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Abstract
Localization of anatomical landmarks is essential for clinical diagnosis, treatment planning, and research. This paper proposes 
a novel deep network named feature aggregation and refinement network (FARNet) for automatically detecting anatomical 
landmarks. FARNet employs an encoder-decoder structure architecture. To alleviate the problem of limited training data 
in the medical domain, we adopt a backbone network pre-trained on natural images as the encoder. The decoder includes a 
multi-scale feature aggregation module for multi-scale feature fusion and a feature refinement module for high-resolution 
heatmap regression. Coarse-to-fine supervisions are applied to the two modules to facilitate end-to-end training. We further 
propose a novel loss function named Exponential Weighted Center loss for accurate heatmap regression, which focuses on the 
losses from the pixels near landmarks and suppresses the ones from far away. We evaluate FARNet on three publicly avail-
able anatomical landmark detection datasets, including cephalometric, hand, and spine radiographs. Our network achieves 
state-of-the-art performances on all three datasets. Code is available at https:// github. com/ Juven ileIn Wind/ FARNet.

Keywords Anatomical landmark detection · Deep network · Feature aggregation · Feature refinement · Exponential 
weighted center loss

Introduction

Anatomical landmark localization is a prerequisite not only 
for patient diagnosis and treatment planning [1–4], but also 
for numerous medical image analysis tasks including image 
registration [5, 6] and image segmentation [7]. In practice, 
manually or semi-automatically locating landmarks is tedi-
ous, time-consuming, and prone to errors. Therefore, there 
is a strong need for fully automatic and accurate landmark 
localization approaches. But identifying anatomical land-
marks is challenging because of the variations in individual 
structures, appearance ambiguity, and image complexity. 
Anatomical landmark localization has been applied to 2D 
and 3D medical image modalities. The examples of 2D 
modality include cephalometric and hand radiographs, and 

the examples of 3D modality include 3D brain MR scans, 
3D olfactory MR scans, and 3D prostate CT images. In this 
paper, we focus on 2D anatomical landmark localization.

In recent decades, numerous automatic anatomical land-
mark detection methods have been proposed. Rule-based 
methods [8, 9] utilize image processing techniques to detect 
edges/contours and identify the landmarks based on prior 
knowledge of the landmark structures. However, rules would 
become too complex to formulate with increasing image 
complexity. Some works adopt template matching [9–11] 
to locate landmarks. To consider both the local appearance 
and the global spatial configuration of landmarks, some 
works [12–15] employ the Active Shape Model and Active 
Appearance Model. Later, machine learning algorithms, 
such as neural networks, SVM, and random forest, have been 
applied to landmark localization for better generalization in 
case of anatomical variation and noise. These methods for-
mulate landmark localization as a classification problem or 
a regression problem. Classification-based methods [16–20] 
determine whether a landmark is located in an image patch. 
Regression-based methods [6, 7, 21–28] predict the dis-
placement from an image patch to a certain landmark. Some 
machine learning–based approaches [7, 18, 20, 24–26, 28] 
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further combine the local predictions with global configura-
tion modeling to improve the detection accuracy.

Deep learning has achieved great success in many fields, 
such as computer vision and natural language processing. It 
has also been applied to medical image analysis, including 
anatomical landmark detection. However, the limited medi-
cal training data makes it challenging to train deep networks 
for anatomical landmark detection. To alleviate this prob-
lem, some deep learning–based landmark detection methods 
perform patch-wise regression/classification [29–31]. How-
ever, it is time-consuming for these methods to train and test 
on many image patches. In addition, patch-based methods 
only utilize local information and ignore global information, 
making them unable to predict all landmarks accurately. 
Recently, a few end-to-end CNN-based methods have been 
proposed for landmark detection, which utilizes an entire 
image as input and facilitates the modeling of global infor-
mation. Some of these methods [32, 33] directly regress the 
landmark coordinates, and others [32, 34–38] adopt fully 
convolutional networks (FCN) to regress heatmaps, each of 
which encodes the pseudo-probability of a landmark at a 
specific pixel position. However, due to the limited training 
data, very shallow networks are adopted in these methods 
and limit their capacities. In addition, the previous net-
works’ output resolutions usually have a stride of 4 or are 
even smaller, further introducing quantization errors to the 
predictions. Therefore, there is a need for developing deep 
networks with high-resolution feature extraction for accurate 
anatomic landmark detection.

This paper proposes a novel end-to-end deep network, 
FARNet (shown in Fig. 2), for anatomic landmark detection. 
FARNet employs an encoder-decoder structure architecture. 
To alleviate the problem of limited training data, we adopt a 

backbone network pre-trained on natural images as the encoder. 
The decoder includes a multi-scale feature aggregation (MSFA) 
module and a feature refinement (FR) module. The MSFA 
module combines multi-scale features extracted by the back-
bone with up-sampling and down-sampling paths and skip 
connections. Features with different resolutions are combined 
by concatenation in a higher-resolution-dominate manner. The 
elaborate design of the MSFA module achieves a good trade-off 
between the network capacity and efficiency. To achieve high-
resolution prediction, we propose the FR module that combines 
the feature maps extracted from the input image with the up-
sampled feature maps and heatmaps from the MSFA module 
to generate feature maps with the exact resolution as the input 
image. Coarse-to-fine supervisions are also applied to the two 
modules to facilitate end-to-end training. To achieve accurate 
heatmap regression, we propose a novel loss function named 
Exponential Weighted Center loss, which focuses on the errors 
from the pixels near landmarks and suppresses the losses from 
far away. FARNet is evaluated on three publicly available data-
sets in the medical domain (examples are shown in Fig. 1): the 
cephalometric radiograph dataset [4], the hand radiograph data-
set [37], and the spinal anterior-posterior X-ray dataset [33]. 
Our network achieves state-of-the-art performances on all these 
datasets, proving our network’s effectiveness and generality.

Our contributions are summarized as follows, 

1. We propose a novel deep network with encoder-decoder 
architecture for anatomic landmark detection, which can 
fuse multi-scale features from the encoder and achieve 
high-resolution heatmap regression.

2. We compare several widely used pre-trained networks as 
the encoder of our network, and DenseNet-121 achieves 
the best performance.

Fig. 1  Sample images and the 
anatomical landmarks for three 
datasets used in this paper. 
From left to right are lateral 
cephalogram with 19 land-
marks, radiograph of left hand 
with 37 landmarks, and spinal 
anterior-posterior X-ray with 68 
landmarks
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3. To achieve more accurate localization, we propose a 
novel loss function named Exponential Weighted Center 
loss for heatmap regression.

4. Experimental results indicate that our network achieves 
state-of-the-art performances on three public medical 
datasets.

The rest of this paper is organized as follows. The “Related 
Work” section presents a brief review of the related works. 
Our proposed network and loss function are described in the 
“Proposed Method” section. The “Experiments and Results” 
section reports the experimental setups and results on three 
public medical datasets. Finally, the discussion and conclu-
sion are give in the “Discussion” section and “Conclusion” 
section respectively.

Related Work

Deep Learning Methods for Anatomical Landmark 
Detection

Deep learning has achieved great success in many computer 
vision applications and has also been applied to anatomic 
landmark detection. One of the main challenges to deep 
learning–based anatomical landmark detection is the limited 

medical imaging data for network training. Some methods 
perform patch-wise regression/classification to alleviate this 
problem. But the patch-based approach is time-consuming 
and unable to capture global information, which is also 
crucial for accurate prediction. For 2D landmark detection, 
another solution to the limited training data problem is to 
use the backbone networks pre-trained on natural images. 
Furthermore, different methods have been proposed to incor-
porate global context with local information to improve 
landmark prediction. For example, some methods combine 
patch-based CNN predictions with a statistical shape model; 
some adopt CNNs with encoder-decoder structure; others 
learn global context and local features in order or in different 
network branches.

Aubert et al. [30] utilized a deep neural network to predict 
the displacement from an input image patch to an anatomi-
cal landmark and employed a statistical shape model (SSM) 
to regularize the whole detection process. Arik et al. [31] 
trained a CNN on small patches to output probabilistic 
estimations of landmarks and refined the positions of land-
marks by a shape-based model. Xu et al. [39] leveraged an 
FCN to estimate an action map (up, down, left, or right) 
and localized landmarks based on the estimated action map 
by a robust aggregation approach. Lee et al. [32] trained 
38 independent CNNs to regress the coordinates of the 19 
cephalometric landmarks separately, and their method is 

Fig. 2  The architecture of the feature aggregation and refinement 
network (FARNet). FARNet includes a backbone network (in the 
pink dashed box), a multi-scale feature aggregation (MSFA) mod-
ule (in the blue dashed box), and a feature refinement (FR) mod-

ule (in the brown dashed box). We also give the feature level labels 
{L0,L1,L2,L3,L4,L5} at the left side of the figure, and all feature 
maps at the same horizontal level have the same spatial resolution
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very time-consuming for training and testing. Wu et al. [33] 
extended a CNN with a robust feature embedding layer to 
remove outlier features and a structured multi-output regres-
sion layer to regress landmark coordinates.

However, direct regression of the coordinates from 
images involves a highly nonlinear mapping, which has been 
noticed by research works for human pose estimation [40, 
41]. Therefore, many landmark detection methods regress 
heatmaps, each of which encodes the pseudo-probability of a 
landmark located at a specific pixel position. Payer et al. [35] 
used CNN to regress the heatmap of each landmark and 
used another network to combine the local feature of each 
landmark with its spatial relations to all other landmarks to 
improve the prediction accuracy. O’Neil et al. [36] trained 
an FCN with low-resolution images to learn spatial con-
text, trained another FCN with higher resolution images, 
and learned spatial information for further refinement. Payer 
et al. [37] combined U-Net and their SpatialConfiguration-
Net by multiplying their output heatmap predictions for 
accurate and robust landmark detection. Zhong et al. [38] 
proposed two-stage U-Nets for landmark detection. A global 
U-Net takes an entire image as input and regresses the heat-
maps of landmarks in low resolution. Guided by the coarse 
attention from the global stage, a local stage with patch-
based U-Net regresses heatmaps in high resolution. Chen 
et al. [42] proposed an attentive feature pyramid fusion mod-
ule to fuse features from different levels of a pre-trained 
network, then combined predicted heatmaps and offset maps 
to perform pixel-wise regression voting to improve detection 
accuracy. DACFL [43] forces the CNN to learn richer rep-
resentations by perturbing the local appearance of training 
images based on prior anatomical distribution and adopts the 
Anatomical Context loss to help learn the anatomical context 
based on spatial relationships between the landmarks.

Some works transfer landmark detection to other tasks, 
such as objection detection and image segmentation. For 
example, Qian et  al.  [44] detected landmarks by Faster 
R-CNN with a multi-task loss function and used a two-stage 
repair strategy to remove the abnormal candidate landmarks. 
Liu et al. [45] converted landmark detection to segmenta-
tion of the landmark’s local neighborhood and solved it with 
a U-Net-based approach which employs a non-local mod-
ule with pyramid sampling to capture the global structural 
features.

To alleviate the problem of limited training data, we uti-
lize a backbone network pre-trained on nature images whose 
feature extraction capacity is more potent than the shallow 
U-Net-based networks. The work [42] also uses a pre-trained 
network to extract multi-scale features and enhances the 
fused features with attention to improve the prediction accu-
racy. However, the main drawback of this work is that the 
number of its attention-enhanced feature maps is linear to 
the number of landmarks which significantly increases the 

number of parameters, memory storage, and computational 
cost.

Multi‑scale Feature Fusion

By aggregating features at multiple resolutions, multi-scale 
feature fusion can combine local information with context 
to improve feature discriminability. In the last a few years, 
some multi-scale feature aggregation networks have been 
proposed for object detection [46, 47], image segmenta-
tion [48–50], and human pose estimation [51, 52]. Among 
them, the encoder-decoder structure is widely used. An 
encoder module contains a down-sampling convolution 
path to extract the semantic and context information from 
an input image, and a decoder module has an up-sampling 
convolution path to recover spatial information of features. 
Skip connections are often added from encoder layers to 
the corresponding decoder layers with the same resolution 
to preserve spatial information at each resolution. Some 
encoder-decoder networks, such as U-Net [49] and Hour-
glass [51], are shallow networks that limit their capacities. A 
solution to this is to stack multiple such networks as in [51], 
but it remarkably increases the number of parameters and 
model size. Other networks, such as FCN [48], FPN [46], 
DeepLab [50], and the simple baseline network [52], use 
pre-trained networks like VGG [53] and ResNet [54] as their 
encoders for feature extraction, and an up-sampling path as 
a decoder to combine multi-scale features. PANet [47] adds 
an extra down-sampling feature aggregation path on top of 
FPN to enhance the entire feature hierarchy with accurate 
localization signals. Tan et al. [55] proposed BiFPN, which 
treats each bidirectional (up-sampling and down-sampling) 
path as a feature network layer and repeats it multiple times 
to enable more high-level feature fusion. In the work [42] for 
cephalometric landmark detection, 1 × 1 lateral connections 
and up-sampling are used to fuse features from different lev-
els of the backbone network.

Inspired by FPN and its variations, we propose a MSFA 
module. For the network capacity and efficiency trade-off, 
we construct the MSFA module with one bidirectional (up-
sampling and down-sampling) path followed by an up-sam-
pling path. The MSFA module has one more down-sampling 
and up-sampling path than FPN and is more effective. Com-
pared to PANet and BiFPN, the MSFA has one more up-
sampling path to support higher-resolution prediction. The 
MSFA module is more efficient than BiFPN with repeated 
bidirectional paths.

Loss Functions for Keypoint Detection

Besides medical landmark detection, keypoint detection has 
other applications, such as facial landmark detection and 
human pose estimation. In [56], Feng et al. demonstrated 
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that the L1 and smooth L1 loss functions performed much 
better than the L2 loss for coordinate regression–based facial 
landmark detection and proposed the wing loss to improve 
the accuracy of facial landmark detection further. Recently, 
heatmap regression has become the mainstream approach 
to keypoint detection tasks, and the Mean Square Error 
(MSE) loss, also known as L2 loss, is the commonly used 
loss function. However, the wing loss does not apply to heat-
map regression due to its high sensitivity to small errors 
on background pixels and the discontinuity of gradient at 
zero. The Adaptive Wing loss [57] updates it for heatmap 
regression to focus more on loss from foreground pixels than 
background pixels. The drawback of the Adaptive Wing loss 
is that it has four hyper-parameters to tune.

This paper proposes a more straightforward and effective 
loss function with only one hyper-parameter for heatmap 
regression. We update the MSE loss by multiplying a factor 
to focus more on errors at the pixels near landmarks than 
from far away. Our experiments indicate the new loss func-
tion is more effective than the Adaptive Wing loss and other 
loss functions for anatomic landmark detection.

Proposed Method

Feature Aggregation and Refinement Network

The architecture of our FARNet is shown in Fig. 2, which 
employs the encoder-decoder structure architecture. To alle-
viate the problem of limited training data in the medical 
domain, we utilize a backbone network of DenseNet [58] 
pre-trained on ImageNet [59] as the encoder, which extracts 
feature maps at multiple scales. The decoder includes a 
MSFA module and a feature refinement (FR) module. The 
MSFA module consists of up-sampling, down-sampling 
feature aggregation paths, and lateral connections to fuse 
multi-scale features extracted by the backbone. The FR 
module generates high-resolution feature maps for landmark 
prediction.

FPN [46] uses the feature maps output by the last resid-
ual block of convolution stages 2, 3, 4, and 5 of ResNet 
and denotes them as {C2,C3,C4,C5} which have strides 
of {4, 8, 16, 32} pixels with respect to the input image. The 
stem block of ResNet includes a 7 × 7 convolutional layer 
with stride 2 followed by a max-pooling layer with stride 
2. Following FPN, we denote the feature maps output from 
the convolutional layer of the stem block as C1, which has 
a stride of 2. For convenience, we denote the feature levels 
of a CNN as {L0, L1, L2, L3, L4, L5} which have strides of 
{0, 2, 4, 8, 16, 32} , respectively.

For high-resolution prediction, the MSFA module com-
bines feature maps from C1 to C5. And our FR module fur-
ther combines feature maps with the same resolution as the 

input image, denoted as C0. Note that FPN and PANet com-
bine features from C2 to C5, and BiFPN fuses features from 
C3 to C7 of EfficientNets. Compared to them, our network 
generates higher-resolution feature maps, which is helpful 
for accurate landmark detection. More details about the 
MSFA module and FR module are given in the following.

Multi‑scale Feature Aggregation Module

The practice of FPN, PANet, and BiFPN demonstrates the 
effectiveness of the up-sampling and down-sampling fea-
ture fusion paths, and the more paths, the better fusion. For 
the network capacity and efficiency trade-off, we construct 
the MSFA module with one bidirectional (up-sampling and 
down-sampling) path followed by an up-sampling path. 
Compared to PANet and BiFPN, the MSFA ends with an 
up-sampling path to support high-resolution prediction. In 
addition, the MSFA module is more efficient than BiFPN 
due to the fewer bidirectional paths. On the other hand, 
these previous networks utilize the feature maps from C3 
and above of the backbone network; except for these feature 
maps, the MSFA module also fuses the feature maps from 
L1 and L2 to generate higher-resolution feature maps.

Figure 3a shows the feature fusion block of the up-sampling 
path in the MSFA module. In this block, the coarser-resolution 
feature maps are up-sampled by a factor of 2 and channel-
wisely concatenated with the feature maps from the previous 
down-sampling path having the same resolution. And the con-
catenated feature maps go through a 1 × 1 convolution layer 
to reduce the number of channels to 256. In the second up-
sampling path, we reduce the number of channels to 128 at L2 
and 64 at L1 and perform a 3 × 3 and 1 × 1 convolution at the 
end of the path to regress heatmaps.

Figure 3b shows the feature fusion block of the down-
sampling path. In this block, the finer-resolution feature 
maps are down-sampled by a 3 × 3 convolution with stride 
2. The number of channels is doubled to compensate for the 
loss of information caused by the decrease in resolution. 
The down-sampled feature maps are channel-wisely concat-
enated with the feature maps from the previous up-sampling 
path having the same resolution. And the number of chan-
nels is reduced back to that of the down-sampled feature 
maps by a 1 × 1 convolution.

In the above feature fusion blocks, the feature maps with 
higher resolution are emphasized by keeping more channels than 
those with lower resolution. This higher-resolution-dominate 
strategy will help to high-resolution heatmap regression. In previ-
ous methods [46, 47, 55], feature maps with different resolutions 
are merged by addition, requiring them to have not only the same 
resolution but also the same channel size, which is not flexible 
as our feature fusion approach. After merging feature maps with 
different resolutions, we use a 1 × 1 convolution instead of a 3 × 3 
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one used in the previous methods to reduce the number of chan-
nels, and the number of parameters in this convolutional layer is 
largely reduced.

Feature Refinement Module

The feature maps output from MSFA has half the resolution 
of the input image. To achieve more accurate prediction, 
we introduce the feature refinement (FR) module to gener-
ate feature maps having the same resolution as the input 
image. In the FR module, a 3 × 3 convolution is performed 
over the input image, and the result feature maps (32 chan-
nels) are concatenated with the up-sampled feature maps 
(64 channels) and heatmaps from the MSFA module. The 
predicted heatmaps from the MSFA module are introduced 
here to guide the heatmap regression in the FR module. The 
concatenated feature maps have the same resolution as the 
input image and are the highest resolution ever used in lit-
erature. Finally, we perform a 3 × 3 convolution and a 1 × 1 
convolution over the concatenated feature maps for heatmap 
regression.

Ground‑Truth

Each of the ground-truth heatmap is generated by applying 
an unnormalized Gaussian kernel (without the normalizing 
constant) to a specific landmark location. The ground-truth 
value Hk(i, j) at (i, j) in the heatmap for landmark k is defined 
as the following,

where (ik, jk) is the ground-truth position of landmark k in a 
heatmap and � controls the spread of the peak. A heatmap 
represents the pseudo-probability or confidence of a specific 
landmark at each spatial position. An example heatmap is 
given in Fig. 4b. When the ground-truth heatmaps are used 
to train a CNN, the coordinate regression is transferred to 

(1)Hk(i, j) = exp

(

−
(i − ik)

2 + (j − jk)
2

2�2

)

the heatmap regression. At test time, the coordinates of land-
marks are recovered by performing non-maximum suppres-
sion (NMS) over the predicted heatmaps.

Before encoding coordinates into heatmaps, the original 
image needs to be down-sampled to the input size of the 
CNN. Accordingly, the ground-truth joint coordinates are 
also downsampled and quantized to get the coordinates in 
heatmaps. The heatmaps generated in this way are inaccurate 
due to the quantization error. To alleviate this problem, we 
follow [60] to use the non-quantized coordinates to generate 
more accurate heatmaps.

Exponential Weighted Center Loss for Heatmap 
Regression

In previous methods for heatmap regression, the commonly 
used MSE loss is as the following,

where L2(y, ŷ) = (y − ŷ)2 is the L2 loss, ŷi,j,k and yi,j,k are the 
pixel’s intensities at position (i, j) in the predicted heatmap 
and the ground-truth heatmap of landmark k, respectively, 
W and H are the width and height of heatmaps, and K is the 
number of landmarks. The loss for an image is the average 
of the L2 loss over pixels in heatmaps of all landmarks, and 
all pixels have the same weight in the function.

The heatmap regression tries to approach the unnormalized 
Gaussian distribution centered at each ground-truth landmark, 
then NMS is used to determine the landmark’s coordinates. 
Therefore, the regression accuracy at pixels near a landmark is 
more critical for the accurate localization of landmarks. On the 
contrary, the prediction accuracy at pixels far from a landmark 
is less critical since moderate errors on these pixels will not 
affect landmark localization. The above intuition suggests that 
the loss function can be weighted according to the intensity of 
pixels in the ground-truth heatmaps to focus on the errors at 
pixels near landmarks.

(2)Loss =
1

KWH

K
∑

k=1

W
∑

i=1

H
∑

j=1

L2(yi,j,k, ŷi,j,k)

Fig. 3  Feature fusion blocks of 
the up-sampling and down-
sampling paths. a A feature 
fusion block of the up-sampling 
path, b a feature fusion block of 
the down-sampling path
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Based on the analysis above, we proposed a novel loss func-
tion named Exponential Weighted Center loss for heatmap 
regression, which is defined as follows:

where � is a hyper-parameter. From this equation, we can 
see that the error at a position of a heatmap is weighted by 
an exponential function of the ground-truth intensity y there. 
The EWC loss function is also illustrated in Fig. 5, in which 
the horizontal axis denotes the error between the predicted 
and ground-truth intensities of a pixel, and the vertical axis 
represents the loss. At each landmark, the weight reaches 
the maximum of � , and the error there is heavily enlarged. 
On the other hand, when moving away from a landmark, 
the weight reduces exponentially to 1 when y is approach-
ing 0. Therefore, more attention is paid to the errors near a 
landmark than to the errors far away from it. In other words, 
the loss function focuses on the errors near a landmark and 
is less sensitive to the errors from the background area in an 
image. In our study, we set � to 40 to get good performance.

Coarse‑to‑fine Supervision

In [61], it is indicated that intermediate supervision plays an 
essential role in improving the performance of a deep neural net-
work. We also introduce intermediate supervision to the MSFA 
module for more accurate landmark prediction. Both the output 
feature maps and heatmaps of our MSFA module have 1/2 resolu-
tion as the input image, so we set its ground-truth heatmaps to the 
same resolution. The predicted heatmaps of our FR module have 
the same resolution as the input image, and so do its ground-truth 
heatmaps. We set the kernel size � of the ground-truth heatmaps 

(3)EWC(y, ŷ) = (y − ŷ)2𝛼y

for the two modules to the same value, which means that the 
ground-truth heatmaps for the MSFA module are coarser than 
those for the FR module. Finally, the losses from the two modules 
are equally summed as the overall loss, resulting in multi-scale 
coarse-to-fine supervision. Our experimental results demonstrate 
that the coarse-to-fine supervision can refine the localization.

Experiments and Results

Datasets

In this paper, we evaluate our landmark detection network 
on three public benchmark datasets: the cephalometric 

Fig. 4  Visualization of heatmap. 
a The shape of a 2D Gaussian 
distribution, b the heatmap of 
the first landmark layered over 
the original image

Fig. 5  The EWC loss function ( � = 40)
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radiograph dataset [4], the hand radiograph dataset [37], and 
the spinal anterior-posterior (AP) radiograph dataset [33]. 
The example of these three datasets and their typical land-
marks are shown in Fig. 1.

Cephalometric Radiographs

The cephalometric radiograph dataset is provided by the 
ISBI 2015 Grand Challenge in Automatic Detection and 
Analysis for Diagnosis in Cephalometric X-ray Images [4]. 
It consists of 400 lateral cephalometric X-ray images from 
400 subjects, with 19 annotated landmarks labeled by 
two experienced doctors. Each image has a resolution of 
1935 × 2400 , and each pixel is about 0.1mm. The dataset is 
split into a training dataset of 150 images, a Test1 dataset of 
150 images, and a Test2 dataset of 100 images. We use the 
training dataset for training, the Test1 dataset for validation, 
and the Test2 dataset for testing. We adopt the evaluation 
metrics used in the ISBI 2015 Challenge [4], including the 
mean radial error (MRE, in millimeter, the smaller, the bet-
ter), and the successful detection rate (SDR, the bigger, the 
better) in radius (2.0mm, 2.5mm, 3.0mm, 4.0mm). MRE 
is defined as the average distance between predicted and 
ground-truth landmarks, and SDR is the percentage of pre-
dicted landmarks within a pre-defined range of ground-truth 
landmarks. We take the average of two doctors’ annotations 
as ground truth.

Hand Radiographs

The hand radiograph dataset contains 895 X-ray images of 
left hands with an average size of 1563 × 2169 pixels from 
a publicly available Digital Hand Atlas1. In [37], the anno-
tations of 37 characteristic landmarks on fingertips and 
bone joints are provided. Following [37], we normalize the 
image resolution according to wrist widths and adopt the 
three-fold cross-validation setup, which splits images into 
approximately 600 training and 300 testing images per fold. 
The evaluation metrics include the mean radial error (MRE, 
in mm) and the successful detection rate (SDR) in radius 
(2mm, 4mm, 10mm).

Spinal Anterior‑Posterior Radiographs

The spinal AP radiograph dataset contains 481 spinal ante-
rior-posterior X-ray images provided by clinicians [33]. Sev-
enteen vertebrae composed of the thoracic and lumbar spine 
are selected for spinal shape characterization. Each vertebra 
is located by four landmarks at four corners, thus resulting in 
68 landmarks per spinal image. Following [33], the dataset is 

split into 431 for training/validation and 50 for testing. Since 
the authors of [33] have not shared their data split, we split 
the data randomly. The evaluation metrics include the MSE 
and Pearson correlation coefficient ( � ) between the predicted 
landmarks and annotated ground truth.

Implementation Details

Our network is implemented by PyTorch 1.0.1 and Python 
3.6. For the cephalometric radiograph dataset, the input 
image is resized to 800 × 640 , and no data augmentation is 
performed. For the hand radiograph dataset, the input image 
is resized to 512 × 512 , and data augmentation is employed 
following [37]. For the spinal AP radiograph dataset, the 
input image is resized to 1024 × 512 , and data augmentation 
is performed following [33]. Through experimental com-
parison, we set the kernel size � , which is a parameter used 
to generate the ground-truth heatmaps, to 10 and the hyper-
parameter � to 40. The network is optimized by the Adadelta 
optimizer, and the learning rate is 0.0001. The backbone 
parameters are optimized along with the entire network. We 
train our network for 300 epochs on a GTX 2080TI GPU 
with a mini-batch size of 1.

Landmark Detection Results

Cephalometric Radiographs

We first compare our method with prior state-of-the-art 
methods on the cephalometric X-ray dataset. All the experi-
mental results on Test1 data and Test2 data are shown in 
Table 1.

Ibragimov et al. [20] and Lindner et al. [25] combined 
the random forest regression-voting and the statistical shape 
analysis techniques and have achieved the best performances 
in the IEEE ISBI 2014 [3] and 2015 Challenges [4] respec-
tively. Ibragimov’s method obtains the MRE of 1.84 mm on 
Test1 data and the SDRs of 71.70% and 62.74% on Test1 and 
Test2 data, respectively, in a 2-mm precision range, which is 
the acceptable precision range in clinical practice. In the fol-
lowing description, we only mention the SDRs in this range.

Lindner’s method makes an improvement and achieves 
the MRE of 1.67 mm on Test1 data and the SDRs of 74.95% 
and 66.11% on Test1 and Test2 data, respectively. Arik 
et al. [31] combined a CNN with a shape-based model for 
landmark detection. Their method achieves the SDRs of 
75.37% and 67.68% on Test1 and Test2 data, respectively. 
Qian et al. [44] utilized Faster R-CNN to detect landmarks 
and a two-stage repair strategy to remove the abnormal 
candidate landmarks. Their method makes a remarkable 
improvement over previous methods and achieves the SDRs 
of 82.50% and 72.40% on Test1 and Test2 data, respectively. 
DACFL [43] learns richer representations and achieves the 1 Digital Hand Atlas Database System, www. ipilab. org/ BAAweb
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SDRs of 86.20% and 75.89% on Test1 and Test2 data respec-
tively. Chen et al. [42] combined multi-scale features from a 
pre-trained backbone network and employed a self-attention 
mechanism for landmark detection. Their method further 
improves and achieves the SDRs of 86.67% and 75.05% on 
Test1 and Test2 data, respectively. Zhong et al. [38] first 
utilized a global U-Net to regress coarse heatmaps from a 
downsized image and utilized the heatmaps to guide a patch-
based U-Net to regress heatmaps in high resolution. Their 
method achieves the SDRs of 86.91% and 76.00% on Test1 
and Test2 data, respectively. Finally, our FARNet makes 
1.12 and 1.00 points improvements of SDRs on Test1 and 
Test2 data, respectively, over the second-best method [38].

Considering all evaluation metrics, we can see that our 
method achieves the best results except for the SDR in a 
radius of 4mm, on which our result is only 0.05 below that 
of the work [42]. We conjecture that this slight lag is mainly 
because our loss function focuses on the errors at the pixels 
near a landmark. However, the SDR in a smaller range is 
more important than the one in a larger range because it 
measures the predictions with a smaller deviation.

Although the differences in performance between our 
method and the previous state-of-the-art methods  [38, 
42, 43] are not of clinical significance, our method has 
its advantages in engineering. DACFL [43] forces the 
CNN to learn richer representations by perturbing the 
local appearance of training images, resulting in a more 
complex training process. Chen et al. [42] utilized a self-
attention mechanism to construct weighted feature maps 
for different landmarks separately, which greatly increases 
the number of parameters and the consumption of memory 
storage. Zhong et al. [38] proposed two-stage U-Nets for 
landmark detection, which leads to inefficient training and 
testing. Our method avoids all these shortcomings.

In the cephalometric X-ray dataset, the landmarks are 
labeled by two experienced doctors. We investigate the 
inter-observer variability based on the distance between 
the annotations of the two doctors. The means and stand-
ard deviations of the distances over images and landmarks 

for the training set, Test1, and Test2 set are 2.35 ± 2.60 , 
2.36 ± 2.16 , and 1.51 ± 1.41 , respectively. The MRE of our 
method is below the inter-observer variability for both 
Test1 and Test2 sets.

Hand Radiographs

To evaluate our deep network on the hand X-ray dataset, 
we follow the standards of Payer et al. [37] and use three-
fold cross-validation. We compare our method with their 
method, which achieved the best results recently, and also 
with other prior state-of-the-art methods [23, 24, 26, 28]. 
The results are shown in Table 2. The prior state-of-the-
art methods are mainly random forest–based approaches. 
Among them, Lindner et al. [24] obtained the best SDR of 
93.68% in the 2-mm precision range, and S̆tern et al. [26] 
achieved the best MRE of 0.80mm. Payer et al. [37] com-
bined U-Net with a learned global configuration for land-
mark localization and greatly improved the performance. 
Their method obtains the SDR of 94.99% and the MRE 
of 0.66mm. Our FARNet remarkably improves the per-
formance and achieves the SDR of 97.24% and the MRE 
of 0.62mm.

Spinal Anterior‑posterior Radiographs

In this experiment, we evaluate our FARNet on the public 
spinal anterior-posterior X-ray dataset [33] and compare our 
method with BoostNet [33] and other baseline methods on 
this dataset. We conduct a 5-fold cross-validation on the 
Trainset and evaluate them on the Test data. The MSE and 
Pearson correlation coefficient ( � ) are used as the evaluation 
metrics. The unit for MSE is a fraction of the original image 
(e.g., 0.010 MSE represents an average of 10-pixel error in 
a 100 × 100 image). The experimental results are shown in 
Table 3. From it, we can see that our method outperforms 
previous methods by large margins, which proves its effec-
tiveness and generality.

Table 1  Comparison of our FARNet with prior state-of-the-art methods on the cephalometric X-ray dataset with 19 annotated landmarks

The bold value in each column represents the best result

Test1 data Test2 data

Methods Input size MRE 2mm 2.5mm 3mm 4mm MRE 2mm 2.5mm 3mm 4mm

Ibragimov et al. [20] - 1.84 71.70 77.40 81.90 88.00 - 62.74 70.47 76.53 85.11
Lindner et al. [25] - 1.67 74.95 80.28 84.56 89.68 1.92 66.11 72.00 77.63 87.42
Arik et al. [31] 800 × 640 - 75.37 80.91 84.32 88.25 - 67.68 74.16 79.11 84.63
Qian et al. [44] - - 82.50 86.20 89.30 92.60 - 72.40 76.15 79.65 85.90
Oh et al. [43] 800 × 640 1.18 86.20 91.20 94.40 97.70 1.44 75.89 83.36 89.26 95.73
Chen et al. [42] 800 × 640 1.17 86.67 92.67 95.54 98.53 1.48 75.05 82.84 88.53 95.05
Zhong et al. [38] 968 × 968 1.12 86.91 91.82 94.88 97.90 1.42 76.00 82.90 88.74 94.32
FARNet(Our) 800 × 640 1.12 88.03 92.73 95.96 98.48 1.42 77.00 84.42 89.47 95.21
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Visualization of Anatomical Landmark Detection

Figure 6 shows some representative results by our network 
on the three datasets. The red points denote the landmarks 
detected by our network, and the blue points represent the 
ground-truth landmarks.

Discussion

In this section, we analyze the influences of the important 
factors of our method based on the experiments on the 
Test1 data of the cephalometric Xradiograph dataset. We 
also elaborate on the limitation of our method and give the 
future direction.

Influence of Backbone Networks

We first conduct experiments to compare several popu-
lar backbone networks, including VGG, ResNet, and 
DenseNet. ResNet and DenseNet have a similar structure, 
as shown in Fig. 2. VGG has five convolutional blocks 
corresponding to {L0, L1, L2, L3, L4} . Therefore, our FR 
module directly combines the first block’s output feature 
maps with the up-sampled feature maps and heatmaps from 
the MSFA module. As shown in Table 4, DenseNet-121 has 
achieved the best performance; hence, we adopt it in our 
network. On the contrary, VGGNets need a much longer 
training time (900 epochs) to converge and obtain the worst 
performances.

Influence of FARNet Components

We also conduct ablation studies to understand the merit of 
the FARNet components. The components evaluated include 
our MSFA module, FR module, coarse-to-fine supervision, 
and the proposed Exponential Weighted Center (EWC) loss 
function. In addition, to validate our multi-scale feature 
fusion, we implement another version of the MSFA mod-
ule, MSFA(+), which follows FPN [46] and PAN [47] to 
merge features by addition and uses the same channel size 
setting. To evaluate the gain of coarse-to-fine supervision, 
we develop a naïve version (suffixed by *) of the FR module 
with no supervision on the MSFA and thus no heatmap from 
the MSFA introduced to the FR module. We compare our 
network with the popular U-Net [49] and FPN [46] to vali-
date our backbone and MSFA module. The MSE loss is used 
in all testing methods mentioned above. Finally, we evaluate 
the full version of FARNet, which employs the Exponential 
Weighted Center loss.

The results in Table 5 show that the original U-Net 
achieves the worst results among the comparing methods. 
Our network with only the backbone and the MSFA module 
(MSFA) can outperform it in all metrics by a large margin 
(MRE reduced by 0.21, SDR in 2.0mm improved by 1.72). 
This is because U-Net is very shallow, the pre-trained 
backbone used in our network can extract more power-
ful features, and our MSFA module enables more high-
level feature fusion. For a fair comparison, we also adopt 
DenseNet-121 as the backbone for FPN. After upsampling 
the finest feature maps from FPN to the resolution of the 
input image, 3 × 3 and 1 × 1 convolution layers are per-
formed on them to regression heatmaps. We can see from 
the experimental results that FPN is better than U-Net, 
mainly due to the backbone used. MSFA(+) outperforms 
FPN, which indicates one more down-sampling and up-
sampling path can make a better feature fusion. And our 
MSFA module can further improve over MSFA(+) due to 
its more flexible feature fusion strategy.

The naïve version of the FR module (FR*) reduces MRE 
by 0.01 and improves SDR in 2.0mm by 0.74. When apply-
ing coarse-to-fine supervision to the FR module and MSFA 
module and introducing the up-sampled heatmaps from 
MSFA to the FR module, the FR module further reduces 

Table 2  Landmark localization 
results from a three-fold cross 
validation on the hand X-ray 
dataset with 37 annotated 
landmarks and compare with 
other methods

The bold value in each column represents the best result

Methods Input size MRE ± Std (mm) 2mm (%) 4mm (%) 10 mm (%)

Urschler et al. [28] 1250 × 1250 0.80 ± 0.93 92.19 98.46 99.95
S̆tern et al. [26] 1250 × 1250 0.80 ± 0.91 92.20 98.45 99.95
Ebner et al. [23] 1250 × 1250 0.97 ± 2.45 91.60 97.84 99.31
Lindner et al. [24] 1250 × 1250 0.85 ± 1.01 93.68 98.95 99.94
Payer et al. [37] 512 × 512 0.66 ± 0.74 94.99 99.27 99.99
FARNet(Our) 512 × 512 0.62 ± 0.55 97.24 99.8 100

Table 3  Landmark localization results on the spinal anterior-posterior 
X-ray dataset with 68 annotated landmarks and compare with other 
methods. The units of MSE are the fraction of orinal image (0.010 
MSE represents average of 10-pixel error in a 100 × 100 image)

The bold value in each column represents the best result

Methods MSE (fraction of image) �

SVR [27] 0.006 0.93
RFR [21] 0.0052 0.94
BoostNet [33] 0.0046 0.94
FARNet(Our) 0.0017 0.98
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MRE by 0.01 and improves SDR in 2.0mm by 0.52. This 
validates the use of coarse-to-fine supervision and the heat-
map-guide strategy. Finally, when employing the Exponen-
tial Weighted Center loss in the supervision, our FARNet 
reduces MRE by 0.03, improves SDR in 2.0mm by 0.6, and 
achieves the best performance. These results indicate that the 
proposed components can consistently improve the accuracy 
of landmark localization.

Influence of Loss Function

We compare our EWC loss with L1, smooth L1, MSE, 
and the Adaptive Wing (AW) loss and give the experi-
mental results in Table 6. The AW loss has four hyper-
parameters which are hard to tune, so we use the hyper-
parameter settings suggested by the authors [57] in our 
experiment. From the results, we can observe that the 

Fig. 6  Illustration of landmark 
detection results by our pro-
posed method on three public 
datasets. The first row is for 
cephalometric radiographs (19 
landmarks), the second row is 
for hand radiographs (37 land-
marks), and the last row is for 
spinal anterior-posterior radio-
graphs (68 landmarks). The 
red points denote the predicted 
landmarks by our network, 
while blue points represent the 
ground-truth landmarks
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L1 loss gets the worst performance, but the smooth L1 
loss improves and even outperforms the MSE and AW 
loss on MRE and SDR in a radius of 2mm. The AW loss 
achieves the performance inferior but close to the MSE 
loss. Overall, our EWC loss achieves the best results on 
all metrics except for SDR in a radius of 2.5mm, on which 
the MSE loss is best.

Influence of Hyper‑parameter ̨

To investigate the influence of the hyper-parameter � , we 
evaluate our method with five � values {0, 20, 40, 60, 80} , 
respectively, and give the MREs with respect to different � 
values in Fig. 7. It can be observed that our method reaches 
the best results when � is set to 40.

Limitation and Future Direction

The main limitation of our network is that it works for 
2D medical images. Although many research works have 
been conducted for 2D anatomical landmark detection 
(please see the “Deep Learning Methods for Anatomical 
Landmark Detection” section), landmark detection for 
3D medical images has much more applications. There-
fore, we will extend our network to 3D medical images 
in the future.

For 2D images, there are lots of large annotated data-
sets, such as ImageNet [59], PASCAL VOC [62], and MS 
COCO [63]. The pre-trained models based on these datasets 
can extract powerful general features, which can accelerate 
the training convergence speed and improve the accuracy of 
the target model. Our work demonstrates the effectiveness of 
the pre-trained network for 2D medical landmark detection. 
But for 3D images, the annotated datasets are usually too 
small to stably pre-train a 3D model. Some works used the 
networks pre-trained on the Kinetics dataset [64]. However, 
the large differences in data domain distribution between 
the temporal video data and the medical volume data will 
deteriorate the transfer effect. Recently, Chen et al. [65] con-
structed a large 3D medical dataset, 3DSeg-8, with diverse 
modalities, target organs, and pathologies and trained a net-
work called Med3D on the 3DSeg-8 dataset to build a series 
of pre-trained models. Med3D employs the encoder-decoder 
structure and adopts the family of ResNet as the backbone 
by replacing all 2D convolution kernels with the 3D version.

To extend our FARNet, we can use the backbone pre-
trained on the 3DSeg-8 dataset as the encoder of our network 
and replace all 2D convolution kernels in the MSFA and FR 
modules with 3D ones. In addition, we can reduce the num-
ber of convolutional channels in the MSFA and FR modules 
to reduce the model size.

Table 4  Comparison of different backbone networks on the Test1 
data of the cephalometric X-ray dataset

The bold value in each column represents the best result

MRE 2mm 2.5mm 3mm 4mm

VGG-16 1.44 84.03 90.70 93.81 97.29
VGG-19 1.37 82.31 89.08 92.98 96.87
ResNet-101 1.19 86.49 92.28 95.40 98.07
ResNet-152 1.29 86.76 92.42 95.33 98.03
DenseNet-169 1.15 87.64 92.13 95.49 98.38
DenseNet-121 1.12 88.03 92.73 95.96 98.48

Table 5  Ablation study: the MSFA module, naïve FR module, 
coarse-to-fine supervision, and the proposed Exponential Weighted 
Center loss function

The bold value in each column represents the best result

MRE 2mm 2.5mm 3mm 4mm

U-Net 1.38 84.45 90.45 93.57 97.33
FPN 1.19 85.47 92.17 95.54 98.24
MSFA(+) 1.18 85.73 92.31 95.83 98.36
MSFA 1.17 86.17 92.42 95.64 98.38
MSFA+FR* 1.16 86.91 92.63 95.68 98.45
MSFA+FR 1.15 87.43 93.01 95.85 98.45
MSFA+FR+EWC 1.12 88.03 92.73 95.96 98.48

Table 6  Lose function comparison

The bold value in each column represents the best result

MRE 2mm 2.5mm 3mm 4mm

L1 1.16 86.93 92.31 95.85 98.45
Smooth L1 1.14 87.46 92.93 95.68 98.38
AW 1.15 87.08 92.31 95.64 98.38
MSE 1.15 87.43 93.01 95.85 98.45
EWC 1.12 88.03 92.73 95.96 98.48

Fig. 7  MRE versus �
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Conclusion

This paper proposes a novel end-to-end deep network for ana-
tomical landmark detection. Our network includes a backbone, 
a feature aggregation, and a feature refinement module. The 
backbone network pre-trained on natural images is used to 
extract a feature hierarchy. The feature aggregation module 
is used to fuse multi-scale features extracted by the backbone 
network, and the feature refine module is proposed to generate 
high-resolution feature maps. Coarse-to-fine supervisions are 
applied to the two modules to facilitate end-to-end training. 
We further propose a novel loss function for accurate heatmap 
regression, which concentrates on the errors at the pixels near 
landmarks and suppresses the ones from far away. Our network 
has achieved state-of-the-art performances on three publicly 
available anatomical landmark detection datasets, demonstrat-
ing our network’s effectiveness and generality. And the end-
to-end nature of our network makes it more efficient than the 
previous patch-based approaches.
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