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Together, data from brain scanners and smartphones have sufficient coverage of biology, 

psychology, and environment to articulate between-person differences in the interplay within and 

across biological, psychological, and environmental systems thought to underlie psychopathology. 

An important next step is to develop frameworks that combine these two modalities in ways 

that leverage their coverage across layers of human experience to have maximum impact on our 

understanding and treatment of psychopathology. We review literature published in the last three 

years highlighting how scanners and smartphones have been combined to date, outline and discuss 

the strengths and weaknesses of existing approaches, and sketch a network science framework 

heretofore underrepresented in work combining scanners and smartphones that can push forward 

our understanding of health and disease.
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“Bit by bit, putting it together

Piece by piece, only way to make a work of art

Every moment makes a contribution

Every little detail plays a part…

Putting it together

That’s what counts!”

- Stephen Sondheim, Putting it Together

Humans are complex systems, with feelings, thoughts, and actions that are interconnected 

and that change over time (1–3). Changes that occur in these complex systems are 

the product of dynamic processes that span multiple levels of analysis: biological, 

psychological, and environmental. An essential goal of biological psychiatry is to 

understand how between-person differences in the interplay within and across these levels 

leads some people to experience chronic difficulties in adaptively changing their behavior 

to meet life’s changing demands. Two influential methodological approaches have been 

used to meet this goal. One approach uses brain scanners to primarily capture aspects of 

the biological and psychological layers of human systems, identifying neural correlates 

of deviations in cognition, affect, and behavior accompanying clinical disorders. Creative 

designs incorporate aspects of the environmental layer of human systems into this work 

with scanners, simulating social exclusion by using ball tossing games in which participants 

are excluded from play (4), exposing participants to aversive odors while in the scanning 

environment (5), and using complex media (film, television, podcasts) as stimuli (6), for 

example. However, situating these data within the sociocultural milieu of human experience 

to understand how the interplay between biological, psychological, and environmental 

layers of human experience produces clinical symptoms remains a challenge. A second 

approach, smartphone-based techniques, captures individuals’ current symptoms, as well 

as the psychosocial correlates of those experiences, in naturalistic environments (7). Work 

in this modality has characterized the interplay between psychological and environmental 
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systems but, unlike work with scanners, does not tie these relations back to the biological 

level of analysis.

Together, scanners and smartphones have sufficient coverage of biology, psychology, and 

environment to articulate between-person differences in the interplay within and across 

biological, psychological, and environmental systems thought to underlie psychopathology. 

An important next step is to develop frameworks that combine these two modalities in 

ways that leverage their coverage across important layers of human experience to have 

maximum impact on our understanding and treatment of psychopathology. What might 

this combination of scanners and smartphones look like? By undertaking a systematic 

review of literature using data combining brain scanners (inclusive of brain imaging 

modalities and related methods to record neural processes) and smartphones (inclusive 

of experience-sampling and related ambulatory assessments delivered via smartphone or 

other portable digital technologies) published in the last three years, we identified existing 

approaches to combining smartphones and scanners in psychiatry research (see supplement 

for details of the systematic review). With these findings from the extant literature in 

hand, we 1) outline and discuss the strengths and weaknesses of existing approaches and 

2) sketch a network science framework heretofore underrepresented in work combining 

scanners and smartphones that can capture the richness of the multiple interacting units 

across the biological, psychological, and environmental systems highlighted in theories of 

psychopathology.

Existing approaches to combining scanners and smartphones

Six approaches to combining scanners and smartphones were identified in the extant 

literature.

Bivariate associations.

By far the most common way of combining scanners and smartphones was by estimating 

bivariate associations between indices from scanners and smartphones either via correlation 

or regression approaches (Fig. 1A). This approach to combination was concerned with the 

extent to which in-scanner data could predict “real-world” behavior (see (8) for example). 

The inclusion of smartphone data, often collected as participants went about their daily lives, 

allowed an assessment of the extent to which scanner data, high in experimental control 

but low in ecological validity, predicted ecologically valid experiences. When links were 

observed between scanner and smartphone data, this was sometimes interpreted as evidence 

for identifying mechanistic insight into real-world behavior. For example, an observed 

association between the blood oxygen level response (BOLD) response in reward-related 

regions during reward anticipation and daily reports of motivation and pleasure was taken as 

evidence that differences observed in the scanner had explanatory power for the differences 

observed in daily life behavior (9). While such bivariate associations are suggestive, 

combining scanner and smartphone data in this way remains correlative and should be 

interpreted cautiously when attempting to make mechanistic rather than solely predictive 

claims. A less common approach predicted scanner data from smartphone data (10,11). 

These efforts highlighted the greater feasibility of intensively sampling smartphone data 
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as compared to obtaining longitudinal scanner data and the implications of this feasibility 

for tracking the course of clinical outcomes. For example, keyboard dynamics emerged 

as reliable measures that distinguished multiple sclerosis patients from controls, with the 

potential to be valid surrogate markers for clinical disability in multiple sclerosis than less 

feasible but common neuroimaging assessments (10).

The smartphone data in work estimating bivariate associations between scanners and 

smartphones generally consisted of static indices: proportion of positive experiences 

with classmates (12), average subjective stress (13), and average momentary subclinical 

psychosis (14). Thus, their inclusion, as compared to less burdensome retrospective survey 

reports, increased ecological validity and reduced retrospective biases often introduced in 

questionnaires that ask participants to recall and aggregate information about longer periods 

of time (e.g., previous 30 days (15)). However, only a few studies made use of one of 

the features unique to smartphone data over traditional survey measures: the ability to 

capture dynamics. Through repeated assessment of participants as they go about their daily 

lives, smartphone data collection results in rich time series data that can capture moment-to-

moment or day-to-day fluctuations in clinical symptoms (16) social experiences (17) and 

changes in the environment (18,19). Biological psychiatry has a keen understanding that 

it is not simply the presence or absence of symptoms that characterizes clinical disorders. 

Instead, the temporal characteristics of symptoms across time are key considerations. For 

example, affective lability (i.e., intense, frequent, and reactive shifts in affect) is commonly 

observed in borderline personality disorder (20) while a diagnostic marker of depression is 

sustained depressed mood nearly every day (21). Capturing this lability or lack of change 

requires the ability to intensively sample affect over time, a task for which smartphone-based 

approaches are exquisitely suited.

The use of dynamic indices from smartphone data, particularly of affective experiences, 

is beginning to emerge in studies combining scanners and smartphones with bivariate 

correlations or regression (22–24). Even less common in the reviewed papers than temporal 

smartphone features were temporal scanner features (see for exception (24)). Although it is 

common to aggregate BOLD data across the entire duration of a scanning session, the brain 

exhibits dynamics over many timescales, from the sub-second to the lifespan (25,26). Just 

as biological psychiatry recognizes the importance of dynamics in behavior and symptoms 

as important for the understanding of psychopathology, the time-varying organization of 

functional brain systems in depression and schizophrenia deviates from healthy controls, 

for example (27,28). Attention can be directed to brain dynamics by, for example, taking a 

sliding window approach, subdividing data from a neuroimaging scan into smaller windows 

of time and computing functional connectivity indices within each window (29). Alternative, 

model-based approaches are also possible, computing the dynamics that a brain is capable of 

given its network structure and assumptions of how activity travels along that structure (30).

Studying brain dynamics has advantages, capturing temporal information about functional 

connectivity that predicts psychiatric states and conditions, often above and beyond status 

functional connectivity (31,32). However, in parallel to these affordances to studying 

brain dynamics are several limitations. For instance, the field lacks consistent analytical 

approaches, resulting in inconsistent treatment of time and consideration of temporal 
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ordering in analytical pipelines. Further, there is little consensus surrounding appropriate 

null models for evaluating aspects of time-varying functional connectivity. It also remains 

an open question what nonneural factors drive changes in resting time-varying functional 

connectivity (see (33) for a review on questions and controversies in the study of time-

varying functional connectivity).

Bivariate change.

The second way of combining scanner and smartphone data overcomes some of the 

limitations of cross-sectional, bivariate combinations by collecting scanner and smartphone 

data at multiple assessment periods and calculating bivariate change (Fig. 1B). For example, 

change in keystroke dynamics were associated with changes in disease activity as assessed 

by scanners (34,35). The temporal precedence afforded by multiple timepoints of data 

provides stronger evidence that the bivariate association between brain and smartphone 

index represents a causal association. Perhaps surprisingly, given the key role for dynamics 

in psychiatric disorders, collection of even two timepoints of smartphone and scanner 

data was not common in the reviewed papers. By combining longitudinal scanners and 

smartphone data, researchers could determine how fluctuations in behavior in real-world 

contexts both influence and are influenced by changes in brain function. In the ideal case, 

these data would take the form of intensive sampling of both brain and behavior, facilitating 

an examination of how naturalistic day-to-day fluctuations in experience (e.g., fluctuations 

in positive mood) are associated with fluctuations in aspects of functional brain architecture 

(e.g., brain network flexibility (36)). Such intensive sampling (encompassing multiple 

laboratory visits) could prove prohibitive, especially when aiming to reduce burdens placed 

on individuals experiencing psychopathology. However, creative approaches can be used. 

One such example that emerged in the review captured cognitive performance and neural 

correlates associated with naturalistic fluctuations in daily stress (37). To reduce the number 

of laboratory visits necessary to capture within-person differences in stress, participants 

provided stress ratings three times per day for two weeks, allowing investigators to identify a 

high-stress and a low-stress day, during which participants were brought to the laboratory to 

undergo scanning.

Predictors of clinical outcomes.

A third approach combined data from scanners and smartphones by treating them as features 

that could independently predict clinically-relevant outcomes (Fig. 1C). For example, the 

average feeling of peer connectedness across a 10-day daily diary and the BOLD response 

to positive peer feedback during an in-scanner social incentive delay task were used as 

predictors of suicidal idea in a regression analysis (38). These efforts build on brain-as-

predictor applications that show that neuroimaging indices are often predictive of health-

relevant behaviors above and beyond self-reports, explaining previously unaccounted for 

variance in behavioral outcomes (39,40). In the examples of this approach in the reviewed 

manuscripts, smartphone data consisted of aggregated data across the data collection period. 

Thus, although these smartphone data are high on ecological validity, their predictive 

capacity could be improved by creating dynamic features from the intensive longitudinal 

data (41).
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Brain as mediator.

A fourth approach treated data from scanners or smartphones as mediators, or explanatory 

variables in a causal chain (Fig. 1D). Two examples emerged. The first tested the extent 

to which gender’s association with a greater proportion of positive experiences with 

peers as assessed via smartphones was mediated by greater nucleus accumbens-precuneus 

functional connectivity (12). The second tested the extent to which negative affect inertia 

mediated the association between default mode system efficiency and depression (42). 

Although both cross-sectional mediation analyses lack the longitudinal data required to test 

the causal process unfolding over time that mediation analyses implicitly endorse (43), 

combining scanners and smartphones in this way revealed theoretical positions whereby 

between-person differences in brain organization are thought to be causally implicated in 

between-person differences in real-world behaviors associated with psychopathology.

Brain as moderator of temporal process.

A fifth approach made use of the temporal richness of experience-sampling data to examine 

dynamic processes and tested the extent to which the brain might moderate these processes 

(Fig. 1E). For example, one study assessed repetitive negative thinking and sadness 10 

times per day over 4 consecutive days (44). These dense repeated measures, coupled with 

appropriate analytic techniques (see (45) for review), facilitated a focus on between-person 

differences in how moments of increased sadness at one moment led to increases in 

repetitive negative thinking at the next moment. Including functional connectivity indices 

associated with cognitive flexibility as moderators of this sadness to repetitive negative 

thinking link allowed tests for the role of large-scale functional brain network activity as a 

moderator of real-world, dynamic cognitive-affective processes.

Intervention tools.

A final approach treated scanners and smartphones as intervention tools (Fig. 1F). For 

example, one study delivered a daily compassion meditation intervention to participants 

via smartphone over a four-week period (46). By bookending this smartphone intervention 

with functional brain scans, this design facilitated testing of the extent to which changes 

induced by the smartphone intervention became codified in the brain. In an example where 

the scanner was used as the intervention tool, one study examined the ability for in-scanner 

neurofeedback to change the extent of affective instability, as assessed by smartphone before 

and after neurofeedback training in patients with borderline personality disorder (47).

Advantages and opportunities for advancement.

By reviewing existing approaches to combining scanners and smartphones, we find that 

the field of biological psychiatry is making use of several advantages that stem from the 

unique combination of scanners and smartphones to provide insight into clinical outcomes. 

These advantages include increasing the ecological validity of behaviors being predicted by 

neuroimaging assessments, leveraging the different facets of human functioning captured by 

scanners and smartphones to improve prediction of clinical outcomes, and providing insight 

into dynamic processes and their neural correlates. There remain exciting opportunities for 

combining scanners and smartphones, especially by focusing on the unique opportunities 
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afforded by intensive repeated measures available through both scanners and smartphones in 

the field of psychiatry. One particularly difficult challenge revealed by the current review is 

the implicit assumption that fluctuations in behavior are more substantial than fluctuations 

in brain function and organization. This assumption can be seen in the intensive sampling 

of behavior from moment-to-moment and day-to-day in most smartphone studies reviewed 

as compared to the often static, within-scanner assessments. Presumably, fluctuations in 

behavior observed in smartphone assessments derive, at least partially, from fluctuations in 

brain function, necessitating methodologies capable of more directly matching fluctuations 

in brain to fluctuations in behavior than is currently represented in the literature combining 

scanners and smartphones. A key methodological development to overcome this conceptual 

limitation is leveraging emerging brain modalities that can now more easily be deployed 

outside the lab (e.g., portable eye-tracking, fNIRS, and mobile EEG (48–50)) and assess 

fluctuations in brain function concurrent with fluctuations in behavior.

One specific way forward we highlight in the rest of the manuscript is a dynamic 

network approach that more directly connects the combination of these data modalities 

with theoretical perspectives that highlight that humans are complex systems made of many 

interacting components within and across biological, psychological, and environmental 

systems.

Ways forward: Networks and bringing together facets of human experience

Network science has emerged as a framework with the potential to characterize the complex 

interactions occurring across biological, psychological, and environmental systems (51). 

Advances in neuroimaging (52,53) and the development of appropriate tools to describe 

and model the parts and pathways for communication of the brain (54) have resulted in 

the booming field of network neuroscience, a field mapping, recording, analyzing, and 

modeling the elements and interactions of neural systems (51). As the name suggests, 

network neuroscience relies on formal representations of the brain as a network to capture 

the parts (nodes) and interrelationships of these parts (edges). From neuroimaging data, 

one can construct a graph, a simple mathematical representation of a network composed of 

nodes representing system elements and edges representing element relations or interactions. 

Nodes are typically parcels of gray matter voxels, ranging from single voxels to larger 

clusters of voxels. Associations among nodes (edges) are established in several ways, taking 

the form of either structural or functional connectivity. Structural connectivity describes 

anatomical, or physical connections between nodes or neural elements (55). With magnetic 

resonance imaging data, anatomical connections usually refer to white-matter fiber tracts 

that physically link brain regions and are derived from applying tractography algorithms 

to diffusion images. Functional connectivity, by contrast, represents communication or 

coordination between nodes and edges are defined based on statistical similarities in the 

time series of nodes (56).

Seven studies in our review applied network neuroscience approaches to scanner data 

(14,24,42,44,57–59). The benefits of network science are not specific to data from scanners. 

Although no studies in our review used networks to analyze smartphone data, the network 

perspective so relevant for the brain can be extended to behavior, emotion, cognitive, and 
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environmental systems more broadly. There is a burgeoning literature, for example, that 

takes a network perspective of mental disorders (60). This network perspective conceives 

of mental disorders as a complex system of mutually reinforcing and interacting symptoms 

(61,62). In these networks, symptoms make up nodes of the networks. Unlike structural 

brain networks, there are no physical edges connecting emotions, thoughts, or actions. 

Instead, the collection of multiple reports of the intensity of certain emotions, thoughts, 

and actions via smartphones facilitates the estimation of edges in a way analogous to the 

construction of edges in functional networks of the brain: inferring coordination or causal 

associations among symptoms across time by estimating correlations, partial correlations, 

or regression coefficients characterizing both time-lagged and contemporaneous associations 

among nodes (63).

Extending this network perspective to smartphone data in studies combining scanners 

and smartphones will align the analytic treatment of smartphone data with theoretical 

notions of humans as complex systems. It will also expand the feature space used in 

existing work using smartphone data to predict clinical outcomes (e.g., Fig. 1C). But 

perhaps the most exciting potentiality of constructing both brain and behavior networks 

in work using scanners and smartphones is the avenues that would open for new ways 

of combining scanner and smartphone data. Networks need not be limited to one level or 

layer of the complex biological, psychological, and environmental components implicated in 

psychopathology. Instead, multilayer network approaches allow the combination of scanner 

and smartphone networks (64–70). In multilayer networks, each layer constitutes a different 

network. For example, a network constructed from a different participant, patient group, 

experimental condition, time point, or data modality. A node can exist in all layers or in a 

subset of layers and may be linked throughout layers by an edge representing the node’s 

identity. Multiple types of edges can link nodes within and between layers to represent 

different types of associations between network elements. Multilayer network approaches 

have successfully been applied to a diverse range of fields, including neuroscience, ecology, 

public health, biology, and political science among others (64,71–74).

Recent multilayer applications provide insight into why they may be useful for connecting 

scanner and smartphone networks. A recent study built a network of networks in which the 

cognitive nodes were scores from multiple cognitive tasks, including matrix reasoning and 

digit recall, and neural nodes were region-based cortical volume of several brain regions 

and fractional anisotropy (proxy for white matter integrity) of several brain regions (75). 

Partial correlation networks were estimated such that the edges represented conditional 

dependencies among the cognitive and neural variables. The resulting network was a 

complex, multi-layer structure of interdependent facets of brain and behavior. There are 

several benefits to this multilayer approach. First, the ability to combine different layers of 

human systems within the same overall multilayer network allows the application of network 

statistics to be applied to one object. This directly addresses the inherent dependency 

between biological, psychological, and environmental layers of human systems. Second, 

multilayer frameworks open the ability to probe and predict how perturbations at one node 

in one network layer (e.g., brain) might impact another node in another network layer (e.g., 

behavior), helping to guide where it may be best to intervene. Placing brain and behavior in 

the same analytic paradigm also avoids a hierarchical prioritization of brain or behavior, as 
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observed in mediational approaches which posited a more central role for neuroimaging 

facets as causes for clinical outcomes than behavior (e.g., Fig. 1D), which reflects a 

reductionist thinking that does not reflect the interdependent nature of biology, psychology, 

and environment (76). And, perhaps most importantly, it provides a framework to test for 

between-person differences in the interplay within and across biological, psychological, and 

social levels of analysis which may provide fruitful for understanding clinical disorders.

Although a variety of neuroimaging modalities were used in the studies we reviewed (i.e., 

functional connectivity, structural, resting state, and lesion), in principle graph theoretical 

network analysis can be used for any imaging modality. In the typical application of 

network analysis, brain regions are represented as nodes and the connections between brain 

regions are represented as edges. The nature of the edges differs across imaging modalities. 

For example, in functional networks, edges typically represent statistical similarities in 

the BOLD times series of nodes while, in structural networks, edges are often estimated 

by reconstructing the trajectory of axonal tracts using indices of the diffusion of water 

molecules within fibers (77,78). Despite each of these approaches resulting in a network, 

each modality captures a different spatial and temporal scale of the multilevel brain (25, 

51) such that the choice of modality will be driven by the researcher’s specific question. 

Where needed for the question at hand, a multilayer perspective allows multiple network 

layers from different modalities, capturing aspects of brain network organization at various 

temporal and spatial levels, to be considered in-tandem, each modality making up a layer 

(e.g., 79,80).

Thus, the groundwork has been laid to combine multimodal data from scanners and 

smartphones into a multilayer human system network (see Figure 3) that is capable of 

integrating the many facets of human experience (25,81–83). Of course, incorporating 

multilayer networks into biological psychiatry work incorporating scanners and smartphones 

will not be without difficulty. An important challenge researchers are currently tackling 

(see (84) for example) is precisely how to best connect distinct layers with one another to 

form a multilayer structure, especially in a way that maintains the within-person temporal 

associations among facets of experience that can be estimated from smartphone time series 

data in a way that cannot be achieved using traditional, retrospective survey measures.

Despite the strengths of multilayer network approaches, namely the flexibility to integrate 

different types of high dimensional data, there are some cautions that warrant further 

discussion. On the side of feasibility, there is inherent difficulty in collecting the types 

of high dimensional data ripe for multiplex network analysis (e.g., electronic health records, 

connected wearable gadgets, brain scanners, and smartphones). As the number of available 

measures increases, the choices to examine similarities across the layers also increases, and 

these indices may largely be based on what researchers are interested in, which can have 

a large influence on the results. For example, estimating the correlations in a multilayer 

network requires estimating all the edges across layers and not just the correlations among 

emotions in the emotion layer (Figure 2). In this way, communities in multilayer networks 

can occur within and between layers (70), nodes can have relations (edges) within and 

across layers, and nodes can communicate with one another even if they do not have 

direct edges between them across layers (85). Some research questions may necessitate 

McGowan et al. Page 9

Biol Psychiatry. Author manuscript; available in PMC 2024 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



collapsing multiple layers into a single layer describing the clustering of patient health states 

(e.g., cardiovascular disease, affective disorders, cerebrovascular disease (86)) whereas other 

questions may seek to incorporate multiple layers to uncover the combined impacts of 

genetics and lifestyle factors on disease to build comorbidity clinical profiles (87). These 

example applications of multilayer networks highlight the critical consideration that the 

relevant layers need to be measured with enough samples to achieve statistical power, 

which may require extra effort especially when collecting multimodal data. Consequently, 

researchers may seek to maximize efficiency by performing many analyses on the data, 

making multiple correction and preregistration especially relevant when using multilayer 

networks. Confronting such challenges is inherent to multidimensional systems modeling.

Conclusion

Our review of recently published literature combining scanners and smartphones indicates 

that the field of biological psychiatry is making use of several advantages that stem from the 

unique combination of scanners and smartphones to provide insight into clinical outcomes. 

There remains room to grow in the ways scanners and smartphones are combined that will 

more directly connect the combination of these data modalities with theoretical perspectives 

that highlight that humans are complex systems made of many interacting components 

within and across biological, psychological, and environmental systems. In particular, 

network perspectives, especially with reference to smartphone data, were not represented 

in the reviewed work, highlighting a key gap to be filled. We look forward to continued 

work with scanners and smartphones and the potential this work holds for characterizing 

how between-person differences in the interplay within and across biological, psychological, 

and environmental levels leads some people to experience chronic difficulties in adaptively 

changing their behavior to meet life’s changing demands.
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Figure 1. 
Existing approaches to combining scanners and smartphones emerging from systematic 

review of the literature combining scanners and smartphones.
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Figure 2. 
Example of a multilayer human system network, encoding information about psychology 

(symptom network), biology (brain network), and environment (social network), and the 

interlayer links between them. Figure adapted from (88). A multilayer network framework 

that incorporates possible mechanisms beyond symptoms may offer additional explanatory 

insight in biological psychiatry. For example, densely connected symptom networks is 

associated with greater vulnerability to develop psychopathology (89,90) than less-dense 

networks. Similarly, many psychiatric disorders share brain network alterations in functional 

connectivity (e.g., altered functional connectivity in the default mode network has been 

observed in Alzheimer disease, autism, schizophrenia, depression, and epilepsy (91,92). 

Considering the social network layer, living alone and away from family have been observed 

in alcohol dependence (93) and low and high depressive symptoms have been strongly 

correlated with such scores in friends and neighbors (94). A multilayer network approach 
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that integrates psychological, biological, and environmental can offer insight into shared and 

distinct features in each layer across psychiatric disorders. In this way, a multilayer network 

framework can identify common targets for intervention, be it in symptom, brain, or social 

networks as well as offer insight into explanations for psychiatric comorbidity.
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