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Leaders

Inhibition of xanthine oxidase by allopurinol:
A therapeutic option for ischaemia induced

pathological processes?

Allopurinol was synthesised in the late 1950s to
inhibit the oxidative degradation of mercaptopurine
(for review see Ref 1). By that time there seemed to
be no feasible way of increasing the rate of mer-
captopurine conversion to thioinosinic acid, its
cytotoxic nucleotide derivative. Further research
focused on possible inhibition of the mercapto-
purine major degradative pathway, which involves
oxidation by xanthine oxidase to the inert
compound thiouric acid. It was soon recognised that
allopurinol could reduce the effective dose of
mercaptopurine severalfold. In addition, allopurinol
prevented increased serum urate concentrations and
urinary uric acid excretion produced by chemo-
therapy, and the compound has smce been almost
routinely used for this purpose.”™ Inhibition of
xanthine oxidase by allopurinol is particularly useful
in diseases due to or complicated by hyperuri-
caemia, hgperuricosuria, or urinary urate stone
formation,” with an adverse reaction rate of about
3-5%.% In recent years a growing number of experi-
mental studies have indicated that oxygen derived
free radicals may be involved in the pathogenesis of
diverse disease states, including chronic inflamma-
tory polyarthritis. In this leader we examine the role
of xanthine oxidase catalysed reactions in reper-
fusion tissue damage and summarise data already
published suggesting that allopurinol may be bene-
ficial in ischaemia mediating pathological processes.

Link between xanthine oxidase and reperfusion
injury

Enhanced capillary permeability and oedema
formation are subtle indicators of ischaemic injury.
When ischaemia is maintained, leakage of cytosolic
enzymes causes more pronounced damage, which
may be manifested by microscopic or gross macro-
scopic changes. and will ultimately produce tissue
death. A substantial body of evidence indicates that
oxygen derived free radicals play a major part in
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producing the microvascular and parenchymal
damage associated with reperfusion of ischaemic
tissues. McCord et al suggested that one of the most
active sources for increased intracellular generation
of oxygen free radicals in tlssues after ischaemia is
the enzyme xanthine oxidase,”® particularly in
those organs characterised by high enzyme acti-
vities, such as the small intestine and liver.® This
proposal is based on three lines of evidence: (a)
xanthine oxidase is a well documented biological
source of oxygen radicals'’; (b) xanthine oxidase is
present in a wide variety of tissues’; and (c)
allopurinol  provides protection agamst diverse
tissue mjurles associated with ischaemia-reper-
fusion.® This hypothesis implies the conversion of
xanthine dehydrogenase to xanthine oxidase during
ischaemia coupled with the availability of molecular
oxygen and purine substrates, hypoxanthine and
xanthine, according to the following sequence (Fig.
1): When a tissue becomes ischaemic a number of
pathological events occur, including depletion of
cellular stores of high energy adenine nucleotides
(ATP, ADP, AMP). This leads to a build up of
hypoxanthine and xanthine, which serve as oxidis-
able purine substrates.!""!* In addition, the cell’s
energy charge reduction limits the maintenance of
an adequate ion gradient across its membranes. The
resulting increased cytosolic calcium concentratlon
has been proposed to activate a protease’ which
converts xanthine dehydrogenase, the originally
synthesised form of xanthine oxidase that accounts
for about 90% of the total activity in a healthy tissue
and is NAD™ dependent, to xanthine oxidase which
is oxygen dependent.!* When reperfusion takes
place oxygen availability is restored to a tissue (a)
with high concentrations of oxidisable substrates
(hypoxanthine and xanthine) and (b) with an
enzyme that uses molecular oxygen (xanthine
oxidase). After addition of xanthine to xanthine
oxidase the enzyme generates superoxide radicals
(-O3). which can react with superoxide dismutase
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Fig. 1 Proposed mechanisms of
allopurinol protection against
ischaemia-reperfusion tissue
damage. Allopurinol is a scavenger
of hydroxyl radicals (-OH), which
are formed from superoxide
radicals (-03). Inhibition of
xanthine oxidase by allopurinol
may limit superoxide generation.
This enzymatic inhibition results in
an increased availability of
hypoxanthine for purine
nucleotide synthesis (dashed line).
In addition, allopurinol conversion
to allopurinol ribonucleotide
inhibits 5'-nucleotidase and
prevents inosine monophosphate
(IMP) and adenosine
monophosphate (AMP)
dephosphorylation, thereby
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to form hydrogen peroxide (H,0,) in proportions
dictated by the 5pH, and superoxide and xanthine
concentrations.!> Superoxide and hydrogen per-
oxide can further generate the powerful oxidant
hydroxyl radical (-OH), depending upon the
presence of suitable transition metal catalysts, such
as iron or copper.!® Iron metabolism has been
implicated in the pathogenesis of rheumatoid
arthritis. Increased concentrations of iron salts have
been found in the synovial fluid of patients with
rheumatoid arthritis,!” and ferritin correlates with
indices of inflammatory activity.'® !°

Reactive oxygen species are capable of reversibly
or irreversibly damaging compounds of all bio-
chemical classes, including nucleic acids, proteins
and free amino acids, lipids and lipoproteins,
carboh(?'drates, and connective tissue macromole-
cules.?’ 2! In addition to the xanthine oxidase
system, other possible sources of oxygen radical
production at the moment of reperfusion include
the electron transport chain,? leucocytes,> and
certain oxidative enzymes such as cytochrome
P-450 reductase.”* Oxygen free radicals have
been implicated in ischaemia-reperfusion in;ur?f
in multiple tissues, including the brain,? heart,*%
stomach,” small intestine, 3! pancreas, 3?4
kidney,® liver,*** muscle,** and skin flaps.*!
Evidence for this implication comes from studies in
which the administration of a superoxide generating
system (a purine base with xanthine oxidase and
oxygen) caused tissue damage,**™> and from con-
trolled animal experiments in which radical
scavengers attenuated tissue injury following
ischaemia-reperfusion 26 30 32 42 46-4 Recently,

facilitating adenosine triphosphate
(ATP) synthesis.

several authors measured directly in vitro free
radical concentrations by electron paramagnetic
resonance.**5? This technique is similar to nuclear
magnetic resonance in that a sample is placed within
a magnetic field and energy is absorbed by a
paramagnetic particle. The spectra obtained allow
distinct identification of the individual free radical
species generated. During the period of ischaemia
little change in radical composition was observed.*’
When reperfusion started, however, a burst of free
radical production® or stable products reacting with
these radicals’*>? were measured. Thereafter
radical production decreased rapidly with time.*
Direct evidence of free radical production in the
intact animal was recently provided by Bolli et al.*
By means of a spin trap these authors showed that
the intensity of oxygen radical generation by the
reperfused myocardium was related to the severity
of ischaemia and was maximal two to four minutes
after restoration of blood flow (90 times above
ischaemic values). Thereafter the release of the
trapped radical declined but continued for up to
three hours after reperfusion. These studies provide
direct evidence to support the hypothesis that
reactive oxygen species are mainly generated within
a few minutes after restoration of blood flow.*53
This concept is particularly important in delineating
possible therapeuticinterventions as, to be effective, a
free radical scavenger would have to be present at
the moment of reperfusion; any brief delay would
probably reduce the efficacy of the agent.

The above pathogenic mechanism may be
applicable to the inflamed synovium. In fact several
clinical observations have suggested that chronic



synovial inflammation can also be due to hypoxic-
reperfusion injury mediated by oxygen radicals.>*
Blake et al recently reported,” in inflammatory
synovitis due to several rheumatic conditions, that
exercise of the knee is associated with (a) an
increase in intra-articular pressure that exceeds the
capillary perfusion pressure, (b) a fall in synovial
fluid Po, followed by an increase to suprabasal
levels after exercise, (c) a mean reduction of the
synovial capillary perfusion of 90% from baseline
values, and (d) a significant rise in lipid peroxidation
products and in fluorescent IgG, which indicates
free radical damage to the protein.>® Free radical
modification of IgG may render this molecule
antigenic and reactive with rheumatoid factor,
thereby promoting immune complexes formation
and chronic inflammation.>” These results strongly
support the hypothesis that chronic synovial
inflammation may be mediated by reactive oxygen
species generated during exercise induced hypoxia-
reperfusion. In an attempt to define both the
cellular source and the oxygen radical species
produced Zweier et al showed that endothelial cells
subjected to anoxia-reoxygenation generated super-
oxide derived hydroxyl radicals, which caused cell
damage, and that most of the oxygen radical
production was derived from the xanthine oxidase
enzyme system.>® This system is present in both
normal and diseased synovial tissue.> On the other
hand, normal human synovial fluid contains no
superoxide dismutase, catalase, or glutathione
peroxidase to protect against the gotential damage
produced by oxygen free radicals.*

Possible strategies to prevent oxygen free radical
reperfusion injury

From a theoretical point of view two main strategies
could be proposed to prevent free radical mediated
reperfusion injury: reduction of oxygen radical
formation and administration of free radical
scavenging agents. Some authors believe that,
among the various potential sources of free radicals,
xanthine oxidase mediated degradation of purine
bases is the most important source, and thus
is a potential target for therapeutic inter-
vention.” 83461 62 [n fact the administration of
allopurinol has been shown to protect against
haemorrhagic shock induced gastric lesions,** to
prevent increased vascular permeability associated
with intestinal® and skeletal muscle ischaemia,* to
ameliorate experimental acute pancreatitis,* to
protect renal® and liver*® function after ischaemia,
to reduce myocardial infarct size elicited by
coronary artery ligation®® % and reperfusion
induced arrhythmias,'”” ® and to improve the
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survival rate of skin flaps,” and the survival of dog
kidney’! 7? and liver”® after transplant.

The mechanism by which allopurinol exerts a
protective effect in ischaemia-reperfusion injury is
probably multifactorial (Fig. 1). Allopurinol and
oxypurinol are scavengers of the highly reactive
hydroxyl radicals.%? Allopurinol and oxypurinol may
also limit superoxide generation through xanthine
oxidase inhibition.” # In addition, allopurinol and
oxypurinol may be converted to their corresponding
ribonucleotides by the enzyme hypoxanthine
phosphoribosyltransferase.”*  Allopurinol  ribo-
nucleotide causes a 50% inhibition of 5'-nucleo-
tidase at a concentration of 10 umol/l.”> This may
prevent the dephosphorylation of inosine and
adenosine monophosphates, thereby facilitating
ATP resynthesis. Furthermore, inhibition of
xanthine oxidase by allopurinol elicits an increased
availability of hypoxanthine that may be salvaged
for purine nucleotide synthesis.” 7’ Enhancement
of hypoxanthine reutilisation may save a substantial
quantity of energy’® as five molecules of ATP are
required for inosine monophosphate synthesis via de
novo pathway, whereas the conversion of hypo-
xanthine to inosine monophosphate uses only one
molecule of ATP for phosphoribosylpyrophosphate
synthesis. This energy sparing pathway may be
crucial for adequate organ function after a trans-
plant. ATP recovery after global or regional
ischaemia via de novo purine synthesis usually
requires one to seven days,”*®!' and it has been
shown that the ability of rat liver to regenerate its
ATP and to maintain an adequate energy charge
during restoration of hepatic blood flow determines
tissue viability and the survival of the animal.®? In
addition, loss of adenine nucleotides appears to be a
good marker of human liver graft damage,®® and
total adenine nucleotide concentration during cold
storage has been related to the viability of the
graft.®® Preliminary experiments in our laboratory
have shown that the decrease in dog liver ATP after
30 minutes of partial warm ischaemia was from
(mean (SD)) 1-97 (0-23) to 1-10 (0-54) umol/g of wet
tissue (p<<0-001). In contrast, when allopurinol (50
mg/kg of body weight) was infused for 30 minutes
before and during ischaemia the decrease was from
2:22 (0-15) to 1-96 (0-22) umol/g of wet tissue
(p>0-05). The mean decrease in total adenine
nucleotides (ATP plus ADP plus AMP) in control
dogs at the end of the ischaemic period was —0-82
umol/g of wet weight, whereas in dogs pretreated
with allopurinol total adenine nucleotides remained
essentially unchanged (Mateos FA, Puig JG,
Delgado VD, manuscript in preparation). Res-
toration of adenine nucleotides in the reperfused
rat* or dog® liver after ischaemia was not in-
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fluenced by allopurinol pretreatment. Our results
are similar to those reported in ischaemic kidneys®®
and emphasise the ability of allopurinol to prevent
total adenine nucleotide depletion during ischaemia.
In other ischaemic settings, however, allopurinol
promoted total adenine nucleotide repletion,*’
probably as a consequence of enhanced hypo-
xanthine reutilisation.

Inhibition of xanthine oxidase by allopurinol may
not be a universal mechanism by which this drug
protects ischaemic tissues. Some studies using the
rabbit heart, which is devoid of measurable xanthine
oxidase activity, showed that allopurinol improves
postischaemic left ventricular function® and
preserves the myocardial ATP content.®® This led to
the postulation that additional protective mech-
anisms of allopurinol, in addition to its oxygen
radical scavenging effect,”” may include an en-
hanced antioxidant capacity of myocardial tissue.®

Future directions

An increasing body of knowledge has implicated
free radical mediated processes in a wide spectrum
of different types of human diseases. Among the
various potential strategies for reducing oxygen free
radical toxicity there is significant evidence that
allopurinol exerts a protective effect through several
related but not completely understood mechanisms.
We are aware of no studies specifically designed to
evaluate whether free radical scavenger agents, such
as allopurinol, could be beneficial in clinical
situations associated with severe tissue damage after
significant ischaemia and reperfusion. As we look
back on the advances in the treatment of uric acid
related diseases we can only hope that similar
progress will be made in the elucidation of the
intricacies of free radical formation and their inter-
action with other systems.”’ Further studies in this
area of basic and integrated clinical research should
provide fascinating insights into physiological and
pathological processes, and would ultimately dictate
relevant advances in protecting the body against free
radical mediated diseases, such as myocardial
ischaemia, inflammatory diseases, or rheumatic
conditions.
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