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Abstract

A central goal of computational psychiatry is to identify systematic relations between 

transdiagnostic dimensions of psychiatric symptomatology and the latent learning and decision-

making computations that inform individuals' thoughts, feelings, and choices. The vast majority of 

psychiatric disorders emerge prior to adulthood, yet little work has extended these computational 

approaches to study the development of psychopathology. Here, we lay out a roadmap for 

future studies implementing this approach by developing empirically and theoretically informed 

hypotheses about how developmental changes in model-based control of action and Pavlovian 

learning processes may modulate vulnerability to anxiety and addiction. We highlight how insights 

from studies leveraging computational approaches to characterize the normative developmental 

trajectories of clinically relevant learning and decision-making processes may suggest promising 

avenues for future developmental computational psychiatry research.

Introduction

During adolescence, individuals undergo pronounced social, sexual, and intellectual 

changes, with the adolescent brain exhibiting corresponding structural and functional 

changes to adapt to these new demands (1). Adolescence is also a time of increased 

vulnerability to a wide array of mental disorders including anxiety, substance use disorders, 
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mood disorders, psychosis, eating disorders, and personality disorders (2). Indeed, twenty 

percent of adolescents develop a mental disorder that persists into adulthood (3), with 

early emergence associated with greater clinical severity of mental illness (4,5). Despite 

widespread recognition that most forms of psychopathology can be conceptualized as 

developmental disorders (2), a mechanistic account of adolescents’ psychiatric vulnerability 

has proven elusive. Recent theoretical proposals argue that focusing on learning – the 

process through which experiences modify subsequent behavior – may be critical for 

achieving a more mechanistic understanding of the emergence of psychopathologies (6).

The field of computational psychiatry leverages computational methods in order to better 

understand and treat psychiatric symptomatology (7). A primary goal of the field of 

computational psychiatry is to identify latent learning processes that underpin clinically 

relevant dimensions of behavior (8,9). A central premise of this approach is that 

psychiatric disorders can be conceptualized as constellations of transdiagnostic behavioral 

phenotypes that reflect latent neurocognitive computations (10). A growing literature in 

adults has identified systematic relations between specific psychiatric symptom dimensions 

and latent learning and decision-making computations that inform individuals' thoughts, 

feelings, and choices (8,11). The extension of this approach to study the development of 

psychopathology is only in its nascent stages, with initial theoretical efforts delineating 

putative computational mechanisms underlying the development of autism (12) and 

obsessive-compulsive disorder (OCD) (13), and a few studies successfully linking learning 

phenotypes to clinical symptoms in developmental populations (14,15). Despite the sparsity 

of empirical findings in developmental computational psychiatry, there may be value in 

integrating findings in adults that link specific learning computations to psychiatric symptom 

dimensions, with the growing body of research that has begun to characterize the normative 

development of these learning phenotypes using computational approaches (16). Here, 

we lay out a roadmap for future research leveraging such computational approaches to 

study the development of addiction and anxiety – two classes of disorders that have a 

clear peri-adolescent developmental trajectory (17), significant comorbidity, overlapping 

transdiagnostic symptomatology (18), and are proposed to involve aberrations in learning 

computations (19,20).

Addiction is a chronic, relapsing condition that typically begins during adolescence, 

characterized by cycles of craving, intoxication, binging, and withdrawal (21). Over forty 

percent of teens experiment with drugs (22) and while the majority reach adulthood 

without developing substance-use disorders, for some, experimentation rapidly progresses 

into problem use (23). Anxiety is “a future-oriented mood state associated with preparation 

for possible, upcoming negative events” (distinct from fear, an alarm response to present 

or imminent danger) (24). Anxiety disorders can be subdivided into conditions that involve 

heightened threat response, such as panic disorder, phobias, or posttraumatic stress disorder 

(PTSD), and conditions that involve increased worry and rumination, such as generalized 

anxiety (24). Anxiety has a lifetime prevalence of over thirty percent (25), with typical 

emergence between early school age and adolescence, and the majority of diagnoses made 

prior to young adulthood (17). Addiction and anxiety exhibit symptomatic overlap (see 

Figure 1.A) which may stem, in part, from common underlying learning mechanisms (see 

Figure 1.B). This review focuses on two learning computations that are implicated in both 
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disorders, and exhibit developmental changes across adolescence: model-based control of 

action and Pavlovian learning processes (additional learning computations are discussed 

in Box 1). For each learning process, we detail its normative developmental trajectory 

and review studies in adults highlighting its roles in addiction and anxiety. We then 

discuss potential relations between developmental changes in computational phenotypes and 

symptom expression (see Figure 1.C for graphical illustration, and Table 1 for a summary of 

key empirical findings and theory-based hypotheses).

Model-based control and its development

Two classes of algorithms can guide instrumental action selection: A “model-based” 

system evaluates actions by simulating their potential outcomes using a cognitive model of 

environmental states, which specifies how one transitions between states and the outcomes 

associated with each state; in contrast, a “model-free” system instead estimates and stores 

the mean values of actions based on previously experienced rewards and punishments 

(26). These two evaluative processes have different advantages and shortcomings. Model-

free value computation, a process proposed to give rise to habitual actions (27), enables 

rapid, reflexive repetition of previously rewarded actions, but is not immediately sensitive 

to changes in current goals or action-outcome contingencies. In contrast, model-based 

evaluation is a slower but more flexible deliberative process, which confers greater 

sensitivity to environmental changes and supports counterfactual reasoning.

Convergent cross-species findings in diverse tasks suggest that reliance on model-based 

control increases with age (28). A common assay of model-based control is outcome 

devaluation. In this paradigm, individuals first learn to perform a rewarded action, which 

then gets devalued. For example, by allowing the individual to consume the reward 

until sated. An individual who learns and updates action-outcome relations will reduce 

performance of an action that now leads to undesirable reward, reflecting goal-directed 

consideration of the expected outcome (e.g., open the fridge only if I currently want 

food), rather than a habitual response based on a cached action value (e.g., open the 

fridge because it is a good thing to do). In a study examining outcome devaluation in 

one- to four-year-old children, sensitivity to devaluation of video clips increased with age 

(29). A study in adolescent and adult rodents found both age groups exhibited sensitivity 

to devaluation of food reward outcomes, but only adult rodents exhibited sensitivity to 

degradation of the action-outcome contingency, a manipulation that probes the sensitivity of 

actions to the strength of causal relation between action and outcome (30). These results 

suggest that these components of model-based cognition exhibit unique developmental 

trajectories. Model-based behavior can also be assessed in sequential decision-making tasks 

that index the degree to which an individual uses a mental model of the task structure 

to maximize reward, rather than simply repeating previously rewarded actions (e.g. the 

“two-step task” (31)). Several studies using such tasks in human participants have found 

that model-based control of action increases with age from middle childhood through 

young adulthood (32-36), an effect also evident within individuals longitudinally across 

adolescence (15). Moreover, while adults increase their recruitment of model-based control 

when it is incentivized (37), this capacity for “meta-control” is absent in children (32) and 

may increase gradually across adolescence into adulthood (33). Collectively, these findings 
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suggest that model-based control increases across development, and that the age at which 

model-based control is recruited may depend upon the complexity of learning, updating, and 

planning with a mental model in a particular environment.

Reduced model-based control and the development of addiction

Reduced model-based control and increased dominance of model-free evaluation has been 

hypothesized to play a mechanistic role in the emergence of addiction. The progression of 

addiction typically involves a narrowing of goals to focus on drug seeking and consumption, 

even despite adverse consequences. Drug consumption is proposed to reflect, in part, a shift 

from goal-directed action, guided by positive hedonic consequences, to habitual, compulsive 

behavior that is insensitive to negative outcomes (38) (although there are compelling 

alternative accounts (39,40)).

Cross-species evidence corroborates theoretical proposals that habitual drug use is 

associated with decreased model-based control. Self-administration of alcohol in rodents 

that is initially sensitive to outcome devaluation becomes increasingly insensitive with 

prolonged consumption (41). Animals exposed to cocaine or methamphetamine similarly 

exhibit decreasing sensitivity to devaluation (42-44), suggesting drug consumption decreases 

model-based control of action. Notably, the degree to which drug exposure reduces 

model-based control may predict subsequent escalation of drug seeking and use (45). 

Relative to control participants, both alcohol- (46) and cocaine-dependent (47) patients 

exhibit decreased sensitivity to devaluation of actions associated with monetary rewards. 

Human studies using sequential decision-making tasks have similarly observed decreased 

model-based control in alcohol misuse and dependence (48,49) and various substance use 

disorders (50), as well as in gambling addiction (51). These convergent findings (but see 

(52,53)) suggest that reduced model-based control is associated with an increased propensity 

toward compulsive behavior (54,55), a transdiagnostic behavioral dimension characteristic 

of diverse psychiatric disorders.

Decreased engagement of model-based control at younger ages may confer a heightened 

propensity toward compulsivity that increases vulnerability to addiction (for a graphical 

depiction of this hypothesis see Figure 1.C.I). Indeed, earlier initiation of substance use 

predicts a greater likelihood of dependence (5), a more rapid progression to addiction 

(56), as well as greater addiction severity (57). Heightened compulsivity may increase 

the propensity for escalation of substance use during developmental periods in which 

experimentation is common. Indeed, model-based control amongst adolescents and young 

adults is associated with heightened subclinical compulsivity (15), and decreased model-

based control at age 18 predicts greater increases in binge drinking behavior over a three-

year period (58). Notably, while low model-based control at a given age may heighten 

vulnerability to addiction following drug experimentation, greater model-based control may 

confer resilience (Figure 1.C.II). Conversely, drug experimentation may also influence 

the longitudinal developmental trajectory of model-based control. Future studies should 

examine whether there are sensitive developmental periods during which drug exposure is 

particularly consequential (see Figure 1.C.III).
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Heightened compulsivity in children is typically viewed as a developmentally normative 

behavioral characteristic. Parents typically restrict access to rewards for which children tend 

to have difficulty regulating their consumption (e.g., candy, video games). Such parental 

oversight makes it unclear whether youth itself represents a risk factor for the development 

of behavioral addictions. Online gaming provides one testbed for such hypotheses. A 

substantial proportion of children and teens engage in video-game play (59), and during the 

COVID pandemic, relaxation of parental restrictions on playtime were widespread (60). One 

recent study in Japanese middle-school students found that earlier age of regular video-game 

play was indeed associated with more problematic gaming (61). This preliminary evidence 

should be corroborated, and whether variation in model-based control in youth is associated 

with the development of problematic gaming should be directly examined.

Importantly, a heightened propensity toward reward-driven habit formation may also be 

harnessed to develop healthy routines that facilitate resilience. Youths highly engaged in 

school activities, academics, and sports are at lower risk for problematic substance use, 

potentially because these rewarding activities prevent exploration of less healthy reinforcers 

(62). A mechanistic understanding of the emergence of addictive behaviors will require 

characterizing how normative developmental trajectories of learning computations interact 

with specific aspects of individuals’ daily experiences (63).

A potential role for model-based control in the development of anxious 

symptomatology

Recent speculative theoretical proposals suggest that model-based simulation processes may 

underpin ruminative symptoms characteristic of several forms of anxiety and depressive 

disorders (64,65). Model-based control enables simulation of potential states of the world 

including counterfactual alternatives to past actions or potential future actions and the 

outcomes they might yield (66). This computational capacity supports adaptive planning but 

may become overly active and biased toward negative, low-probability events in anxious 

individuals (67), yielding excessive worry and rumination (65). Thus, anxious rumination 

likely reflects an interaction between heightened model-based control and negatively biased 

simulation (see Box 1 and Figure 1.C.IV).

Currently, there is little empirical evidence for the role of model-based simulation in anxiety. 

A recent study found that severity of social anxiety symptoms was associated with increased 

deliberative evaluation, indexed by a computational counterfactual updating parameter (68). 

However, a large-scale study observing no relation between anxious symptomatology and 

model-based control (54) suggesting that any potential relation with anxiety may be more 

complex.

Both model-based control and the tendency to engage in rumination increase with age 

from pre-adolescence into adolescence (69) possibly reflecting a common underlying 

developmental improvement in mental simulation ability (70). Developmental increases in 

model-based simulation may be largely adaptive, as deliberative anticipatory or retrospective 

processing of events can facilitate future planning. However, alterations in both the content 

and regulation of these deliberative processes may give rise to rumination and worry: 

Goldway et al. Page 5

Biol Psychiatry. Author manuscript; available in PMC 2024 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



anxious children overestimate the probability of rare negative events (67)and report being 

unable to terminate worry until perceived threats are removed (71).

Heightened rumination during adolescence prospectively predicts increases in anxiety 

following stressful life events (72), and accounts for comorbidity between anxiety 

and depression (73). Given the clear clinical significance of rumination, an important 

goal for future developmental studies is to understand how the development of model-

based simulation abilities interact with environmental factors to modulate maladaptive 

deliberation.

Pavlovian learning processes

Through Pavlovian learning, cues that predict the presence of motivationally significant 

positive and negative events come to elicit reflexive and valence-dependent consummatory 

or defensive behaviors that can promote survival (74). Reward-associated cues typically 

drive approach responses and invigoration of ongoing behavior, whereas threat-associated 

cues typically drive withdrawal and behavioral inhibition. Pavlovian learning processes 

are centrally implicated in the etiology of both addiction and anxiety (75,76). Through 

Pavlovian-instrumental transfer, reward value assigned to drug-related cues and contexts can 

invigorate the instrumental behaviors involved in drug seeking and consumption. In addition, 

recent computational work suggests that anxiety may be associated with alteration in the 

process of inferring the latent states to which negative value is assigned during Pavlovian 

learning, rendering anxious individuals’ Pavlovian threat associations highly robust, resistant 

to change, and readily generalized to related stimuli and contexts. Below, we review findings 

illustrating how these two aspects of Pavlovian learning processes — Pavlovian-instrumental 

transfer and latent-state inference — are implicated in addiction and anxiety, and discuss 

how knowledge of the developmental trajectories of these processes may contribute to a 

mechanistic understanding of the emergence of these disorders.

The development of Pavlovian-instrumental transfer and its role in 

addiction

Interactions between Pavlovian and instrumental learning play a critical role in the 

cycle of addiction. Drug-predictive cues (e.g., sights, smells, contexts) acquire Pavlovian 

reward value through hedonic drug consumption experiences. Such cues can then elicit 

behavioral invigoration, fostering approach, attentional capture, and physiological arousal, 

which collectively facilitate craving and drug-seeking behavior (77). Through Pavlovian-

instrumental transfer, positive value assigned to a reward-predictive stimulus can reflexively 

invigorate performance of instrumental actions previously learned to yield either that 

specific reinforcer or rewards more generally (78).

Drug-predictive cues tend to increase performance of reward-related instrumental actions 

(79-83). Moreover, drug exposure strengthens the influence of non-drug Pavlovian 

reward cues on instrumental action (84-88). Human studies s point to a key role of 

Pavlovian-instrumental transfer in addiction. Relative to healthy controls, alcohol-dependent 

individuals(89-91) and high-risk young drinkers (92,93) exhibit greater difficulty learning 
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actions that conflict with the valence-dependent behavioral responses elicited by Pavlovian 

learning processes. The strength of this effect predicts long-term relapse (94-96), potentially 

by facilitating drug-related approach behaviors (97). These suggest that t Pavlovian biases 

may be a risk factor for the escalation of drug use and is further exacerbated by 

drug consumption. Notably, Pavlovian-instrumental transfer may also play a role in the 

heightened behavioral inhibition characteristic of anxiety ((98,99) see Box 1). However, to 

date, few studies have examined these relations computationally.

Two recent studies examined the developmental trajectory of Pavlovian-instrumental transfer 

using computational approaches. In a small cohort of participants, adolescents exhibited 

the smallest degree of Pavlovian bias on instrumental learning, relative to children and 

young adults (100). However, a larger study that tested teenagers and young adults, but 

not children, observed no age-related change in the degree of transfer (101), suggesting 

that Pavlovian-instrumental transfer may decrease from childhood into adolescence andthen 

stabilize into young adulthood. Given this sparse evidence base, future studies spanning a 

broad age range and employing more diverse computational assays of Pavlovian influence 

(e.g., Pavlovian pruning of decision trees (102), Pavlovian shaping of goal-aligned behaviors 

(103)) will be important for clarifying this developmental trajectory.

Studies of food consumption suggest that high levels of Pavlovian-instrumental transfer 

in childhood drive consummatory behaviors in response to reward-related cues. Children 

who attended more to advertisements for calorie-dense snacks during play consumed 

more of the snack afterwards (104). Moreover, food-cue-evoked salivation predicted 

consumption in overweight, but not normal-weight children (105), suggesting that such 

transfer effects may drive unhealthy consumption. Adolescent drinkers who exhibited 

heightened reactive responses to alcohol cues in the laboratory also reported greater craving 

and consumption in real-world contexts associated with use (106). Pavlovian-instrumental 

transfer may be a mechanism contributing to such escalation of reward-seeking and 

consumption. Individuals who initiate drug experimentation during developmental periods 

when Pavlovian-instrumental transfer is typically robust (or who exhibit atypically high 

levels of transfer) may be more prone to develop compulsive use. This underscores the 

importance of examining how this computational process is shaped by environmental 

factors and modulates the emergence of addictive behaviors (Figure 1.C.II). Moreover, 

diverse forms of Pavlovian learning reflecting model-free versus model-based underlying 

computations (i.e., sign-tracking versus goaltracking) (107) are differentially associated with 

addiction risk (108), highlighting the importance of investigating these learning dimensions 

in future developmental studies (109).

Latent state inference in aversive Pavlovian learning and the development 

of anxiety

Aversive Pavlovian learning has been proposed as a model for the learning processes 

through which threat expectations are acquired in anxiety (110). Aversive Pavlovian 

learning is commonly studied using paradigms in which a neutral stimulus (the conditioned 

stimulus, or CS) is repeatedly paired with an aversive unconditioned stimulus (US; e.g., 
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mild electrical shock), after which CS presentation elicits reflexive defensive conditioned 

responses (e.g., freezing). The capacity to alter such associations is commonly studied using 

extinction paradigms, in which the CS is no longer paired with the US, and expression 

of conditioned responses typically decreases. However, extinguished responses can return 

under a number of circumstances, including a change in context (renewal), re-exposure to 

a US (reinstatement), or the mere passage of time (spontaneous recovery) (111). Through 

generalization, stimuli that share some degree of perceptual or conceptual similarity to 

the CS, but were never directly associated with the US, can come to evoke a conditioned 

response. Generalization typically decays as the dissimilarity between the CS and other 

stimuli increases (112).

Changes in the process of inferring the latent environmental states (or contexts) to which 

negative or positive value is assigned may contribute to variation in the acquisition, 

extinction, and generalization of Pavlovian learning. Under this computational account, 

learners segment their experience into latent states that capture regularities in the 

configuration of observed stimuli (e.g., CS and US) (113). Mismatch between the current 

configuration and the learned prototypical configuration of a state (akin to a prediction error) 

provides evidence of a new latent state. Sensitivity to the deviation between the stimulus 

configurations observed during acquisition and extinction may cause trials from these 

phases to be assigned to distinct latent states (i.e., separate threat and safety memories), 

whereas lower sensitivity allows reinforced acquisition trials and unreinforced extinction 

trials to be assigned the same latent state, effectively “overwriting” the original memory and 

eliminating the possibility that the conditioned response could later reemerge. Consistent 

with this account, computational analysis of participants’ conditioned responses during 

aversive learning and extinction (114) demonstrated that only individuals who appeared to 

infer two latent states showed spontaneous recovery following extinction training. Variation 

in latent-state inference can also account for stimulus generalization. If a reinforced CS and 

another similar stimulus are clustered within the same latent state, they will both acquire 

valenced expectations, as they will share an association with the US.

Relative to control participants, anxious individuals acquire more robust conditioned 

responses, exhibit attenuated extinction learning and stronger reinstatement, and show 

increased generalization of conditioned responding to unreinforced stimuli (115,116). Two 

recent studies suggest that these alterations in Pavlovian learning may relate to differences 

in latent-state inference. In an unselected sample, shock expectation ratings of high-trait-

anxiety individuals were better explained by a model inferring multiple latent states, 

conferring the ability to reinstate previously learned threat associations, while ratings of 

low-trait-anxiety individuals were better explained by a single-state learning model (117). 

A second study found that PTSD patients who exhibited greater generalization of loss 

expectations and higher levels of avoidance symptoms were more likely to assign stimulus 

observations to a single underlying cause (118). These seemingly contradictory findings 

may identify two modes of latent-state inference that correspond to distinct dimensions of 

anxious symptomatology (persistent threat response versus overgeneralization) that differ in 

prevalence across these samples. However, these findings should be replicated and extended 

in order to better reconcile these apparent discrepancies.
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Although aversive Pavlovian expectations are similarly acquired and expressed across 

development, both the extinction and generalization of these associations change markedly 

(119). In juvenile rodents, conditioned responding decreases during extinction, but unlike in 

adult animals, these responses do not tend to re-emerge (120-122). Extinction learning in 

juveniles also does not engage neural processes associated with threat-response inhibition 

(123), but instead appears to modify the original threat association (122,124), suggesting 

that extinction at this developmental stage may be more akin to unlearning. In contrast, 

adolescent rodents and humans exhibit greater difficulty extinguishing threat associations 

and heightened reemergence of conditioned responses following extinction, relative to pre-

adolescents and adults (125,126). Aversive generalization also exhibits systematic changes 

across development. Relative to adolescents and adults, younger children show broader 

generalization of threat responses to novel stimuli. With age, the ability to discriminate 

between a CS associated with threat and unreinforced neutral stimuli gradually improves 

(127-130).

We do not know of studies that have used formal approaches to test whether latent-state 

inference exhibits systematic developmental changes. However, the changes in extinction 

and generalization described above are consistent with a proposal that the tendency to infer 

new latent states may be lower at younger ages, and increase with development. Moreover, 

a greater tendency to cluster conceptually or perceptually similar stimuli into the same 

latent state may contribute to the heightened generalization observed in younger individuals 

(127-131). Consistent with broader developmental improvements in memory specificity 

across adolescence (132), the tendency to infer distinct latent threat and safety states 

based on shifts in environmental statistics may increase with age, enabling extinguished 

responses to reemerge. Future studies using computational modeling approaches should test 

this proposal, with a particular focus on identifying the specific mechanisms that might 

underpin attenuated extinction and heightened reemergence of threat associations during 

adolescence (133).

Systematic developmental changes in latent-state inference might underpin corresponding 

age differences in anxiety-related symptomatology, and suggest avenues for tailoring 

treatment. A heightened tendency to cluster together threat-associated cues or contexts with 

similar, safe states may be a key driver of symptoms in anxious children (134,135), making 

therapies that facilitate discrimination ability particularly efficacious. As differentiation of 

threat and safety states improves with age, extinction-based exposure therapies might be 

modified to increase generalization between extinguished threat associations and earlier 

experiences, in order to prevent fear reemergence. For example, exposure protocols modeled 

after gradual extinction training, in which the frequency of CS-US pairing slowly decreases, 

may diminish the mismatch signals that drive new state inference and reduce spontaneous 

recovery and reinstatement effects (136,137). More generally, such cognitive heterogeneity 

across individuals highlights the importance of tailoring behavioral therapies to target 

specific types of maladaptive inferences.
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Conclusion

Here, we synthesized knowledge about computational processes implicated in the etiology 

of addiction and anxiety with findings about the developmental trajectories of these 

computations. We highlighted areas where we have strong knowledge of both the clinical 

significance and the normative developmental trajectory of a cognitive process (e.g., the 

development of model-based control and its relevance to compulsivity), and those for which 

both developmental and clinical data are lacking (e.g., latent-state inference).

Going forward, computational psychiatry approaches may prove particularly valuable 

for characterizing developmental mechanisms of psychopathology. Latent cognitive 

computations that underpin clinically relevant behaviors likely contribute to the emergence, 

maintenance, or escalation of symptoms over developmental time. The objective behavioral 

metrics that this approach provides (e.g., model parameter estimates) can enable researchers 

to chart normative developmental changes in these computations, study their underlying 

neural mechanisms, and characterize the dynamic relation between computational 

phenotypes and clinical symptoms longitudinally. Importantly, normative trajectories of 

clinically relevant objective phenotypes may provide critical tools for diagnosis and 

intervention, circumventing challenges posed by reliance on clinical interviews and self-

report measures. This may be especially true for children and adolescents, whose verbal 

abilities and metacognitive awareness may be less robust than adults’ and whose expression 

of symptoms can often be either atypical or masked by caregiving environments. Further, 

these measures may eventually be able to serve as actionable early indications of aberrant 

developmental trajectories that can indicate whether — and which — interventions should 

be considered in order to prevent the emergence or worsening of symptoms.

Several topics remain beyond the scope of this review but may be critical for progress in the 

field. In this paper, we have treated computational phenotypes as stable, trait-like properties 

that change on a developmental timescale. However, computational phenotypes can also 

change dynamically in response to shifts in environmental conditions (138,139), stress (see 

Box 2), changes in affective state (140), or other factors. Characterizing both the factors 

that elicit such dynamic changes in computational phenotypes and the temporal dynamics 

of these changes across both local and developmental time scales (7), are important avenues 

for future research. Understanding periods of vulnerability to psychopathology will also 

require more thorough investigation of the relation between neuroplasticity and learning. 

For example, a study detailing the brain mechanisms underlying the opening and closure 

of a developmental critical period for social reward learning (141) suggested a potential 

biological mechanism of efficacy of a drug that is used to treat PTSD (142). Such 

convergent insights illustrate how neurobiological research into the mechanisms of learning 

development can inform psychiatric treatment. Characterizing developmental periods during 

which the tuning of additional learning processes, and their underlying neural circuits, are 

most sensitive to environmental inputs may be critical for identifying targets for psychiatric 

intervention.
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Box 1:

Additional computational phenotypes of interest

Valence asymmetries

The relative weight individuals place on positive versus negative outcomes may confer 

risk or resilience to psychopathology. Whereas healthy adults tend to overweight recent 

positive experiences relative to negative experiences (143,144), anxious individuals 

show the opposite tendency (145). Recent computational work assessing developmental 

changes in valence asymmetries without confounding task demands (16,146) has 

observed that adolescents overweight negative, relative to positive, outcomes in learning 

and in memory, more than children or adults (147-150). Such a tendency might contribute 

to internalizing disorders through increased encoding of negative events (151).

Adaptation of learning rates

Adapting one’s learning to dynamic environmental statistics allows for the optimization 

of behavior (152). Anxious individuals are less able to dynamically adjust learning rates 

in volatile environments (138,139,153,154), which may contribute to their difficulties 

coping with conditions of high uncertainty. Few studies have examined developmental 

change in the optimal adjustment of learning rates, though recent work suggests that the 

ability to adapt valenced learning rates may improve with age (155).

Metacognition

Systematic distortions in metacognition – the ability to reflect on and evaluate one’s 

behavior (156) – may be a transdiagnostic factor associated with poor mental health 

(157). A tendency to be overconfident in one’s performance (irrespective of the actual 

performance) is associated with heightened compulsivity, while a tendency toward 

underconfidence is associated with anxiety-depression symptoms (158). Metacognitive 

abilities improve from childhood through adolescence (159,160). Future studies should 

examine the developmental emergence of these metacognitive distortions, and how 

they may relate to the progression of anxiety symptomatology and addictive behaviors 

(161,162).
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Box 2:

Stress effects on transdiagnostic learning computations

Threats, either real or perceived, can induce stress. Stress responsivity is increased during 

childhood and adolescence, with stress exposure yielding heightened physiological 

responses, lasting effects on developing cortical-subcortical circuitry, and impairments 

in stress coping in adulthood (163-166). Early-life stress is a well-established risk factor 

for the development of both anxiety and addiction (167,168), and mental illness more 

generally (169).

Across species, stress reduces model-based control, fostering increased habitual behavior 

(170-175). Stress does not appear to facilitate appetitive Pavlovian-instrumental transfer 

(176-178). However, it does promote the reemergence of previously extinguished reward 

associations (179,180), which may allow drug cues to regain their influence over 

behavior following periods of abstinence, consistent with stress-induced reinstatement 

of drug-seeking behavior (181).

Stress exerts marked effects on aversive Pavlovian learning that exacerbate anxious 

symptomatology. Stress enhances the consolidation of aversive associations and impairs 

extinction learning and retention (182). Acute stress increases Pavlovian-instrumental 

transfer (183), especially in anxious individuals (98), by fostering greater behavior 

inhibition in the presence of threat, compromising the flexibility of instrumental behavior. 

Moreover, traumatic stress exposure during mid-to-late adolescence can yield persistent 

increases in such passive avoidance behavior (99).

These demonstrations that learning computations are profoundly altered by stress 

exposure suggest that the environmental conditions in which learning occurs are a key 

determinant of psychiatric outcomes. This may be particularly true at earlier stages of 

development when sensitivity to stress is heightened.
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Figure 1. Development of computational phenotypes and psychiatric symptom expression.
A. Visual representation of the relation between transdiagnostic symptoms and psychiatric 

disorders. Each individual is represented as a rectangular mosaic, reflecting a specific 

constellation of symptoms and a corresponding categorical psychiatric diagnosis. B. 

Hypothesized relations between transdiagnostic symptom expression and computational 

phenotypes. Each point represents an individual’s position within a three-dimensional space 

defined by the three computational phenotypes of interest. Symptom expression may relate 

to location in the phenotypic space. For example, compulsivity is associated with reduced 

model-based control (e.g., (54,55) and rumination with increased model-based control (68). 

Increased avoidant behavior and compulsivity are both associated with greater Pavlovian-

instrumental transfer (89-93,98). Finally, persistent threat response is associated with a 

tendency to infer multiple latent states, whereas overgeneralization is associated with a 

tendency to infer fewer states (114). Note that the proposed relations between regions 

of the multidimensional phenotypic space and transdiagnostic symptom expression are 

speculative. C. Potential relations between the development of computational phenotypes 

and expression of psychiatric symptoms. I. A computational phenotype may exhibit age-

related changes (e.g., increases in model-based control with age) and the strength of that 

phenotype may relate to transdiagnostic symptom expression (e.g., decreased model-based 

control is associated with a heightened propensity to engage in compulsive behavior). II. 

A computational phenotype and the probability of an environmental exposure both change 

with age, and may interact to create a “high-risk zone” (bottom right quadrant of the 
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graph) where individuals have a higher probability to develop symptoms. For example, both 

reliance on model-based control and the probability of drug exposure increase with age. 

Individuals with reduced model-based control and greater exposure to drugs may be at 

greater risk for developing compulsive drug consumption. Here, we assume a linear increase 

in environmental exposure with age, but other non-linear changes are possible as well (for 

example, exposure to alcohol may increase rapidly at the legal drinking age). III. Exposure 

to environmental conditions may alter the normative development of a computational 

phenotype. For example, individuals with heightened drug consumption might show a 

reduced developmental increase in model-based control, making them more vulnerable 

to the emergence of compulsive drug use. Here, we assume an age-invariant effect of 

environmental exposure on the developmental change in the computational phenotype, but 

age-specific windows of environmental influence (i.e., sensitive periods) are also possible. 

IV. Age-related changes in a constellation of specific computational phenotypes may yield 

windows of vulnerability to increased symptomatic expression. For example, increases in 

model-based control during adolescence could interact with adolescent-specific increases 

in negative valence bias to promote greater anxious rumination. Note that these examples 

are speculative illustrations of multiple potential forms of developmental vulnerabilities that 

could be examined in future computational developmental psychiatry research.
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