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Abstract
Analysis of chemical exchange saturation transfer (CEST) MRI data requires sophisticated methods to obtain reliable 
results about metabolites in the tissue under study. CEST generates z-spectra with multiple components, each originating 
from individual molecular groups. The individual lines with Lorentzian line shape are mostly overlapping and disturbed by 
various effects. We present an elaborate method based on an adaptive nonlinear least squares algorithm that provides robust 
quantification of z-spectra and incorporates prior knowledge in the fitting process. To disseminate CEST to the research com-
munity, we developed software as part of this study that runs on the Microsoft Windows operating system and will be made 
freely available to the community. Special attention has been paid to establish a low entrance threshold and high usability, 
so that even less experienced users can successfully analyze CEST data.
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Introduction

Chemical exchange saturation transfer (CEST) MRI is an 
evolving metabolic imaging method, which has proven as 
valuable in many imaging studies in the last two decades 
[1–3]. In particular, CEST has been shown to add diagnostic 
and prognostic value to the conventional MRI in patients 
with cerebrovascular stroke, neurological diseases, tumor 
imaging, and musculoskeletal disorders [4]. Despite its 
potential to provide unique metabolic information [5–10], 
CEST is not yet widely used in the clinical settings. Two 
major reasons for this are: firstly, the limited availability 
of CEST acquisition sequences on clinical MRI systems 
and, secondly, the relatively high complexity of CEST data 
analysis. To facilitate the clinical translation of CEST MRI, 
we present new methods for CEST data processing and 

analysis using the Lorentzian fitting approach. The meth-
ods are implemented in a user-friendly software that runs 
on the Microsoft Windows operating system, and are made 
available to the CEST imaging community.

In CEST MRI multiple images are acquired after apply-
ing radio-frequency (RF) saturation pulses at several fre-
quency offsets upfield and downfield from the bulk water 
resonance [2]. By point plotting of the image intensity as a 
function of the offset frequency of the pre-saturation, the so-
called z-spectra are obtained pixel by pixel. The frequency 
selective irradiation ahead of the image acquisition causes 
a pre-saturation of the labile protons on functional groups 
of metabolites. Exchanging protons from these individual 
molecular groups transfer their magnetization to water pro-
tons, leading indirectly to a decrease of the measured water 
signal intensity. This saturation transfer process creates sig-
nal peaks that exhibit a Lorentzian line shape [11, 12] with 
a center frequency offset specific for each functional group.

The acquisition process based on an alternating repetition 
of the pre-saturation and image recording is time-consuming, 
resulting in z-spectra with a limited number of data points in 
frequency direction. Besides, the necessary fast image acqui-
sition usually yields a relatively low signal-to-noise ratio 
(SNR), leading to noisy z-spectra [13]. This is especially 
problematic as the CEST effect usually results in waters sig-
nal intensity changes that are only a few percent. Finally yet 
importantly, the resonance frequency in MRI is proportional 
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to the external magnetic field, leading to a substantial shift 
of the z-spectra in frequency direction even at low levels of 
static magnetic field inhomogeneities [14, 15].

To cope with these problems in the analysis of the z-spectra, 
different approaches and corrections were proposed. The most 
common and rather qualitative metric is the magnetization 
transfer ratio asymmetry  (MTRasym) [16, 17], which is defined 
as the difference between the z-spectrum value at the nega-
tive offsets and corresponding positive offsets with respect to 
water. In asymmetric spectra due to the nuclear Overhauser 
effect (NOE) or other confounding effects,  MTRasym has a 
restricted explanatory power, especially in cases where the 
measured CEST effect is low or in molecules resonating close 
to the water resonance frequency. To improve the analysis of 
z-spectra, mathematical fitting using Lorentzian model func-
tions was established [18–22].

In this method, each component of the z-spectrum – the 
water component and all other resonances from exchange-
able protons in different functional groups of e.g. amide, 
amine, creatine, and NOE – is represented by a Lorentzian 
line, added up to the complete z-spectrum. Each Lorentzian 
line exhibits three free parameters: amplitude, frequency, 
and line width. Consequently, modelling the measured 
z-spectra with multiple Lorentzian’s leads to a relatively 
high number of fitting parameters compared to the low num-
ber of data points acquired in frequency direction. The sim-
plest method of fitting complex model functions to measured 
data is the nonlinear least squared (NLLS) technique, such as 
the Levenberg-Marquard algorithm. However, more adapted 
least squared methods were developed and established to 
analyze sparse data with low SNR. For example, methods 
such as VARPRO or AMARES have been proposed for the 
in-vivo MR-spectroscopy (MRS), where -similar to CEST- 
low SNR signals with strongly overlapping resonances occur 
[23, 24]. However, while the MRS dataset typically consists 
of 1000 or more data points, the CEST z-spectrum contains 
relatively few data points in the frequency direction (e.g., 
about 40 points). Further, due to the indirect nature of the 
method, the individual resonances of the molecules or func-
tional groups often strongly overlap. Therefore, high-quality 
technology is required to analyze such complicated signals.

Here we present a sophisticated method based on an 
adaptive nonlinear least squares algorithm, which allows 
a robust quantification of the z-spectra and includes prior 
knowledge in the fitting process. The software developed as 
a part of this study runs on the Windows 10 operating sys-
tem and is made freely available to the community. Special 
attention has been paid to establish a low entrance threshold 
and high usability, so that even less experienced users can 
successfully analyze CEST data.

In our study, we first show the theoretical background of 
the developed software. Simulated data were then created 
and analyzed to validate the algorithms, taking advantage 

of the great benefit of known ground truth. Finally, to dem-
onstrate the suitability of the new software, CEST data from 
a real phantom and the lumbar spine of a healthy subject 
were analyzed.

Methods

Fitting of Lorentzians

Any z-spectrum can be modeled by the sum of several Lor-
entzian functions described by the following function:

where I is the image intensity, I0 is the image intensity with-
out pre-saturation, K is the number of Lorentzian compo-
nents, � is the frequency and ak , �c

k
 and �k are the amplitude, 

frequency offset and width of the k th CEST proton pool.
According to probability theory, to obtain maximum likeli-

hood estimates, the following functional Φ must be minimized:
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The superscript T denotes the transpose and ‖… ‖ the 
Euclidian norm.

The functional Φ consists of the sum of squared residu-
als and leads to a typical nonlinear least squared problem. 
To solve such problems, Dennis et al. developed an adap-
tive NLLS algorithm that can handle large residuals or very 
nonlinear problems better than a Levenberg–Marquardt 
algorithm [25–27]. In our implementation, we used the sub-
routine dn2gb from the port library of netlib [28], an estab-
lished collection of mathematical software commonly used 
in science and engineering. By applying upper and lower 
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bounds in dn2gb, prior knowledge such as large linewidths 
for magnetization transfer components or known frequen-
cies of CEST metabolites can be included in the fitting 
process. Adding such physical requirements as additional 
bounds leads to maximum accuracy and robustness [29]. As 
a secant method, the NLLS algorithm applied here uses the 
evaluation of the residuals and the Jacobi matrix J , which 
consists of the first derivatives of the residuals according to 
the unknown parameters:

Software development

To create an easy to use tool for CEST analysis, the proposed 
software was developed under Windows 10 operating sys-
tem in Microsoft Visual C++ 2022 using the MFC library 
as graphical user interface. The usual design elements of a 
typical Windows software have been used so that users can 
easily and quickly find their way around. Since the netlib 
library was developed in the Fortran programming language, 
dn2gb was compiled with the Intel® Fortran compiler ifort 
v.2021.6.0. Then the corresponding lib-file was created 
using Microsoft Library Manager, which is part of Visual 
Studio. Fortran passes all arguments of subroutines by refer-
ence. Therefore, pointers must be used when calling Fortran 
subroutines from C++. Data structures like vectors, matri-
ces and arrays are represented in different ways in Fortran 
and C++. Consequently, when calling the external Fortran 
subroutines from C++, special care must be taken with the 
construction and order of the variables.

Filtering and pyramidal approach

The SNR of CEST data is a relevant aspect to be considered. 
For this reason, two approaches were proposed to improve 
the stability of the results. The first one uses image filter-
ing prior to z-spectra generation and analysis, whereas the 
second one is based on a pyramidal approach similar to the 
Image Dowsampling Expedited Adaptive Least-squares 
(IDEAL) method presented by Zhou et al. [12]. For noise 
filtering in image space, a non local means (NLM) filter 
[30] was implemented using the OpenCV 4.5.1 library [31]. 
Compared to simple Gaussian filters, which cause significant 
image smoothing, NLM filters preserve image details. In the 
pyramidal method, image downsampling is used to increase 
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SNR. First, the image size of the original image data is 
strongly reduced by a factor of  2N, where N is a small inte-
ger number. Next, the averaged signal of the down-sampled 
images is analyzed by Lorentzian fitting and the obtained 
results are then extrapolated by a factor of two and serve as 
initial values for analyzing the up-sampled images. The up-
sampling steps are repeated until the original image resolu-
tion is reached. Zhou et al. demonstrated that this approach 
leads to more robust results both in phantom and rat brain 
data [12].

CEST analysis

Due to the inhomogeneity of the static magnetic field  B0, 
the center frequency of the water peak, which is normally 
at 0 ppm, is often shifted. Depending on the inhomogeneity 
of  B0, the shift can exceed 1 ppm [32]. When analyzing the 
z-spectra by Lorentzian fitting,  B0 shift is less relevant as 
long as the fitted Lorentzian components can be assigned 
to the individual proton pools. This means that correc-
tions of the  B0 inhomogeneity by pixel-wise shifting of the 
z-spectrum, e.g. with the water-shift referencing (WASSR) 
method [14], are not necessary for the Lorentzian fitting 
because no asymmetry analysis is performed. Nevertheless, 
our CEST analysis performed frequency correction by pre-
fitting to obtain reliable frequency offsets for the individual 
components. It should be noted that this water shift step 
only serves to facilitate the localization of the various CEST 
components, but does not affect the results of the fitted lines 
as long as the fitting is successful. In this initial step, a sum 
of six Lorentzian’s is fitted to each z-spectrum to determine 
the center of the water resonance. The fitting is loosely con-
strained and starts with a large peak for water at 0 ppm, 
two peaks above and below the water peak at ± 1.0 ppm 
and ± 2.0 ppm and a broad peak at -2.0 ppm representing 
possible semisolid magnetization transfer (MT) contrast in 
the spectrum. The resulting frequency of the fitted water 
peak is then used to shift the original z-spectra, and the 
actual fitting analysis starts. This allows easy assignment of 
the individual components to the known frequencies.

In the actual analysis of the z-spectra, a set of starting 
values is introduced to the fitting process. This set contains 
the number of Lorentzian components, the frequency range 
swept by RF saturation pulses, and three parameters for each 
component, namely the amplitude, frequency offset, and line 
width. For the latter three parameters, constraints are given 
by lower and upper bounds, restricting the possible solu-
tions for each individual Lorentzian line. In this way, prior 
physical knowledge is incorporated into the fitting process. 
When analyzing CEST images with the pyramid method, 
it is possible to select the number of pyramid levels and a 
tolerance value in percent that specifies a range within which 
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the parameters are allowed to change from one pyramid level 
to the next.

The fitting process of the z-spectra yields the opti-
mal amplitude, frequency and width for each individual 
Lorentzian line, the integral of each component, and the 
sum of squares between the fitting result and the original 
z-spectra as a quality measure.

Creation of digital phantoms

To evaluate the newly developed algorithms and software, 
two digital phantoms with different compositions of proton 
pools were created. The advantage of a digital phantom is 
the known Lorentzian composition as a ground truth. The 
phantoms were overlaid pixel by pixel with Rice-distributed 
noise of varying amplitude. The noise amplitude ranged 
from 0–20% in the image without pre-saturation, resulting in 
ideal z-spectra without noise and “more realistic” z-spectra 
of different quality.

A cylindrical structure with two inner circles was chosen 
as the first phantom, as shown in Fig. 1a. The outer region 
of the phantom consisted entirely of a water pool, and the 
left and right inner regions contained a composition of water 
(0 ppm), creatine (1.9 ppm), amide (3.5 ppm), OH (1.0 ppm) 
and MT (–2.0 ppm) pools. The amide and creatine ampli-
tudes varied between the left and right inner regions, while 
all other components remained constant. The complete com-
position is shown in Table 1.

In addition, a second digital phantom was created with a 
structure similar to that of a sagittal spine image in which 
only the intervertebral discs (IVDs) were preserved (see 
Fig. 1b). Since this model is typical for CEST studies of 
glycosaminoglycans (GAG), two regions were defined in 
each disc, representing the inner nucleus pulposus (NP) 
and the outer annulus fibrosus (AF). The composition of 
the two regions was water (0 ppm), GAG (OH) (1.0 ppm), 
NH (3.2 ppm), MT (–2.43 ppm), NOE (–2.6 ppm) and 
NOE (–1.0 ppm). The amplitude of the GAG component 
varied between NP and AF and was greater in NP. The 
complete composition is shown in Table 2.

Validation of the software

To validate our software, the digital phantoms were over-
laid with simulated noise and systematically analyzed. Noise 
with amplitudes from 0 to 20% for Phantom 1 with large 
geometric structures and from 0 to 10% for Phantom 2 with 
small geometric structures was superimposed in steps of 1%. 
Since the image noise severely reduces the visibility of small 
structures, a smaller amount of noise was added in Phan-
tom 2. The resulting CEST images were analyzed in three 
ways: without any pre-processing (normal), after applying 
the NLM filter, and using the pyramidal approach (pyramid). 
In Phantom 2, a combined method of NLM and pyramidal 
approach was also used to further improve the CEST analy-
sis. The pixel-by-pixel Lorentzian fitting resulted in para-
metric images of amplitudes, frequency offsets and widths. 

Fig. 1  Composition of digital 
phantoms. a Phantom #1 con-
sisted of three regions: left and 
right circle and outer region. 
Various amounts of metabolites 
were added within the small 
circles, while only water was 
present in the outer area. b Phan-
tom 2# consists of a structure of 
lumbar intervertebral discs with 
two different regions: Nucleus 
pulposus and annulus fibrosus

Table 1  Composition of 
digital phantom #1. Amide 
and creatine amplitude varied 
between the left and right 
regions, while all other pools 
remained constant. The outer 
region consisted of water only

Proton pool Amplitude (I/
I0) left

Amplitude (I/I0) 
right

Amplitude (I/I0) 
outside

Frequency 
[ppm]

Width [ppm]

H2O 0.95 0.95 0.95 0.0 0.5
Amide 0.30 0.10 0.00 3.5 0.5
Creatine 0.10 0.30 0.00 1.9 0.5
OH 0.03 0.03 0.00 1.0 0.5
MT 0.03 0.03 0.00 –2.0 15.0
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Further, integral images for each individual proton pool as 
well as the sum of squares maps were created. All the calcu-
lated parameter maps were analyzed within the predefined 
regions with different proton pool compositions. The mean 
and standard deviation of the regions were analyzed as a 
function of the added image noise. In addition, the standard 
deviations of the predefined regions were compared between 
the three approaches: normal, NLM and pyramid. Besides, 
the regional sum of squares for the three different methods 
were compared as a quality measure for the fit analysis.

Phantom

To validate the algorithms and software for analyzing meas-
ured MRI data, a phantom containing different amounts of 
creatine (Cr) and nicotinamide (NAD) was created. This 
water-based phantom consisted of four inner tubes filled 
with NAD and Cr dissolved in phosphate-buffered saline 
(ROTI®Cell PBS, Carl ROTH) at concentrations ranging 
from 50 to 100 mM (Table 3), and physiological pH of 7.3.

The acquired CEST data from the phantom were preproc-
essed by NLM filter to increase the SNR before analysis by 
Lorentzian fitting.

In‑vivo study

To test the utility of the developed software, an in-vivo 
study was performed on a healthy volunteer. CEST data 
were acquired from the lumbar spine. Based on the results 
of the digital phantom #2, the CEST data of the spine were 
processed using the NLM and pyramidal approach. The 
study was approved by the local ethics committee (Ethics 

Committee of the Medical Faculty of Heinrich Heine Uni-
versity, Düsseldorf, Germany). Written informed consent 
was obtained from healthy volunteers who participated this 
study.

MRI measurements

All acquisitions were performed on a Siemens Magnetom 
Prisma MRI (Siemens Healthineers, Erlangen, Germany) 
at a magnetic field strength of 3 T. The phantom experi-
ment was performed with an eight channel knee coil. A 
24-channel spine coil was used for the lumbar spine acqui-
sition. CEST was acquired with an in-house developed 
spoiled gradient echo sequence using the following param-
eters: repetition time TR = 7.2 ms, echo time TE = 3.5 ms, 
excitation flip angle = 15°, image matrix = 128 × 128, slice 
thickness = 10 mm (phantom), 6 mm (in-vivo), field of 
view = 80 × 80  mm2 (phantom), 200 × 200  mm2 (in-vivo), 1 
pre-saturation pulse (phantom), 40 pre-saturation pulses (in-
vivo),  B1 = 1.5 μT (phantom), 0.9 μT (in-vivo), pulse dura-
tion of PD = 900 ms (phantom), 100 ms (in-vivo), frequency 
offsets = 63, frequency range = –7.0– 7.0 ppm (phantom), 
–5.0–5.0 ppm (spine).

Results

Software development

With “calf”, a user friendly software has been developed that 
enables the analysis of CEST data with an arbitrary number 
of proton pools, each represented by a Lorentzian line. The 
software runs on Microsoft Windows operating system, has 
a graphical user interface, and is easy to use (see Fig. 2). 
The software reads DICOM and Nifti as input image for-
mats. “calf” allows navigation through 4D image data and 
display of z-spectra of manually selected regions of interest. 
Users can define arbitrary CEST proton pools at defined off-
set frequencies as prior knowledge for the analysis process. 
Constraints can be inserted for each component to stabilize 
the mathematical fitting process. As shown in Fig. 2, a table 
of initial values and constraints for each proton pool can be 
passed to the software. This gives the user the freedom to 
adapt the fitting to his needs. In particular, different numbers 
of proton pools and different compositions of metabolites 
or molecular groups can be considered. Tables created for 
specific applications, such as APT-CEST or gagCEST, can 
be saved and shared between users. The software analyzes 
single z-spectra or whole CEST image data and provides 
parameter images of amplitude, width and frequency of each 
predefined proton pool. To reduce image noise within the 
CEST data, a simple Gaussian filter and NLM filter have 
been implemented for the calculation of parameter images. 

Table 2  Composition of digital phantom #2. The GAG (OH) amplitude 
varied between AF and NP, while all other pools remained constant

Proton pool Amplitude 
(I/I0) AF

Amplitude 
(I/I0) NP

Frequency 
[ppm]

Width [ppm]

H2O 0.75 0.75 0.0 2.0
GAG (OH) 0.03 0.06 1.0 1.0
NOE-2.6 0.05 0.05 –2.6 1.0
NOE-1.0 0.001 0.001 –1.0 2.0
NH 0.03 0.03 3.2 0.5
MT 0.15 0.15 –2.4 10.0

Table 3  Composition of the phantom for real MRI measurements. 
The phantom consisted of 4 inner tubes with different concentrations 
of amide (NAD) and creatine (Cr)

Tube #1 #2 #3 #4

NAD 100 mM 100 mM 50 mM 50 mM
Cr 50 mM 100 mM 100 mM 50 mM
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Furthermore, a pyramidal approach is available to improve 
results for CEST parameter images. "calf" is available to 
the CEST community and can be downloaded from https:// 
github. com/ MPR- UKD/ calf.

Digital phantoms

To illustrate the software evaluation process the results 
of phantom 1 and 2 are presented below. After presenting 
z-spectra and CEST parameter maps of phantom 1 at single 
noise values as an example, the effects of NLM noise filter 
and pyramidal approach are shown. Finally, the quantitative 
fitting results of phantom 1 as a function of image noise are 
presented and compared to the ground truth of the simu-
lated CEST data. Since the digital phantom 2 has a different 
CEST composition and geometric shape, the CEST results 
are then presented again as a function of image noise. 

Finally, the quantitative results of the GAG component of 
phantom 2 are presented as a function of image noise.

Figure 3 shows the digital phantom 1 with corresponding 
exemplary z-spectra of the right and left inner circles at three 
noise levels. In the spectra without noise, the resonances of 
amide and creatine are clearly visible, while at low SNR 
the peaks at 3.5 ppm and 2.0 ppm are difficult to distin-
guish from the signal noise. The parametric maps of amide 
and creatine show exactly the amplitude of the ground truth 
shown in Table 1 for the case without noise. The more noise 
is added to the phantom, i.e. the z-spectra, the noisier are the 
resulting parametric images.

Figure 4 shows three exemplary z-spectra of phantom 
1 at different noise levels including the fitted CEST com-
ponents (see Table 1). Notably, even at high noise levels, 
the spectrum is accurately modeled.

Fig. 2  Screenshot of the “calf” software, showing the graphical user 
interface with the standard Windows ribbon toolbar. On the left, 
CEST data of an in-vivo examination of the lumbar spine are shown. 

On the right, the z-spectrum of an intervertebral disk with the fitted 
components are shown as an example

https://github.com/MPR-UKD/calf
https://github.com/MPR-UKD/calf
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Figure 5 displays the parametric images of amide and 
creatine at three different noise levels obtained from the 
three approaches: without filter, with the NLM filter, and 
with the pyramidal method. As expected, the parameter 
maps generated without filtering are very noisy at low SNR. 
NLM and pyramid approach substantially reduce noise in 
amplitude maps. While NLM preserves the appearance of 
the phantom, the pyramid method results in a noticeable 
smoothing of the edges. The results of a 3 × 3 Gaussian 
filter are shown in Fig. 5 on the right, just to show the dif-
ference from the NLM filter. The Gaussian filter produces 
less noise than no filtering and preserves edges better than 
the pyramid approach. However, the NLM produces more 
homogeneous CEST results with less smoothing than the 
Gaussian filter.

Figure 6 shows the mean amide amplitude versus noise 
levels. The dashed lines represent the ground truth amplitude 
that is 0.3 in the left inner circle, 0.1 in the right inner circle, 
and 0.0 in the outer region. When no filter was applied, the 
amplitudes were fitted accurately only up to a noise level of 
about 5%. At higher noise levels, the fitted amide amplitudes 
deviate from the ground truth and exhibit increased standard 
deviations. Interestingly, even in the outer region where no 
amide pool is present, the fit yielded a distinct amide peak. 
The erroneous amide peak at low SNR occurs even when the 
pyramidal approach was used for fitting. Nevertheless, the 
deviation from the ground truth and the standard deviation 
within the regions are considerably lower. Lastly, the NLM 
filtered approach leads to the most stable results with overall 
lowest standard deviations.

Fig. 3  Digital phantom #1. On 
the right exemplary z-spectra 
of the right (red) and left 
(blue) inner circle are shown at 
noise levels 0, 10% and 20%. 
On the left the corresponding 
Lorentzian-based amplitude 
maps of the amide and creatine 
peaks are displayed

Fig. 4  Exemplary z-spectra of 
phantom #1 at three different 
noise levels (A = 0%, B = 10%, 
C = 20% noise) including the 
fitted CEST components
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Figure 7 shows the mean of the sum of squares of the 
three regions within the parametric amide images as a qual-
ity measure of the fitting process. For the approach with-
out filtering and the pyramidal approach, the quality of the 
fit is roughly comparable. As the noise level increases, the 
sum of squares increases. In addition, the standard devia-
tion increases within the three regions, indicating a greater 
dispersion of results. When using the NLM filter, the fit-
ting process appears to be most stable since only a slight 
increase in the sum of squares and standard deviations can 
be observed even at low SNR.

In phantom 2, which shows the structure of the IVDs of the 
lumbar spine, a different composition of CEST metabolites 
was chosen (see Table 2). Figure 8 shows the structure of 
phantom 2 and exemplary z-spectra for the NP (red) and AF 
(blue) regions. The right side shows the z-spectra with their 
individual components. Of note is the small change in GAG 
(OH) amplitude, resulting in a negligible difference in the 

overall AF and NP z-spectra (see Fig. 8). Of course, analyzing 
such small differences requires an effective fitting algorithm 
especially in the presence of increased image noise.

Figure 9 shows the GAG-OH amplitude images at three 
different noise levels obtained from the four methods: with-
out filtering, with NLM filter, with pyramidal approach, 
and with a combined approach with NLM and pyramidal 
method. In addition, an example of a z-spectrum with a noise 
level of 5% of the NP and the results of the fit are shown on 
the right. Since the GAG amplitude is low, 0.03 for AF and 
0.06 for NP (see Table 2), and the regions are very small, 
the image noise has a strong influence on the GAG results. 
While at low noise levels of 2% the NP and AF regions are 
still visible in the GAG amplitude images, the methods fail at 
higher noise levels. It is worth noting that the combination of 
NLM and pyramid approach leads to the best results for the 
GAG amplitude images at a noise level of 2% and to overall 
lower standard deviations within the AF and NP regions. In 

Fig. 5  Lorentzian-based amplitude maps of the amide and creatine pools of phantom #1 at three different noise levels resulting from the three 
approaches: without filtering, with NLM filter, and with pyramidal approach. In addition, the results of a Gaussian filter are displayed

Fig. 6  Amide amplitude versus 
noise level resulting from the 
three different analysis methods: 
without filtering, with NLM fil-
ter and with pyramidal approach
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general, the results obtained in phantom 2 show that stable 
detection of CEST components with very low amplitudes 
and amplitude differences associated with small spatial 
regions requires CEST data with high signal-to-noise ratio.

The visual results of the GAG amplitude images are 
reflected in the analysis of the mean amplitudes of AF 
and NP in Fig. 10, where the regional mean and standard 
deviations are shown. Only at low noise levels, the ampli-
tudes of GAG are close to the ground truth marked by the 
dotted and dashed lines. As noise increases, the AF and 
NP results strongly deviate from the ground truth and are, 
therefore, indistinguishable from each other.

Phantom measurement

As the next step in the software evaluation process, the 
results of the real phantom measurement are presented. 
Figure 11 shows the results of the in-vitro CEST experi-
ments. The Lorentzian model function fits the measured 

z-spectrum very well as proven by the residual. The differ-
ent concentrations are reflected in the parametric images 
of NAD and Cr. The variation seen in tubes with the same 
concentrations may be due to B1 inhomogeneity effects. 
In addition, the mixing of the phantom with not fully dis-
solved substances was imperfect because the concentra-
tions were close to the maximum dissolvable. The varia-
tions for the same concentrations were 17% for NAD and 
8% for creatine.

In‑vivo study

The last step of the software evaluation was an in vivo study. 
Figure 12 shows results of the in-vivo CEST examination 
of the lumbar spine of a healthy subject. On the left, the 
GAG amplitude image is superimposed on the unsaturated 
 I0 image. The z-spectrum and fitted Lorentzian peaks gener-
ated for a single pixel are shown on the right. The position 
of the pixel is displayed as an X-mark on the anatomical 

Fig. 7  Sum of squares within the 
three regions in the amide ampli-
tude images versus noise level

Fig. 8  Phantom 2 shows a structure of the intervertebral discs of 
the lumbar spine. Two areas are defined within each disc: Nucleus 
pulposus (NP) and Annulus fibrosus (AF). On the right, the simu-
lated spectra of NP (red) and AF (blue) including the individual 

CEST components (H2O, GAG, MT, NOE-1.0, NOE-2.8, NH) are 
shown. The individual GAG components of NP (red) and AF (blue) 
are displayed separately. All other components were held constant 
in both regions
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image. The black line indicates the fitted curve of the meas-
ured data. Based on the results of the digital phantom 2, 
the analysis was performed by the combined method with 

NLM filter and pyramid approach. As expected, the central 
NP regions of the IVDs show higher GAG amplitudes than 
the outer AF regions.

Fig. 9  GAG-OH amplitude images of phantom 2 at noise levels 0%, 
2% and 5% resulting from the four methods: without filtering, with 
NLM filter, with pyramidal approach, and with a combined approach 
of NLM and pyramidal method. Using NLM, pyramidal approach, 
and combined method, AF and NP are just visible at a noise level 

of 2%. High noise levels make stable detection of GAG impossible. 
On the right, an example z-spectrum at a noise level of 5% of the NP 
including the fitting results is shown. The dashed line represents the 
fit as sum of all Lorentzian components

Fig. 10  GAG amplitude versus noise level resulting from the three 
different analysis methods: without filtering, with NLM filter and 
with pyramidal approach. The dotted line represents the ground truth 
in AF, the dashed line in NP. Due to the small difference in ampli-

tudes and the small regions of AF and NP, discrimination is only 
possible with low noise. The combination of NLM and pyramidal 
approach leads to smaller standard deviations within the AF and NP 
regions
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Discussion

In this study, we introduce the new CEST analysis software 
"calf", which evaluates z-spectra by fitting Lorentzian lines 
and features various denoising algorithms. The software has 
a convenient user interface and is easy to use for the analysis 
of CEST data. For this purpose, we have defined a general 
functional consisting of the sum of the squared differences 
between measured data and model function. A special non-
linear least squares algorithm is used to minimize the func-
tional, allowing robust determination of the Lorentzian line 
shape parameter estimates even for sparsely sampled data 
with low SNR. The advantage of this novel approach is that 

the analysis can be performed on the original low-sampling 
CEST data without the need for potentially defective upsam-
pling. From the signal theory, it is known that interpolation 
of data can lead to deflections or oscillations [33]. These 
may negatively impact the CEST analysis by introducing 
errors in the parameter estimates. This problem can be cir-
cumvented by processing the unmodified original meas-
urement data directly, as it is the case with our proposed 
algorithm. In addition, automatic frequency shift correction 
by pre-fitting eliminates the need for  B0 map acquisition 
to correct for  B0 field inhomogeneity. Further, pyramidal 
approach similar to the IDEAL method described in [12] and 
a non local means noise filter were implemented and tested 

Fig. 11  CEST measurement of 
the phantom containing NAD 
and creatine. The left side 
shows, from top to bottom, the 
 I0 image, the NAD map and the 
creatine map. On the right, the 
z-spectrum of the upper right 
tube is shown with the fitting 
results for the sum and the indi-
vidual components as well as 
the residual. Data were filtered 
with NLM before Lorentzian 
fitting

Fig. 12  In vivo GAG amplitude 
image superimposed on an 
anatomical image. On the right, 
the z-spectrum of a single pixel 
is shown at the pixel position 
marked by the white cross. The 
individual Lorentzian lines 
and the sum of all components 
(black line) are displayed
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for CEST processing. Both approaches serve to improve data 
quality through noise reduction, which is a relevant factor 
in the analysis of z-spectra. Taken together, the proposed 
analysis methods address the typical challenges of CEST 
imaging: a low sampling rate in the frequency direction, 
limited SNR, overlapping peaks from different CEST pools 
that require integration of prior knowledge into fitting pro-
cess, and frequency shifts caused by  B0 field inhomogeneity.

Validation of the proposed processing pipeline was per-
formed in-silico, in-vitro and in-vivo. First, to test the accu-
racy of the developed methods, various digital phantoms were 
created. Different amounts of noise were added to the images 
in order to better mimic a series of in-vivo conditions. Sub-
sequently the proposed analysis methods were tested using a 
phantom consisting of nicotinamide and creatine solutions. 
Furthermore, an in-vivo study was performed on the lumbar 
spine of a healthy subject to demonstrate the performance of 
the developed methods for analysis of in-vivo data.

The digital phantom 1 consisted of large compartments 
containing large amounts of amide and creatine. Although 
this configuration promises a simple CEST analysis, when 
the signal noise is high, the fitting appears complicated due 
to the occurrence of large pseudo noise peaks. The applica-
tion of NLM noise filter or the pyramidal approach delivers 
stable results anyway, even the pyramidal approach leads to 
a relevant smoothing of the spatial structures.

Phantom 2 was modeled on the structure of a lumbar 
spine, with small areas defined by the annulus fibrosus and 
nucleus pulposus. As in in-vivo conditions, the amount of 
GAG was only slightly different, resulting in very similar 
z-spectra. Therefore, the analysis process in the presence of 
image noise is a challenge that requires a high signal-to-noise 
ratio to obtain stable results. A combination of NLM filter and 
pyramidal approach showed the best results in this regime.

As a next step to validate the developed algorithms, data 
from a phantom with different amounts of creatine and nico-
tinamide were examined and analyzed. The CEST data of the 
phantom could be reliably analyzed with respect to the pools 
of amide and creatine. The fit of the z-spectra was good with 
very small distance squares.

To validate our multi-pool fitting algorithm with real 
in vivo CEST data, the examination of the lumbar spine 
of a healthy subject was recorded and analyzed. Although 
ground truth is understandably not available, the quality of 
the analysis with our algorithms can be described as good. 
The geometric shape with higher GAG amplitudes within 
NP areas is realistic and comparable to previous studies [34]. 
It is noteworthy here that the proposed analysis does not 
require external corrections of B0-induced frequency shifts 
and time-consuming measurement methods such as WASSR. 
Upsampling of the z-spectra was also not necessary.

Although quantitative CEST may be used in the future to 
determine labile proton concentration and the corresponding 

exchange rate, it is not currently used for in-vivo measure-
ments because of high complexity of biological tissues, 
which contain a large variety of metabolites, proteins and 
macromolecules. The contributions from all these poten-
tial CEST pools cannot be separated by the conventional 
 MTRasym analysis. Moreover, the in-vivo measured  MTRasym 
values are often significantly affected by the semisolid MT 
asymmetry, NOE effects and  B0 shifts. As demonstrated 
in this and previous studies, the application of Lorentzian 
fitting improves the interpretation of the individual CEST 
effects. This might be particularly advantageous when ana-
lyzing CEST data acquired at high pre-saturation power lev-
els that create a stronger overlap between different CEST 
peaks and enhance the confounding direct spillover effect.

The pyramidal method, which is similar to the IDEAL 
approach [12], can lead to regionally varying inaccuracies, 
especially in highly heterogenous tissues that are present 
within the same image. Moreover, the downsampling and 
upsampling process may introduce further image artifacts 
such as aliasing and staircase artifacts. Therefore, we imple-
mented the edge-preserving spatial filtering method NLM 
to reduce the image noise. As shown in our study, a combi-
nation of the NLM and the pyramidal approach can further 
improve CEST analysis.

There are already other software tools for processing 
CEST data. Most of them are suitable for advanced users. 
QuantiCEST is part of the large Quantiphyse toolbox and 
uses sophisticated Bayesian analysis methods for quantita-
tive CEST analysis [35, 36]. QuantiCEST has been devel-
oped in Python and therefore requires an initial installation 
of the Python environment. Although QuantiCEST is easy to 
use, its detailed and sophisticated features make it more suit-
able for advanced CEST experts. Cest_eval from the cest-
sources project is a very sophisticated CEST tool that uses 
Lorentzian fitting, but also implements quantitative methods 
such as MTRRex or AREX [37, 38]. As it is developed in 
Matlab, it is aimed at CEST professionals with Matlab skills. 
BayCEST uses the Bayesian approach and has been devel-
oped as part of the extended FSL suite for advanced analysis 
of functional brain imaging data [34, 39]. FSL runs under 
the Linux operating system and is a very comprehensive 
brain suite tool. Therefore, BayCEST is intended for special-
ists only. MITK is a large and sophisticated medical imag-
ing platform and medical imaging toolkit for the develop-
ment of interactive medical imaging software. MITK CEST 
is a module implemented on top of MITK [40]. It enables 
 MTRasym, Lorentzian fitting, and WASABI [41]. Due to the 
complex nature of MITK, it is also intended for advanced 
users. There are other tools available for the analysis of 
CEST data, but most of them are written in Matlab or Python 
and are intended for use only by medical imaging scientists.

In contrast, calf has been developed with the intention of 
being easy to use, not only for experts in CEST MRI. Much 
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effort has been put into usability and the graphical user inter-
face (GUI). The GUI is that of a standard Microsoft Windows 
application, where even less experienced users can get along. 
Additional calf can be started by simply double-clicking on 
the application, even without software installation.

Recent studies by Cohen et al. and Perlman et al. have dem-
onstrated the potential of deep learning for CEST imaging, 
but may not be accessible or transparent to a broader, non-
technical audience [42, 43]. However, we see the potential to 
incorporate AI-based methods into our system in the future 
to improve the performance and efficiency of the analysis.

The main purpose of our study was to introduce a free 
software for an easy and reliable analysis of CEST data. In 
the future, further studies need to be conducted comparing 
the implemented algorithms with other existing methods, 
e.g., in terms of noise reduction of z-spectra and other tech-
niques to improve the stability of the CEST results such as 
image registration or  B0 and  B1 corrections [44–46].

In summary, we have developed a novel tool for Lorentzian 
analysis of CEST data, which uses the edge-preserving non local 
mean noise filter and pyramidal approach to provide robust quan-
tification of the CEST MRI effects in a multipool system. The 
proposed methods were validated using in-silico, in-vitro and in-
vivo CEST data. The algorithms were implemented in easy-to-use 
software that runs on the Microsoft Windows operating system 
and will be made available to the CEST research community.
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