 3. Significance of equilibrium dynamics and variation of physicochemical attributes 
across ensembles of conformers in developing ML-predictors of stability.
(a) A gradient boosting regressor (scikit-learn package with n_estimators = 1500, subsample 

= 0.7, max_depth = 5, max_features = 7) trained on dynamics-based attributes (ESSA 

score (for wt and substituted residues and their difference); MSFs in the softest 2% of 

modes, MSFs in the stiffest 5% modes, allosteric signaling sensitivity and effectiveness; 

mechanical stiffness) The regressor yielded a PCC of 0.61 and a RMSE of 1.24 kcal/mol on 

a widely benchmarked test set consisting of 350 SAVs. (b) Hen egg-white lysozyme N46 

corresponding to two intrinsically accessible conformations show a widely varying SASA, 

from 0.04 to 0.86. (c) The distribution of the maximum difference in solvent accessibility, 

(d) distribution of hydrophobic packing density (the ratio of hydrophobic residues within 
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5 Å sphere radius of the mutated residue to the total number of residues within the 

same radius), (e) distribution of the changes in the number of hydrogen bonds near the 

investigated residue, (f) Contribution of indicated (abscissa labels) dynamics-based attributes 

and the 39 additional attributes from PROFOUND) to foldability prediction.
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