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Abstract
Image denoising is an important preprocessing step in low-level vision problems involving biomedical images. Noise removal 
techniques can greatly benefit raw corrupted magnetic resonance images (MRI). It has been discovered that the MR data is 
corrupted by a mixture of Gaussian-impulse noise caused by detector flaws and transmission errors. This paper proposes a 
deep generative model (GenMRIDenoiser) for dealing with this mixed noise scenario. This work makes four contributions. 
To begin, Wasserstein generative adversarial network (WGAN) is used in model training to mitigate the problem of vanishing 
gradient, mode collapse, and convergence issues encountered while training a vanilla GAN. Second, a perceptually motivated 
loss function is used to guide the training process in order to preserve the low-level details in the form of high-frequency 
components in the image. Third, batch renormalization is used between the convolutional and activation layers to prevent 
performance degradation under the assumption of non-independent and identically distributed (non-iid) data. Fourth, global 
feature attention module (GFAM) is appended at the beginning and end of the parallel ensemble blocks to capture the long-
range dependencies that are often lost due to the small receptive field of convolutional filters. The experimental results over 
synthetic data and MRI stack obtained from real MR scanners indicate the potential utility of the proposed technique across 
a wide range of degradation scenarios.

Keywords Magnetic resonance imaging · Image denoising · Gaussian-impulse noise · Perceptually motivated loss · 
Adversarial training · Attention block

Introduction

Magnetic resonance imaging (MRI) is a popular and effec-
tive medical imaging technique used to visualize anatomical 
details and analyse physiological processes in the human 
body’s soft biological tissues. This aids in making clinical 
decisions at the appropriate time. MRI differs from CT scan 
in that it does not use ionizing radiation. It takes advantage 
of the magnetic properties of hydrogen protons, which are 
abundant in the human body. Strong primary static magnetic 
field and low variable secondary field in the presence of 
radio-frequency (RF) coils help in the spatial encoding of 
the received signal. An acquired MRI sequence is limited 

by its low temporal resolution. Further, images acquired in 
temporary k-space are composed of real and imaginary parts 
in the frequency domain [1]. Image reconstruction using the 
inverse Fourier transform (IFT) yields magnitude and phase 
images [2]. However, the resulting image is found to have 
Gaussian noise due to multiple factors. These include ther-
mal agitation caused by the human body in the receiver’s 
coil elements, tissue inhomogeneity, static field intensity, 
and receiver element bandwidth [3]. Impulse noise is caused 
by factors such as analog-to-digital conversion, bit error 
transmission, and improper RF coil alignment. MR image 
restoration [4] is a longstanding problem in the scientific 
literature and different methods appear to tackle this prob-
lem. Clinically accurate restoration results enable success-
ful downstream analysis such as disease detection, tissue 
localization, and quantitative MRI analysis [5].

Images in MRI are obtained in the complex domain using 
the method proposed by Kumar et al. [6] and Henkelman 
[1]. This complex domain representation includes both real 
and imaginary parts. Images obtained from the RF coils are 
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in the frequency domain and are represented in a temporary 
space known as k-space. The resulting data contains both 
signal and noise components along both real and imaginary 
planes. Due to thermal noise in the patient [2], the noise 
is complex white Gaussian in nature. The signal must be 
converted to imaging domain before any useful information 
can be extracted from it. Inverse discrete Fourier transform 
(IDFT) is the most common tool available to accomplish 
this. The resultant image obtained from IDFT retains the 
Gaussian noise in the data due to the orthogonality of the 
Fourier transform [2]. We present an extensive literature 
review on recent developments in MR image denoising 
works in the following paragraphs. Filtering-based and 
model-driven approaches for noise removal are presented 
in the following first and second paragraphs respectively. 
Learning-based techniques are discussed in the third para-
graph while the final paragraph explains MR image denois-
ing schemes devoted exclusively to the removal of impulse 
and mixed Gaussian-impulse noise.

In an attempt to investigate previous works on MR image 
denoising, it was discovered that many of them used the non-
local means (NLM) filter in various forms [7]. The authors 
of [8] used NLM for 3D denoising of MR stacks through 
block-wise and parallel implementation with automatic 
tuning of the smoothing parameter. In [9], authors propose 
a locally adaptive noise estimation method to accommo-
date parallel imaging environments such as GeneRalized 
Autocalibrating Partial Parallel Acquisition (GRAPPA) 
[10] where noise is spatially variant. The authors of [11] 
used an adaptive soft wavelet coefficient mixing to perform 
adaptive MR denoising in a multi-resolution framework. In 
another work, the properties of self-similarity and sparsity 
in MR data are explored [12]. This is accomplished through 
hard thresholding of the discrete cosine transform (DCT) 
and a rotationally invariant version of the NLM filter. Other 
attempts at NLM-based denoising in natural images in 
general, and MR data in particular, include [13] and [14]. 
Authors in [7] provide a comprehensive overview of denois-
ing in MRI using NLM. Here, NLM methods are classi-
fied into four categories: fast NLM, adaptive NLM, multi-
resolution NLM, and statistical methods. However, because 
the weighted average of the neighbouring voxels must be 
estimated to find the target pixel, NLM-based methods are 
mostly computationally intensive.

Authors in [15] investigate a model-free approach for 
denoising diffusion-weighted (DW) MR data using princi-
pal component analysis (PCA). Similarly, authors in [16] 
attempted to denoise DW-MRI using random matrix theory 
and PCA of noise by exploiting the fact that eigenvalues 
of noise-only data are corrupted by the Marchenko-Pastur 
distribution. Prior to obtaining magnitude data, Wirestam 
et al. [17] using Weiner filtering in the wavelet domain, 
performed complex-valued DW-MRI denoising. A linear 

minimum mean square error (LMMSE) approach is used 
to denoise 3D MR data by leveraging data redundancy and 
estimating local SNR [18]. In another work [19], authors 
employ an adaptive combination of fuzzy logic and bilateral  
filtering to denoise MR data. Total Variation (TV) [20] has 
also been used in several methods for removing noise from 
MR data. Contributions by Liu et al. [21] include a two-step 
wavelet filtering method to estimate noise maps and a TV-
based hyper-Laplacian parameter to adaptively model spa-
tially varying noise parameters. Similar approach is explored 
in [22]. Zhang et al. [23] discuss an alternating minimization 
approach that uses a Gaussian mixture model (GMM) to 
cluster non-local similar patches of MR data and a hyper-
Laplacian prior to reduce ringing artefacts. Authors in [24] 
investigate a comparison of Gaussian denoising and wavelet-
based approaches for denoising functional MRI (fMRI) data. 
However, TV-based priors are limited in their ability to char-
acterize different levels of data and noise information [25], 
resulting in smoothed results in highly textured regions. In 
general, model-driven methods are restricted by their prior 
assumptions on noisy/clean data. These assumptions, how-
ever, are frequently violated in data acquired with diverse 
commercially available MRI scanners.

Since the last few years, there has been a surge of machine 
learning approaches in general and deep learning in particular 
for a wide class of computer vision tasks in medical imaging; 
including magnetic resonance imaging [26]. In [27], spatial-
temporal denoising of dynamic contrast enhanced (DCE) MR 
data is performed using a deep learning framework to study 
the blood-brain barrier using pharmacokinetic parameters. 
Authors in [28] incorporate a 3D channel residual learning 
strategy for denoising MR images. The authors of [29] and 
[30] used a wide residual learning strategy to remove noise 
from MR data in order to increase the receptive field size 
and speed up training. A 3D MR image denoising is per-
formed in [31] using a Wasserstein generative adversarial 
network (WGAN) in a residual setting. In [32], the authors 
propose a two-phase denoising model in which they estimate 
a signal-dependent and spatially variant noise level map 
using a maximum-likelihood based unbiased estimator. This 
estimated noise level map is appended as prior to the cor-
rupted input data into the denoiser model. Bermudez et al. 
[33] and Moreno López et al. [34] are two other data-driven 
MRI denoising schemes. Most deep learning methods, how-
ever, necessitate a large amount of training data. In practice, 
generating labelled groundtruth of this size is not feasible. 
This lack of labelled groundtruth limits the model’s ability 
to accommodate the intricate noise patterns observed in real 
MR data. This is further exacerbated by computationally 
demanding training of 3D MR patches.

It was discovered that the combination of Gaussian and 
impulse noise significantly contributes to the corruption 
of MR data. Most of the works in the previous paragraphs 
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emphasized the presence of Gaussian noise in complex 
frequency domain images obtained from RF coils. There 
is a wealth of literature available that denoises MR data 
under the assumption of impulse noise. The authors of 
[35] evaluated the denoising results for the removal of 
Gaussian and impulse from T2-weighted MR images using 
three different filters: adaptive, averaging, and median fil-
ters. A dual fidelity elastic net regularization is proposed 
in [36] to collectively handle the effect of Gaussian and 
impulse noise. In [37], a joint approach using linear and 
median filters for the elimination of impulse, fluctua-
tion, and geometric noise from heart MRI was proposed. 
Two successful adaptive median filtering (AMF) strate-
gies for the removal of impulse noise from MRI data are 
[38] and [39]. In [38], authors employed a switch-based 
AMF where a bell-shaped membership function instead 
of triangular membership function was used for obtain-
ing better results. The same set of authors extended their 
work in [39] where neuro-fuzzy logic was used for both 
decision-making and filtering sub-operations in addition 
to a multilayer perceptron (MLP) architecture for detecting 
and removing impulse noise. Another AMF approach was 
proposed in [40] which judges a noisy pixel in a sub-image 
based on standard deviation of that sub-image and average 
value of the filtering window. In [41], a fixed weighted 
mean filter and an adaptive median filter were designed 
to remove high-intensity noise from MR images. More 
realistic random-valued impulse noise was considered 
in [42] to design a hardware device which emphasized 
on several different noisy scenarios in corrupted data. In 
[43], a local similarity with overlapped block partitioning 
approach was proposed for the detection of noisy pixels 
and their replacement with appropriate values. In [44], a 
quaternion median filtering approach was proposed, which 
selects a noisy pixel based on the sum of pixel differ-
ences with other pixels in the filtering window. Recently, 
authors in [45] developed an adaptive switching modi-
fied decision based unsymmetric trimmed median filter 
(ASMDBUTMF) for noise reduction in grayscale MRI 
data. However, all of these methods have two major flaws. 
To begin, most works cannot handle both Gaussian and 
impulse noise mixtures in MRI data at the same time. Sec-
ond, in designing denoising techniques, mostly fixed val-
ued impulse noise (FVIN) in the form of salt-and-pepper 
noise is considered, with little consideration given to more 
realistic random-valued impulse noise (RVIN) [46, 47].

This work attempts to overcome the limitations in pre-
sent approaches. The paper’s main contributions are sum-
marized below:

• The Wasserstein generative adversarial network (WGAN) 
is used for training to reduce the effect of diminishing gra-
dient, which is more conspicuous in adversarial training.

• To achieve visually appealing denoising results, a per-
ceptually motivated loss function is used to guide the 
training process for data corrupted by mixed Gaussian-
impulse noise.

• Batch renormalization facilitates the use of non-iid data 
for training under variable noise levels.

• 3D depth-wise separable convolution enables computa-
tionally intensive training processes to be performed on 
high-dimensional data.

• A global feature attention module (GFAM) is plugged 
at the beginning and end of the proposed architecture to 
capture the long-range dependencies that are oftenly lost 
in vanilla deep convolutional layers.

The remainder of the paper is organized as follows. We 
explain the image formation model under the Gaussian-
impulse noise assumption in “Image Formation Model 
and Objective’’. The proposed methodology is explained 
in the “Adversarial Training’’ to “Training Details’’, while 
the experimental results and discussions are presented in 
“Results’’ and “Discussion’’ respectively. Finally, the paper 
concludes in “Conclusion’’.

Methods

Image Formation Model and Objective

The image formation model for data corrupted by mixed 
Gaussian-impulse (G-I) noise is given by:

where u ∈ Rw×h×c is the latent clean data. w, h and c are 
the data dimensions along horizontal, vertical and depth 
axes respectively. Clean data u is corrupted by the Gaussian 
noise component g and impulse noise component s. g is a 
random variable following Gaussian distribution with mean 
�g = 0 and variance �2

g
 ; denoted by g ∼ N(�g, �

2
g
) . Similarly, 

the random variable s follows Laplace distribution [48, 49] 
with �s = 0 as the location parameter and �s as the scaling 
parameter; denoted by s ∼ L(�s, �s) . Under impulse noise, 
the pixel value ui is replaced with a uniform random variable 
si in the range [smin, smax] . However, due to pixel value range 
clipping, the resultant distribution does not remain uniform 
or multimodal, but follows Laplacian distribution  [49]. 
Hence, the resultant data is corrupted by mixed G-I noise to 
give the composite noisy signal v. The dimensions of other 
variables are the same as that of u. The noise level map for 
Gaussian as well as for impulse component can be spatially 
variant along the depth axis.

The objective of this work is to obtain clean estimate û 
from the noisy observation v which is as close as possible to 

(1)v = u + g + s
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the clean data (û ∼ u) . This is made possible in an adversarial 
setting under the generative model [50]. More precisely, using 
a large pair of noisy-clean image pairs {vi, ui}Nj=1 , we intend 
to achieve the following objective:

by training the generator G and discriminator D model in 
succession. Once the model is trained, the discriminator is 
discarded and the generator is trained to the extent so as to 
produce perceptually appealing visual results. In Eq. (2), Pr 
and Pn are the real and noisy data distribution respectively 
and L(D,G) is the loss function in the min-max game [50]. 
However, to generate visually realistic results, Eq. (2) needs 
to be modified.

Adversarial Training

The vanilla generative adversarial network (GAN) model pro-
posed by Goodfellow et al. [50] has several flaws. To begin, 
GAN is known to suffer from the vanishing gradient prob-
lem, which occurs when a discriminator network becomes 
overly successful in discarding samples, as observed by [51]. 
Second, mode collapse prevents the generator network from 
producing diverse samples, according to [51]. Thirdly, non-
convergence is also a prevalent issue [51]. Lastly, according 
to Eq. (2), the loss function used in GAN training does not 
correlate to the visual quality of the generated images.

To address the aforementioned limitations, several 
changes are being made to the vanilla GAN model. Wasser-
stein GAN (WGAN) is one example of such a modification. 
Rather than determining whether a sample is real or fake, 
the discriminator in WGAN (here referred to as the critic 
network) assigns a score based on the quality of the image 
generated. This requires a different objective in the minimiza-
tion of the distance between true and generated data distri-
butions [51] (of Eq. (2)). As a result, for model training, an 
alternative distance measure known as Earth-mover distance 
or Wasserstein distance is used [51]. This distance measure is 
known to be continuous and differentiable and allows smooth 
back-propagation. Furthermore, unlike discriminators, the 
critic gradient in WGAN does not saturate and continues to 
provide useful gradient to the generator network. This avoids 
the vanishing gradient issue. In the min-max game, the loss 
function of WGAN is modified as follows:

It is important to remember that the implementation of 
the critic network requires the former to be in the space of 1- 
Lipschitz functions. This is enforced by constraining the 
weight gradient to be in the range [−c, c] [51]. This, how-
ever, leads to suboptimal critic performance because the 

(2)
min
G

max
D

L(D,G) = Eu∼Pr
[logD(u)] + Ev∼Pn

[1 − logD(G(v))]

(3)min
G

max
D

L(D,G) = Eu∼Pr
[D(u)] − Ev∼Pn

[D(G(v))]

critic network is unable to capture the complexity of data 
under the limitations of 1-Lipschitz functions. The problem 
is mitigated by providing an alternative way of enforcing the 
Lipschitz constraint. It is known that a function is 1-Lipschitz 
continuous if it has gradient norm at most 1 everywhere in 
the manifold [52]. Hence, Eq. (3) can be modified to provide 
the loss of the discriminator as:

Here, the gradient is calculated over the output of the 
critic network with respect to its input [52]. � denotes the 
penalty coefficient and Pv̂ is a probability distribution that 
is used to uniformly sample along straight lines between the 
real data distribution Pr and the generating data distribution 
Pg . Similarly, loss of the generator is given by:

We conclude this section with the following exploitation of 
notations. D and G are the critic and generator models respec-
tively. The aim of the generator is to generate a sample distri-
bution Pg which is as close as possible to the real data distribu-
tion Pr . During the course of training, the generator excels in 
generating samples that mimic real (clean) data distribution.

Perceptually Motivated Loss Function

It is observed that generative models are not inherently 
suited for image restoration tasks. The generated samples 
lack low-level features (high-frequency components in the 
form of edges and textures) in the restored data. Therefore, 
in this section, we intend to augment Eq. (5) with a perceptu-
ally motivated content loss LMSSIM(u,G(v)) . The final loss of 
the generator is given as:

From the next section, û (= G(v)) is used to denote the 
clean estimated data obtained from the generator network. 
Content loss will be discussed shortly in this section.

In contrast to the work of residual encoder-decoder 
WGAN (RED-WGAN) [31], which uses a combination of 
extracted VGG features and mean squared error (MSE) loss 
to design generator loss, we provide an alternative proposi-
tion here. We use a perceptually motivated loss function 
because MSE does not synchronize with the image visual 
quality [53] and VGG network is intrinsically designed for 

(4)

LWGAN(D) = min
G

max
D

L(D,G) = Eu∼Pr
[D(u)]

− Ev∼Pn
[D(G(v))] + 𝜆Ev̂∼Pv̂

[(‖∇v̂D(v̂)‖2 − 1)2]
�����������������������������������

gradient penalty factor

(5)LWGAN(G) = −Ev∼Pn
[D(G(v))]

(6)

L = LMSSIM(u,G(v))
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

content loss

+ LWGAN(G)
⏟⏞⏞⏟⏞⏞⏟
adversarial loss

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Perceptual Loss
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2D data [54, 55]. Structural similarity index (SSIM) [56] 
has been around for nearly 15 years; used as perceptually 
motivated image quality assessment metric according to 
Human Visual System (HVS). This encourages us to use 
this metric to modify the generator loss in Eq. (5). In a tra-
ditional setting, any gradient-based minimization technique 
requires the loss function to be differentiable in nature; 
this is also true during back-propagation steps in neural 
network training. As a result, before it can be used for net-
work training, the derivative of SSIM must be calculated. 
SSIM is written as:

The three terms used in the product above have the same 
usual meaning as defined in [56].

Here, l, c and s are the luminosity, contrast and structural 
information. C1 , C2 and C3 are small constants used to avoid 
numerical instability where C3 = C2∕2 and � , � and � all are 
set to be 1. �u , �u and 𝜎uû are the mean, variance and covari-
ance respectively calculated over entire pixels of the image. 
𝜇û and 𝜎û are calculated similarly for û.

However, it is observed that SSIM calculated over entire 
image yields inaccurate results for l, c and s in Eq. (8) due 
to spatially variant values of these quantities. In order to 
circumvent this problem, we use image patch Pu which is  
centred at pixel p for finding patch-wise SSIM for u(p) 
and û(p) . SSIM for all the patches are averaged together to 
obtain mean SSIM (MSSIM). We make use of Gaussian 
filter G� with standard deviation � to obtain patch results 
such that 𝜇u(p) = G𝜎 ⋆ Pu , 𝜎u(p) = G𝜎 ⋆ P2

u
− 𝜇2

u
(p) and 

𝜎uû = G𝜎(Pu ⋅ Pû) − 𝜇u(p) ⋅ 𝜇û(p) . 𝜇û(p) and 𝜎û(p) are defined 
analogously. ⋆ and ⋅ represent convolution and point-wise 
multiplication operations respectively. For SSIM to be used 
as a loss function, we make use of three different properties 
of it: (i) boundedness (≤ 1) , (ii) convexity and (iii) sym-
metry (SSIM (u, û) = SSIM (û, u)) [57]. As a result, MSSIM 
between u(p) and û(p):

where M = total number of image patches. Upon manipula-
tion of Eqs. (7), (8) and (9a), we obtain:

(7)SSIM(u, û) = l(u, û)𝛼 ⋅ c(u, û)𝛽 ⋅ s(u, û)𝛾

(8)

l(u, û) =
2𝜇u𝜇û + C1

𝜇2
u
+ 𝜇2

û
+ C1

; c(u, û) =
2𝜎u𝜎û + C2

𝜎2
u
+ 𝜎2

û
+ C2

; s(u, û) =
2𝜎uûC3

𝜎u𝜎û + C3

(9a)LMSSIM = 1 −
1

M

∑

p

(SSIM(u(p), û(p))

(9b)

SSIM(u(p), û(p)) =

(
2𝜇u𝜇û + C1

𝜇2
u
+ 𝜇û + 2 + C1

)

���������������������������
l(p)

⋅

(
2𝜎uû + C2

𝜎2
u
+ 𝜎2

û
+ C2

)

���������������������
cs(p)

In order to apply back-propagation during model training, we 
need to find out the derivative of loss function (here, MSSIM).

where ��up∕�u(q) = G�(p − q) . Similarly, � cs(p)∕� u(q) can 
be evaluated as:

Feeding the expressions of Eqs.  (11a) and (11b) in 
Eq. (10), we obtain the final expression for MSSIM as:

Batch Renormalization and 3D Depth‑wise 
Separable Convolution

In its pristine form, batch normalization (BN) is used to 
reduce internal covariate shift in data [58]. However, they 
are constrained by the assumption of independent and identi-
cally distributed (iid) data. In any image restoration problem, 
model needs to be trained over a wide range of noise levels 
in data, thus exhibiting non-iid property. Further, the small 
batch size makes the use of BN suboptimal. This is primar-
ily due to differences in the BN operation during training 
and inference [59]. Moving average statistics are calculated 
during model training but only used during inference. By 
incorporating moving average statistics into the training 
process, batch renormalization (BRN) helps to mitigate the 
aforementioned issues [59].

Model training suffers from latency when using 3D data. 
To address this issue, we employ 3D depth-wise separable 
convolution [60]. This aids in reducing learnable parameters 
by a factor of 1/10 without compromising noisy to clean 
image mapping during inference.

Network Design

The generator model’s architecture is depicted in Fig. 1. 
Images are permuted between y ↔ z and x ↔ z dimensions 

(10)

𝜕 SSIM(u(p), û(p))

𝜕u(q)
= cs(p)

𝜕

𝜕u(q)
⋅ l(p) + l(p)

𝜕

𝜕u(q)
⋅ cs(p)

(11a)

𝜕 l(p)

𝜕 u(q)
=

𝜕 l(p

𝜕𝜇u(p)
⋅

𝜕 𝜇u(p)

𝜕 u(q)
= 2G𝜎(p − q)

[
𝜇ŷ − 𝜇u l(p)

𝜇2
u
+ 𝜇2

û
+ C1

]

(11b)

𝜕 cs(p)

𝜕 u(q)
=

𝜕 cs(p)

𝜕𝜇u(p)
⋅

𝜕 𝜇u(p)

𝜕 u(q)

= 2G𝜎(p − q)

[
(û(q) − 𝜇y) − cs(p)(u(q) − 𝜇u)

]

(12)

𝜕MSSIM(u, û)

𝜕u(q)
=

2

M

∑

p

[
cs(p)

(
𝜇û − 𝜇ul(p)

𝜇2
u
+ 𝜇2

û
+ C1

)

G𝜎 (p − q) + l(p)

(
G𝜎(p − q)

𝜎2
u
+ 𝜎2

û
+ C2

)
(û(q) − 𝜇û − cs(p)(u(q) − 𝜇u))

]
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from their original xyz dimensions to exploit spatial infor-
mation from different anatomical planes (coronal, sagittal, 
and transverse). The resultant dimensions are xzy, yxz and 
zyx. The results of these permutations are sent to global 
feature attention modules (GFAM, which will be discussed 
later). The GFAM output is fed into two sets of convolu-
tional blocks. This is made up of two parallel blocks that 
use 3D normal and dilated convolutions. There are 11 blocks 
in sequence; each consisting of convolutional layer, BRN 
layer, and rectified linear units (CBR). The convolutional 
filter size is fixed at 3 × 3 × 3 , and the number of filters is 
increased from 4 to 128 from block 1 to 6 and symmetrically 
decreased to 1 from 7th to 11th block. Finally, the permuta-
tion layer is used once more to bring back images to the 
original xyz plane. The outputs are passed through GFAM 
once more to acquire global contextual features learned in 
the previous parallel ensemble blocks. The clean estimated 
image is obtained by subtracting the resultant residual image 
from the corrupted input data. The discriminator network 
architecture is the same as used in [54]. BN layers, on the 
other hand, are removed from the original implementation to 

avoid correlations between samples in the same batch. This 
affects the gradient penalty term used in [52]. Furthermore, 
a linear activation function is used at the end of the critic 
model rather than a sigmoid function.

Adaptive Global Feature Attention Module

Conventional convolutional filters are limited in three differ-
ent ways. Firstly, they are unable to map long-range depend-
encies existing in the 3D data blocks due to small receptive 
field size [61]. Secondly, all spatial locations in the image 
are treated similarly. This is more problematic in image res-
toration problems where low- and high-frequency details 
need to be properly separated into distinct regions [62]. A 
typical convolutional layer does not account for these low-
level details. Thirdly, most of the traditional supervised 
learning solutions for image restoration like DnCNN [63] 
rely on the final feature maps obtained in the last layer. How-
ever, features obtained from initial and intermediate layers 
provide complementary information about the clean esti-
mation. Therefore, we incorporate global feature attention 
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Fig. 1  The architecture of the proposed generator model. The 3D 
data patches are permuted along the three dimensions to obtain three 
data patches such that xzy = permute(y, z) , yxz = permute(x, y) and 
zyx = permute(x, z) . The global feature attention module (GFAM) 
blocks can accept arbitrary number of inputs (see Fig.  2). The 
→ (green),→ (blue) and → (brown) arrows coming out from the three 

permuted 3D patches are fed as input to the three GFAM blocks. 
The top row shows the overall model while the bottom row shows 
the expanded views of the red and yellow convolutional blocks. The 
output features obtained from the convolutional blocks are again per-
muted to their original dimensions (xyz) and fused together into one 
3D image using the final GFAM block
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module (GFAM) at the beginning and end of the set of par-
allel blocks. Since different features in the permuted input 
data and different feature maps along the parallel paths may 
provide hidden contextual information, we merge these fea-
tures under a global setting. As shown in Fig. 2, the fea-
ture maps obtained from the previous layers are denoted as 
F1,F2,⋯ ,FN such that Fi ∈ Rw×h×l×c ; where {w, h, l} are 
the dimensions of the 3D data and c is the number of chan-
nels. Global features from each feature map Fi are obtained 
by the application of average pooling Pavg followed by the 
convolutional filter Wi to obtain the features; denoted by 
Ai = WiPavgFi ; Ai ∈ R1×1×1×1 . All these features are then 
concatenated together to obtain A ∈ R1×1×1×N×1 . Softmax 
function is applied over the concatenated features to obtain 
� ∈ R1×1×1×N×1:

Further, the original Fi ’s are concatenated together to 
obtain B ∈ Rw×h×l×N×c . Global contextual modelling is per-
formed by the matrix multiplication between � and B.

where � ∈ Rw×h×l×c . Further, an adaptive learnable weight 
� is point-wise multiplied with B. The final output of the 
GFAM is obtained by element-wise sum of previous output 
and the last feature input FN.

(13)�j =
exp(Aj)

∑N

i=1
exp(Ah

i
)

(14)� =

N∑

i=1

�iBi

(15)GFAMout = FN + �

N∑

i=1

�iBi

Training Details

We have trained the model for MR denoising using simu-
lated MR images obtained from Brainweb [64] database.1It 
consists of normal and multiple sclerosis (MS) datasets con-
taining T1, T2 and PD-weighted images in five different  
slice thicknesses: 1 mm, 3 mm, 5 mm, 7mm and 9 mm. 
This gives rise to 181, 60, 36, 26 and 20 slices respectively. 
The spatial dimension of each image is 181 × 217 . Images 
of size 181 × 217 × 181 from each modality are used for 
testing while the rest are used for model training. Image 
non-uniformity is set to 0% and initial noise levels are set 
to zero. The levels of noise used for training are: Gaussian 
noise in the signal to noise (SNR) range [2,  20] dB and 
impulse noise in the range [1%, 30%] . Ten noise levels are 
uniformly and randomly sampled from the range of each 
noise type. This gives a combination of 100 noise levels 
= (10 Gaussian noise levels × 10 impulse noise levels) that 
can be added to the training data. We have used patch-based 
training in our model [65]. Non-overlapping patches of size 
40 × 40 × 6 are extracted from each image. Total number of 
patches generated are 108, 000.

Batch size is selected to 16. Adaptive moment estima-
tion (ADAM) is used as the optimization technique as 
the de facto standard due to its superiority over other sto-
chastic gradient descent methods. Its parameters are set 
as � = 0.01 , �1 = 0.9 �2 = 0.99 and � = 1e − 6 . We could 
find that 200 epochs were sufficient for the convergence 
of the model.
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1 Obtained from: https:// brain web. bic. mni. mcgill. ca/
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Results

In this section, we conduct experiments on synthetically cor-
rupted and real MR data obtained from clinical level MRI 
scanners.

Experimental Setup

Image of size 181 × 217 × 181 from each imaging modal-
ity (T1- and PD-weighted) was separated from the Brain-
web [64] database during training time for evaluation 
of the trained model during test time. The selected 3D 
images correspond to the 1 mm slicing of simulated data. 
For comparison, seven different techniques are used. 
Four of them are filtering-based approaches2 (optimized 
non-local means (ONLM) [8], adaptive optimized NLM 
(AONLM)  [9], prefiltered rotationally invariant NLM 
(PRINLM) [12] and multi-resolution NLM (MRNLM) [11]) 
while the other three competing methods are learning-based 
(DnCNN) [63], Deep Image Prior (DIP) [66] and residual 
encoder-decoder-Wasserstein generative adversarial net-
work (RED-WGAN) [31]). Under ONLM, a computation-
ally efficient and parallelized version of NLM is proposed 
with features of automatic parameter tuning and relevant 
voxels selection. An adaptive version of NLM is used in 
AONLM where the strength of filter is decided based on the 
local noise level in the image. Authors in PRINLM exploit 
the sparsity and self-similarity properties by using mov-
ing window discrete cosine transform. Based on the spatial 
and frequency information in noisy data, a multi-resolution  
analysis is presented in MRNLM. For the NLM-based 
methods, optimal filtering parameters are chosen so as to 
generate best visual and metrics results [7, 67]; tabulated 
in Table 1. DnCNN is an implementation of neural network 
based denoiser where the network predicts the residual data 
rather than the clean estimation. Since DnCNN is inherently 
designed for grayscale/RGB data, we retrained the model 
using our own 3D MRI training data. DIP uses a novel prop-
osition that assumes that an untrained or randomly trained 
neural network acts as a natural prior over the image to be 
estimated. RED-WGAN uses a generative model based on 
residual encoder-decoder architecture.

Two full-reference image quality metrics are used for 
the quantitative evaluation of restoration results: peak sig-
nal to noise ratio (PSNR) and structural similarity index 
(SSIM) [56], which are defined as follows:

Here, u and û are the patches of clean and recovered 
images from the local window respectively, �u , �2

u
 and 𝜎uû 

are the mean, variance and covariance matrix, respectively.
Experiments on real data are conducted on IXI datasets3 

obtained from Institute of Psychiatry (IoP). The full dataset 
consists of brain MRI obtained from five different imag-
ing formats: T1, T2, PD-weighted, MRA and diffusion-
weighted images from 600 healthy subjects. There are 74 
images each from T1, T2 and PD modalities. Dimension of 
each image is 256 × 256 × 136 . A PD-weighted image was 
used for evaluation purpose.

Discussion

Simulated MR Data

Each simulated MR image (corresponding to T1 and PD-
weighted images) is corrupted with six different levels 
of Gaussian-impulse noise: (15 dB, 3%) , (12 dB, 6%) , 
(10 dB, 10%) , (6 dB, 15%) , (3 dB, 20%) and (1 dB, 25%) . 
PSNR and SSIM corresponding to these noise levels are 
shown in Tables 2 and 3 respectively. It can be observed 
that our proposed technique can maintain a consider-
able gap with comparing techniques. Visual inspection 
is necessary to confirm the validity of the metric results. 
For this, we have presented the visual results for T1 and 
PD-weighted images in Figs. 3 and 4 respectively. To 
present a fair comparison on 3D reconstruction ability 

(16a)PSNR = 10 ⋅ log10

(
MAXu

MSE2

)

(16b)SSIM(u, û) =
(2𝜇u𝜇û + C1)(2𝜎uû + C2)

(𝜇2
u
+ 𝜇2

û
+ C1)(𝜎

2
u
+ 𝜎2

û
+ C2)

Table 1  Optimal filtering parameters for comparing techniques. S is the 
radius of search window and N is the radius of the patch, h is the smooth-
ing parameter and � is the standard deviation of Gaussian distribution

Comparing  
Techniques

Filtering Parameters

ONLM S = 5 , h = � , N = 2

AONLM S = 3 , N1 = 2 , N2 = 2 , h =

√
2��2�V� where 

� is a constant and |V| is the number of 
voxels

PRINLM S = 5 , N = 2 , h = 0.4�
MRNLM S = 11 , h = � , N = 2

UKR Radius of the second order regression = 4

2 Code available at: https:// sites. google. com/ site/ pierr ickco upe/ softw ares/ 
denoi sing/ mri- denoi sing 3 Obtained from:https:// brain- devel opment. org/ ixi- datas et/
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of different methods, we have presented the results on 
all three anatomical planes (the first image in each tabu-
lar block represents the transverse/axial section which 
when divided into cross-sectional planes gives coronal 
(shown by the red line) and sagittal (shown by the yellow 
line) plane results). For T1-weighted images, results are 
presented for the noise level (10 dB, 10%) and for PD-
weighted images, results are displayed for the noise level 
(6 dB, 15%) . It can be observed that results produced by 
DnCNN are not able to reduce noise considerably. Also, 
visuals produced in sagittal and coronal planes in DIP 
result in post-processing artefacts. However, images gen-
erated by the proposed neural network model can main-
tain fine details in recovered images. This is more promi-
nent for PD-weighted images.

Results on running time are mandatory for testing the 
efficiency of different methods under the same hardware 
conditions. All experiments on conventional methods are 
conducted on MATLAB-2019 using 16GB RAM and an i7 
processor. All deep learning models are trained and evalu-
ated using Google Colab under Nvidia P100-PCIE-16GB 
GPU. Results on running time are tabulated in Table 4.

Real MR Data

Experiments on real data are performed on the IXI data-
sets. This database consists of real MR images from three 
different medical centres: Guys hospital (GH), Hammer-
smith hospital (HH) and Institute of Psychiatry (IoP). The 
results presented in Fig. 5 are obtained from IoP. Size of 
the image is 256 × 256 × 136 . Just like the synthetic data, 
we have visualized results on all three anatomical planes. 
The results produced by the proposed technique provide 
considerably better visuals with detail preserving capabil-
ity. This is attributed to the perceptually motivated loss 
being used for model training. Results on running time (in 
seconds) are specified in the caption of the figure itself.

Ablation Study

As discussed in the proposed section, Batch renormalization 
(BRN) [59] is explored in the network training as it is a fea-
sible alternative when data is non-iid and batch size is small. 
In Fig. 6 (left), we have validated this proposition by plotting 
validation loss for two different batch sizes: 40 and 200. We 

Table 2  Peak Signal to Noise Ratio (PSNR) for three different imaging modes (T1 and PD) at different levels of noise for different methods

Methods/Noise (dB,%) (15, 3) (12, 6) (10, 10) (6, 15) (3, 20) (1 ,25) (15, 3) (12, 6) (10, 10) (6, 15) (3, 20) (1 ,25)
T1-Weighted PD-Weighted

Noisy 38.47 28.22 22.24 18.90 17.25 16.53 38.21 28.74 22.60 20.27 18.22 16.92
ONLM 44.98 37.17 35.53 33.31 30.16 24.99 42.70 37.16 33.16 34.10 30.55 28.26
AONLM 43.23 35.54 30.13 25.85 23.12 20.06 41.79 35.94 30.10 27.64 23.09 20.37
PRINLM 45.88 39.86 35.99 33.35 29.60 23.88 45.83 38.86 35.86 30.49 31.66 31.08
MRNLM 44.85 37.32 34.95 33.11 30.36 25.04 42.10 36.69 32.62 34.00 29.46 26.84
DnCNN 41.02 33.38 29.90 27.19 25.00 22.66 35.70 33.27 28.40 27.33 25.25 23.71
DIP 45.24 37.59 32.23 28.45 25.98 23.55 45.19 37.77 30.35 29.14 26.52 24.55
RED-WGAN 44.60 38.70 33.68 29.19 25.48 23.56 38.92 37.74 34.66 30.07 26.97 23.87
GenMRIDenoiser 47.09 41.21 37.12 34.09 32.28 30.03 46.61 39.50 35.72 33.66 31.13 28.80

Table 3  Structural Similarity (SSIM) for three different imaging modes (T1 and PD) at different levels of noise for different methods

Methods/Noise (dB,%) (15, 3) (12, 6) (10, 10) (6, 15) (3, 20) (1 ,25) (15, 3) (12, 6) (10, 10) (6, 15) (3, 20) (1 ,25)
T1-Weighted PD-Weighted

Noisy 0.704 0.361 0.216 0.144 0.106 0.084 0.671 0.349 0.208 0.155 0.115 0.090
ONLM 0.966 0.941 0.899 0.847 0.796 0.704 0.958 0.921 0.890 0.841 0.773 0.681
AONLM 0.921 0.657 0.449 0.336 0.268 0.201 0.904 0.638 0.622 0.537 0.457 0.408
PRINLM 0.963 0.936 0.801 0.863 0.803 0.670 0.953 0.918 0.891 0.854 0.846 0.829
MRNLM 0.966 0.942 0.889 0.866 0.818 0.715 0.959 0.921 0.896 0.857 0.800 0.713
DnCNN 0.806 0.746 0.673 0.614 0.564 0.516 0.770 0.611 0.528 0.493 0.451 0.417
DIP 0.965 0.777 0.526 0.456 0.356 0.280 0.955 0.762 0.573 0.564 0.468 0.418
RED-WGAN 0.958 0.927 0.873 0.805 0.721 0.665 0.945 0.916 0.890 0.851 0.810 0.742
GenMRIDenoiser 0.986 0.946 0.897 0.878 0.832 0.742 0.988 0.935 0.901 0.875 0.860 0.831
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can observe that models trained using both BN [58] and BRN 
for batch size 200 yields good results. However, we get more 
benefits over validation loss when batch size is chosen to be 40 
and BRN is used as the normalization strategy. This is not true 

for model trained using BN. However, training is more stable 
when large batch size is used or when BN is used.

Further, since training over 3D data is computationally 
costly; we used 3D depth-wise separable convolution to reduce 

Fig. 3  Results on simulated 
Brainweb-T1 dataset for slice 
thickness 1mm. The results 
of the comparing methods 
are shown for the noise level 
(G, I) = (10 dB, 10%) . Each 
figure in a group shows the axial 
(top left), sagittal (right) and 
coronal (down) planes. Upon 
careful visualization, it can 
be observed that the proposed 
methodology removes noise 
along with the preservation of 
details. This is more evident in 
the axial and coronal sections

Fig. 4  Results on simulated 
Brainweb-PD dataset for slice 
thickness 1mm. The results 
of the comparing methods 
are shown for the noise level 
(G, I) = (6 dB, 15%) . Each 
figure in a group shows the axial 
(top left), sagittal (right) and 
coronal (down) planes. Upon 
careful visualization, it can 
be observed that the proposed 
methodology removes noise 
along with the preservation of 
details. This is more evident in 
the axial and coronal sections
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the number of model parameters without significant drop in 
model performance. To validate this result, we plotted valida-
tion loss for over 200 epochs for models trained using normal 

and 3D depth-wise separable convolution. We can observe 
negligible difference in the two training paradigms. The plot 
is shown in Fig. 6 (right).

Table 4  Results on running time (in seconds) using different methods

Methods ONLM AONLM MRNLM PRINLM DnCNN DIP RED-WGAN GenMRIDenoiser

Running Time (in seconds) 73.21 513.49 315.03 130.59 18.82 990.75 34.66 28.14

(a) (b) (c) (d)

(f) (g) (h) (i)

(e)

Fig. 5  Real PD-weighted data obtained from IXI database Institute of Psychiatry. Each figure in a group shows the axial (top left), coronal 
(right) and sagittal (right) planes
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Conclusion

In this paper, we discussed the image denoising process for 
MR data under the assumption of Gaussian-impulse noise. A 
deep generative model was proposed with emphasis on per-
ceptually motivated loss to guide the training process suited 
for low-level computer vision tasks. The problem of non-iid 
data during training process was handled using batch renor-
malization while the problem of computational burden during 
training was mitigated using 3d depth-wise separable convolu-
tion. The augmentation of global feature attention block further 
boosted the performance of the network by separately paying 
attention to the low- and high-frequency details in the image 
during training and inference. As an extension to this work, 
we intend to explore the effect of attention blocks in further 
improving the denoising accuracy of the network in the same 
adversarial setting. Furthermore, we intend to explore noise 
removal in the complex MR data and other imaging modalities 
like diffusion-weighted MRI (DW-MRI). Noise modelling in 
multi-coil acquisition systems and deep restoration frameworks 
under such settings can also be explored in subsequent works.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10278- 022- 00744-2.
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