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Abstract
In this study, an inter-fraction organ deformation simulation framework for the locally advanced cervical cancer (LACC), 
which considers the anatomical flexibility, rigidity, and motion within an image deformation, was proposed. Data included 
57 CT scans (7202 2D slices) of patients with LACC randomly divided into the train (n = 42) and test (n = 15) datasets. In 
addition to CT images and the corresponding RT structure (bladder, cervix, and rectum), the bone was segmented, and the 
coaches were eliminated. The correlated stochastic field was simulated using the same size as the target image (used for 
deformation) to produce the general random deformation. The deformation field was optimized to have a maximum amplitude 
in the rectum region, a moderate amplitude in the bladder region, and an amplitude as minimum as possible within bony 
structures. The DIRNet is a convolutional neural network that consists of convolutional regressors, spatial transformation, as 
well as resampling blocks. It was implemented by different parameters. Mean Dice indices of 0.89 ± 0.02, 0.96 ± 0.01, and 
0.93 ± 0.02 were obtained for the cervix, bladder, and rectum (defined as at-risk organs), respectively. Furthermore, a mean 
average symmetric surface distance of 1.61 ± 0.46 mm for the cervix, 1.17 ± 0.15 mm for the bladder, and 1.06 ± 0.42 mm 
for the rectum were achieved. In addition, a mean Jaccard of 0.86 ± 0.04 for the cervix, 0.93 ± 0.01 for the bladder, and 
0.88 ± 0.04 for the rectum were observed on the test dataset (15 subjects). Deep learning-based non-rigid image registration 
is, therefore, proposed for the high-dose-rate brachytherapy in inter-fraction cervical cancer since it outperformed conven-
tional algorithms.

Keywords Locally advanced cervix cancer · Deformable image registration · Brachytherapy · Convolutional neural 
networks · CT

Introduction

Cervical cancer is one the most common cause of can-
cer-related female mortality in the world [1] and locally 
advanced cervical cancer (LACC) is the most common type 
of cervix cancer [2] which is normally external beam radia-
tion therapy (EBRT) and brachytherapy (BT) and chemo-
therapy were used to treat the patient. The combination of 
EBRT and chemotherapy is usually the first step in deliver-
ing a prescribed dose to the planning target volume. BT is 
the second component of cervical cancer treatment, and 
it involves using low- or high-dose radioactive sources to 
irradiate the residual tumor locally. The applicators usu-
ally set the sources near to the target in order to deliver 
the maximal dose while protecting normal/healthy tissues. 
The large inter-fraction organ deformations occur during the 
BT treatment (different treatment sessions) which causes 
noticeable uncertainties in the estimated cumulative dose 
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over the entire treatment course [3, 4]. For instance, target 
deformations of 20 mm and 48 mm have been reported for 
the cervix [5] and uterus [6], respectively. Moreover, some 
studies have reported an average of 63% tumor shrinkage 
during the treatment [7–10]. Dosimetry uncertainties for 
organs at risk (OARs) have been reported to be 20–25% in 
intra- and inter-fraction D2cc, indicating that organ defor-
mation contributes significantly to ORAs dosage errors 
[11–13]. For toxicity prediction, some research advocated 
using a deformable image registration (DIR) approach to 
map the EBRT dose to the spatial coordinate of the initial 
BT percentage [14–16]. Intensity-based image alignment 
methods (e.g., Demons algorithms) are not an optimal solu-
tion for DIR for cervical cancer BT due to large and low 
deformations in the different organs and tissue contrast, 
respectively [13, 17].

Recently, deep learning approaches, including supervised, 
unsupervised, and semi-supervised methods, are employed 
in different medical image analysis tasks [18–28], different 
BT tasks [29–31], and learn and carry out spatial alignment/
transformation between images [32–41]. These methods usu-
ally used convolutional neural networks (CNNs) to extract 
informative features automatically to perform this task 
[32–41]. In these studies, different versions of CNN models 
are trained to learn small sets of transformation parameters, 
such as translation, rotation, scaling, and affine transforma-
tions, in order to offer the optimal transformation parameters 
for a perfect alignment of the two images. In other words, 
the output of the models would be a transformation matrix 
rather than transformed images. On the other hand, CNN 
models can be trained to directly perform image deforma-
tion/alignment on the input image. In a study conducted by 
Miao et al. [37], a CNN model was used to estimate trans-
formation parameters in a one-shot for rigid registration for 
2D cone-beam CT to CT images. Similarly, Cao et al. [32] 
trained a CNN model to predict transformation parameters 
in a thin-palate spline for the DIR of brain MRI images. 
Eppenhof et al. [33] employed a 3D CNN model to learn 
thin-plate spline transformation parameters between pairs 
of 3D images. Sokooti et al. [41] proposed a CNN model 
which could directly predict a dense displacement vector 
field (DVF) from a pair of input images. Similar to other 
supervised deep learning tasks, the quality and quantity of 
the training dataset play a key role in the overall perfor-
mance of the model.

Alternatively, unsupervised deep learning algorithm-
based solutions are more appealing for this type of chal-
lenge. For example, Wu et al. [38] proposed a convolu-
tional stacked auto-encoder (CAE) framework to extract 
discriminative features from pairs of fixed and moving 
images. They employed the Vercauteren et al. [42] and 
Shen et al. [43] methods to improve the registration on 
brain MR images. Though the CAE is an unsupervised 

method, it has been optimized for image reconstruction 
applications rather than dedicatedly for image registration, 
as such there is no guarantee that the extracted features 
are optimal for image registration. Dosovitskiy et al. [44] 
employed an unsupervised CNN model to estimate the 
optical flow across the video frames. This study addressed 
a 2D video sequencing, which contained relatively low 
levels of noise (compared to medical images), high con-
trast, and a relatively small deformation between adjacent 
frames. Medial pictures, on the other hand, have a lot of 
noise, little tissue contrast across organs of interest, and 
may require a lot of 3D image modification. As mentioned 
earlier, in fully supervised transformation estimation, the 
creation of ground-truth data to train the deep learning 
models is the most challenging task in the deformable 
medical image registration problem.

However, for the DIR problem, a dense flow field 
ground-truth correspondence is rarely available. Some 
studies proposed specific frameworks to generate synthe-
sized deformation parameters for the creation of a training 
dataset for the tasks of rigid registration [37], non-rigid 
image registration [33, 41], and manual annotation [43]. 
Unlike these methods, Uzunova et al. [45] used statistical 
appearance models to generate a ground-truth dataset in a 
2D fashion for supervised training in the brain and cardiac 
imaging. Real time image registration could be achieved 
by using this approach; however, this method has several 
challenges, such as preparing the ground-truth or the train-
ing dataset with clinical considerations.

In this study, three major issues are addressed: (1) simu-
lation of a realistic local deformation in the image domain 
that takes into account clinical considerations. As men-
tioned above, defining a realistic deformation, especially 
locally and/or organ-wise, would be a challenging task 
for the creation of the registration ground-truth dataset. 
In this regard, a novel training data generation framework 
is proposed in this study, which enables the definition of 
any desirable deformations depending on the organ rigid-
ity/mobility. (2) Creation of a dataset for DIR problems, 
which can be used by any machine learning approach. (3) 
Development of a multi-channel deep neural network to 
simultaneously process the original CT images together 
with the binary masks of the OARs.

This study proposes a new method for the inter-fraction 
deformation simulation in the HDR brachytherapy to be 
used in a deep learning-based DIR algorithm. Further-
more, a deep learning-based DIR algorithm is developed to 
directly perform the image alignment of the inter-fraction 
HDR sessions. A deep learning model consisting of five 
input channels was implemented and dedicated to the CT 
images of the bladder, cervix, rectum, and bone OARs in the 
form of binary masks to perform image alignment between 
two CT slices.
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Methods

Dataset

Since there is no publicly available training dataset specific 
for the task of image alignment, a large dataset of the female 
pelvis was collected for the inter-fraction deformation simu-
lation. Fifty-seven patients with cervical cancer diagnosed 
at the cancer institute of this study between 2017 and 2018 
were included in this study. The collected data included 
planning CT images and the corresponding RT structure 
data. For each patient, a CT scan was acquired in the supine 
position from about L5 vertebrae to the femoral heads. All 
images were taken by the same CT scanner (SOMATOM 
Scope CT scan, Siemens Healthcare, Forchheim, Germany). 
All CT images were acquired with the same acquisition pro-
tocol (KVp = 110 and mAs = 130). Image dimension was set 
at 512 × 512 for each trans-axial slice with about 80–150 
slices with a pixel spacing of 0.84 mm and a slice thickness 
of 5 mm. In total, there were 7202 2D CT images. The RT 
structure data, in the form of manually defined contours for 
each organ, were delineated by a physician for the bladder, 
rectum, and cervix. The study protocol was approved by the 
ethical guidelines. The datasets of 57 patients were randomly 
divided into a 42-patient training set and a 15-patient test set.

Image Pre‑processing

Binary Mask from RT Structures

Due to the inter-patient anatomical structure variations and 
intra-patient anatomy motion, manual organ delineations 
were employed from the RT structure data to guide local 
image deformation. A representative sample of rectum 
deformation between two sets of CT images is presented 
in Fig. 1.

Bone Extraction In the first step, the binary masks of the key 
organs in the pelvis region, including the rectum, bladder, 
and cervix, were obtained. It was also necessary to consider 
a binary mask of the bony structures for the simulation of 
image deformation. The binary masks of the bony structures 

were obtained from CT images by an intensity-based seg-
mentation on the CT number (HU > 150). The segmented 
bony structures were visually verified and manually cor-
rected to avoid any mis-segmentation errors.

Couch Elimination One of the main steps in data prepara-
tion for the deep learning models is to remove non-related 
components/regions from the input images to enhance the 
overall efficiency of the model. To this end, the couches 
were removed from the input CT images by applying an 
intensity-based thresholding method. To remove the couches 
from the entire slices, a CT intensity profile in the posterior-
anterior direction was drawn to detect the coach intensity 
ranges (− 405 HU < couch intensity <  − 340 HU) (Fig. 2). 
The couch removal was visually verified to avoid any mis-
segmentation errors.

Furthermore, the original CT images, stored in a 
512 × 512 matrix, were cropped to a 256 × 512 matrix to fit 
the body contour in order to enhance memory and computa-
tional efficiencies and image were checked to avoid remov-
ing body regions in cropped images.

Image Deformation Simulation

Deformation Considerations Generally, bony structures do 
not have any significant deformation when the applicator is 
inserted into the vaginal cavity. On the other hand, flexible/
soft tissue organs may undergo noticeable deformation after 
the insertion of the applicator, usually very locally around 
the cervix region [3]. The cervix is a flexible organ which 
might be non-rigidly deformed depending on the patient’s 
posture. The bladder and rectum are also highly flexible 
organs which could be filled or empty within the course of 
therapy and may also cause deformation to the surround-
ing organs. The bladder and rectum are regarded as OARs 
while the cervix is the target organ for dose delivery [46]. 
For a realistic simulation of the organ deformation in the 
pelvis regions, certain criteria should be met [3–5, 47, 48]. 
The uterus is a flexible organ which is prone to both rota-
tional and translational motions [5]. Moreover, the uterine 
and vaginal deformation/motion also depend on the status 

Fig. 1  Representative trans-
axial CT slices of two different 
patients showing the differ-
ent rectum volume/location 
between two sets of CT images
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of the bladder and rectum (whether they are empty or not) 
[5]. The cross-organ deformation impacts vary greatly across 
different organs, as illustrated in Fig. 3 wherein the rectum 
filling has remarkably deformed the cervix, compared to the 
bladder filling which had less impact.

Deformation Simulation To implement image deformation, 
the correlated stochastic field [49] was simulated using the 
same size as the target image (used for deformation) to 
produce general random deformation. Input images were 
patients’ CT scans and the target images were deformed 
images using the abovementioned method. For a Gaussian 

stochastic deformation (YG) with an average of yc and a dis-
persion of � , the probability for YG = [y, y + dy] is given by 
Eq. (1):

In such a Gaussian random field, the probability for the field 
at location × 1 would have a value of Y(× 1) = y1 at location × 2 
and a value of Y(× 2) = y2, and so on for N points (i.e., for 
Y(xN) = yN at location xN). For a Gaussian field knowledge of 
all n points, the probability distributions would be:

(1)p(y)dy =
1√
2��2

exp

�
−

�
y − yc

�2
2�2

�
dy

Fig. 2  Intensity-based thresholding approach was employed to 
remove couches from CT images. Left: an example of a 2D CT image 
with a line profile in the posterior-anterior direction. Right: CT inten-

sity profile along the line depicted on the CT image shows the spe-
cific intensity of the CT couch

Fig. 3  A representative example 
of cross-organ deformation is 
shown wherein a rectum filling 
has greatly impacted the cervix. 
The trans-axial and sagittal CT 
views of two patients with dif-
ferent rectum filling are shown. 
In A and C, the rectum with a 
normal filling has not affected 
the cervix. In B and D, the 
rectum filling has substantially 
deformed the cervix
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In which M−1 is the inverse of the correlation matrix M:

In which � is the covariance function.
The simulated deformation field moves all regions with 

the same strength. To add anatomical considerations, the 
field strength in bony structures and air (outer body) regions 
was decreased using regional information and a smoothed 
correction map. Afterward, the rectum expansion simulation 
was added, which is a random expansion modulated on the 
general deformation field. For the deformation offset field, 
a sigma ( � ) of 10 was chosen while for the bony structure, 
� = 3 was used. Furthermore, to take into account the ana-
tomical consideration in deformation offsets for the rectum 
field, the deformation amplitude was set within the range of 
100 to 1000 and for the bladder, 100 to 500 were chosen. 
Next, a non-linear wrap was applied to the input image, in 
which the wrap field was specified by offset vectors which 
define the correspondence between pixel values in the source 
and the output images at the same original location. The 
pixel value was obtained by the bilinear interpolation of the 
4 neighboring pixels. Additionally, for pixels residing out-
side the considered ROI (i.e., the ROIs are binary masks 
specified for the OARs), the nearest pixel values at the cor-
responding mask boundary were calculated using an image 
wrapping based on the per-pixel flow vectors. A dense image 
wrapping takes a 4D shape tensor (batch, height, width, and 
channels), as well as an offset 4D tensor (batch, height, 
width, channel) as inputs, and returns a 4D float tensor 

(2)
p(y1, … ., yn)dy1 … dyn =

1

2�(detM)1∕2
exp{−

�
y1, … ., yn

�
M−1

⎛
⎜⎜⎝

y1,
…

yn,

⎞
⎟⎟⎠

2
}dy1 … dyn

M =

(
�(0) �(y1, y2)

�(y1, y2) �(0)

)
=

(
�2 �(0)

�(0) �2

)
(batch, height, width, and channels). Therefore, applying 
this deformation on either images or masks would allow 
the local deformation of an image considering anatomical 
condition/consideration (Fig. 4).

As shown in Fig. 5, bony structures did not change in the 
output deformed image after applying the image deforma-
tion. This deformation field was optimized to have a maxi-
mum amplitude in the rectum region, a moderate amplitude 
in the bladder region, and an amplitude as minimum as pos-
sible within bony structures.

Deep Neural Network Architecture

The DIRNet deep learning model proposed by de Vos et al. 
[50] was used as a baseline model. It is an end-to-end CNN 
that consists of convolutional regressors, spatial transfor-
mation, and resampling block. The convolutional regressor 
receives concatenated pairs of fixed images (as input) and 
employs 4 alternating convolutional layers with a kernel size 
of 3 × 3 and 0-padding followed by 2 × 2 down sampling 
layers.

The spatial transformer creates a displacement vector field 
(DVF) that allows the resampler to wrap a moving image 
around a fixed image. The wrapped image is compared to the 
fixed image through a normalized cross-correlation (NCC) as 
a similarity metric which was employed as the loss function. 
The DIRNet is trained through optimizing a backpropagating 
dissimilarity between pairs of moving and fixed images using 
the mini-batch stochastic gradient descent (Adam) algorithm 
[51] (Fig. 6).

Fig. 4  Synthetic image deformation workflow. From left to right: 
input CT image was considered a fixed image, the binary masks of 
the key organs (created from the RT structure data) were defined on 

the fixed image, a non-linear deformation was applied on the binary 
mask, and subsequently, a deformed CT image was created from the 
deformed binary masks
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ConvNet Regressor

The baseline DIRNet model utilized a Convolutional Net 
Regressor which consists of 4 layers of 3 × 3 convolutional 
(Conv) layer with a 0-padding and average pooling layers 
with a size of 2 × 2 to retain the underlying information dur-
ing the down-sampling. Sixteen kernels were used per Conv 
layer. All Conv layers used exponential linear units (ELU) 
[52] as an activation function, except for the last layer, which 
had a linear output. ConvNet Regressor expected a concat-
enated pair of fixed and deformed images as input. In addi-
tion, a batch normalization [52] with a momentum of 0.9 
was applied for each layer.

Spatial Transformer

The spatial transformer introduced by Jaderberg et  al. 
[34], a differentiable attention to any spatial transforma-
tion, can be trained using a backpropagation. The spatial 
transformer generates a dense DVF for local deformation 
parameters produced by ConvNet Regressor and allows 
a neural network to learn how to perform a spatial trans-
formation on the input image to enhance the geometric 
invariance of the model. In this model, a cubic B-spline 
transformer was employed to its local support capability as 
a spatial transformer. It takes into account the data points 
in the neighborhood to modify the location of the target 

Fig. 5  First row: original and deformed images. Second row: original and deformed masks. Third row: original and deformed grids/fields
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point leading to a continuous/smooth and natural deforma-
tion effect. According to Eq. (3), in the case of 2D, f(x) 
would depend on a couple of control points ( x to update 
the location of the target point ( ∅(x − i))).

ReSampler

The DVF generated by the spatial transformer needs to be 
applied to the moving image to transform it into the space of 
the fixed image. This process requires resampling the mov-
ing image on the grid belonging to the pixels (voxels) in the 

(3)f (x) =
∑

i=1,2,3
�i∅(x − i)

fixed image. Since a local deformation was used, the bicubic 
interpolation was employed to transform the moving images.

Network Training and Implementation Details

Different types of DIRNet were trained to investigate the 
impact of various DIRNet parameters, such as the loss func-
tion, as well as the number of Conv layers and the max-
pooling layers. First, to evaluate the effect of the loss func-
tion, the DIRNet 2 was designed with the mean square error 
(MSE) loss function. Second, to show the effect of the down-
sampling layer, the DIRNet 3 was designed without an aver-
age pooling. Third, to evaluate the effect of the number of 
Conv layers, the DIRNet 4 with 8 Conv layers were designed 

Fig. 6  Training workflow of the DIRNet architecture. The DIRNet 
model takes a concatenated pair of fixed and deformed images as 
inputs. The convolutional regressor generates a grid of control points 
by analyzing the spatial correspondence between the input images. 
The spatial transformer generates a displacement vector field that 

enables the ReSampler to wrap the moving image to the fixed image. 
Solid lines indicate the baseline DIRNet and the blue dash-line indi-
cates the proposed modification for the loss calculation in the back-
propagating flow

Table 1  Key parameters of the baseline DIRNet and all its variants

ELU Exponential Linear Units

Models Number 
of layers

Number of trainable 
parameters

Kernel 
size

Loss function Pooling 
layer

Activation 
function

Batch 
normalization

DIRNet 1 (baseline) 4 446,722 3 × 3 Normalized cross-correlation Yes (2 × 2) ELU  ✔
DIRNet 2 4 446,722 3 × 3 Mean square error Yes (2 × 2) ELU  ✔
DIRNet 3 4 815,874 3 × 3 Normalized cross-correlation No ELU  ✔
DIRNet 4 8 446,722 3 × 3 Normalized cross-correlation Yes (2 × 2) ELU  ✔
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and implemented. Table 1 summarizes the baseline DIRNet 
model and its variant properties.

Furthermore, for the training of the DIRNet and its variants, 
the binary masks in the loss function were incorporated for 
the calculation of backpropagation flows. For this purpose, all 
DIRNet models take a pair of concatenated fixed and moving 
images as input. The extracted DVF was also applied to the 
moving binary mask to produce a wrapped binary mask. The 
loss function tries to minimize the image dissimilarity error 
between the wrapped and fixed binary masks to maximize 
image similarity between fixed and deformed images (Fig. 6).

In the present experiments, the input image was of 
256 × 512 voxel size. The 2D Convs were applied followed 
by the ELU activation functions, except for the final layer 
which had a linear output with a kernel size of 3 × 3. The 
down sampling layer had an average pooling layer of 2 × 2 
and the batch normalization was applied to every layer. 
A mini batch of size 4 was utilized since the image size 
was large. Each model was trained using 10,000 iterations 
through optimizing (employing mini-batch stochastic gradi-
ent descent) image similarity metrics (MSE for the DIRNet 
2 and the normalized cross-correlation for the others) as 
the loss function (comparing the model outputs and fixed 
images). The learning rate was set at 1e − 4 for all models.

Different packages and libraries were employed, such 
as the TensorFlow (version 1.13.2) for implementing deep 
learning models, the Matplotlib1 (version 3.1.2) for plotting 

and visualization, the Scikit-Image2 (version 0.15.0) for 
image processing, and the Numpy3 package (version 1.16.4) 
for numerical computing. All models were trained on a 2 
NVIDIA® GTX 1080 GPU and Intel Core i9 Xeon CPU 
with 128 GB RAM.

Performance Measurement

After training, the accuracy of each DIRNet model was 
evaluated by three different similarity metrics. The trained 
models were applied to the concatenated pair of fixed and 
moving images to extract the DVF. Next, the extracted 
DVF was applied to the moving binary mask to wrap it into 
the fixed binary mask. As such, each organ could be evalu-
ated separately with pixel-level precision. Each similarity 
measurement score was averaged over the entire patient 
slices. For the entire OARs (bladder, cervix, and rectum), 
three different similarity metrics, including two boundary-
based and one surface-based metric, were calculated for 
each slice separately. Afterward, its average was calculated 
over the entire 2D slices. The mean ± SD calculated over 
the 2D slices are reported for each of the abovementioned 
metrics.

Table 2  Dice coefficients 
calculated over deformed pelvic 
masks and the ground-truth 
masks for the different variants 
of DIRNet model. Results are 
given for all DIRNet models for 
the cervix, bladder, and rectum

Dice coefficient

Cervix (mean ± SD) Bladder (mean ± SD) Rectum (mean ± SD)

Before registration 0.75 ± 0.14 0.91 ± 0.05 0.65 ± 0.16
SimpleElastix 0.80 ± 0.06 0.90 ± 0.03 0.78 ± 0.09
DIRNet Base model 0.86 ± 0.08 0.95 ± 0.01 0.87 ± 0.20

2 0.83 ± 0.08 0.89 ± 0.02 0.74 ± 0.22
3 0.79 ± 0.06 0.91 ± 0.02 0.79 ± 0.85
4 0.89 ± 0.02 0.96 ± 0.01 0.93 ± 0.02

Table 3  Jaccard coefficients 
calculated over deformed pelvic 
masks and the ground-truth 
masks for different variants of 
DIRNet models. Results are 
given for all DIRNet models for 
the cervix, bladder, and rectum

Jaccard coefficient

Cervix (mean ± SD) Bladder (mean ± SD) Rectum (mean ± SD)

Before registration 0.62 ± 0.15 0.85 ± 0.06 0.51 ± 0.19
SimpleElastix 0.71 ± 0.08 0.83 ± 0.04 0.67 ± 0.11
DIRNet Base model 0.82 ± 0.06 0.91 ± 0.03 0.78 ± 0.07

2 0.76 ± 0.10 0.81 ± 0.04 0.63 ± 0.23
3 0.72 ± 0.08 0.85 ± 0.04 0.66 ± 0.10
4 0.86 ± 0.04 0.93 ± 0.01 0.88 ± 0.04

1 https:// matpl otlib. org/

2 https:// scikit- image. org/
3 https:// numpy. org/
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Jaccard Coefficient

The intersection-over-union, also known as the Jaccard 
index Eq. (4), was employed as follows:

where A and B are the binary masks of the OARs in the 
fixed and deformed images, respectively.

Dice Coefficient Similarity Metric (DC)

The Dice coefficient is very similar to the Jaccard index Eq. (5).

Average Symmetric Surface Distance (ASSD)

Average symmetric surface distance (ASSD) is a surface 
distance-based measure. According to Eq. (6), the ASSD 
measures the average of all the distances from the bound-
ary between two surfaces of the reference and predicted 
segmentations:

where Bp and BG represent a set of voxels belonging to 
boundary contours of the predicted mask and ground-truth, 
respectively. d(x,BG) and d(y,Bp) are the Euclidean distances 
between distinct voxels (y and x) from the ground-truth and 
predicted contours, respectively [53].

Results

Tables 1, 2, and 3 present the mean ± SD of the Dice, Jac-
card, and the average symmetric distance for the differ-
ent DIRNet models, respectively, calculated across the 15 

(4)Jaccard =
|A ∩ B|
|A ∪ B|

(5)DC =
2|A ∩ B|
|A| + |B|

(6)ASSD =
1

|||Bp +
||BG

|||||
×

(∑
x�BP

d(x,BG) +
∑
y∈BG

d(y,Bp)

)

patients in the external validation dataset. For the Dice 
and Jaccard, a higher value indicates a better deformation 
accuracy. For average symmetric distance, lower values 
indicate better agreement between the contours of the two 
corresponding images. Registration performance of the basic 
DIRNet model and its variants were compared to the con-
ventional iterative intensity-based image registration imple-
mented in the Elastix [54]. To compare the conventional 
registration algorithm with the DIRNet, a similar grid spac-
ing setting and NCC were chosen. Furthermore, stochastic 
gradient descent was used for the iterative optimization. 
Registration was performed in 500 iterations. Moreover, 
the Gaussian smoothing image Pyramid and multiresolu-
tion approach were chosen.

Performance on Cervix

The DIRNet 4 model was able to achieve a higher Dice, 
Jaccard, and lower average symmetric surface distance 
among all other DIRNet variants evaluated across 15 
patients. On average, the DIRNet 4 model achieved closer 
contours (a lower ASSD with a mean of 1.61 ± 0.46 mm) 
than all other models. The DIRNet 4 achieved mean scores 
of 0.89 ± 0.02, 0.86 ± 0.04, and 1.61 ± 0.46 mm for the 
Dice, Jaccard, and ASSD, respectively, which are higher 
than other models (Tables 2, 3, and 4). To illustrate the 
model’s performance on each organ, the Marching Square 
algorithm [55] was used to generate contours from the 2D 
predicted binary masks for each DIRNet model (Fig. 7, 
blue contours).

Among other models, the basic DIRNet model (DIRNet 
1) achieved a higher score in terms of the Dice, Jaccard, and 
ASSD for the cervix. Furthermore, the DIRNet 3 exhibited a 
higher score, compared to the SimpleElastix based on ASSD 
and Jaccard scores. However, based on the Dice score, DIRNet 
3 and SimpleElastix had the same performance on the cervix. 
More detailed results are summarized in Tables 2, 3, and 4 and 
illustrated in Fig. 7. Representative image slices from the input 
moving and fixed CT image pairs, together with the registered 
CT images, are provided in Fig. 7.

Table 4  Average symmetric 
surface distance (ASSD) 
calculated over deformed pelvic 
masks and the ground-truth 
masks for the different variants 
of DIRNet models. Results are 
given for the entire DIRNet 
models for the cervix, bladder, 
and rectum

Average symmetric surface distance (ASSD)

Cervix (mean ± SD) Bladder (mean ± SD) Rectum (mean ± SD)

Before registration 4.00 ± 1.82 mm 2.68 ± 1.09 mm 7.70 ± 3.90 mm
SimpleElastix 2.94 ± 0.78 3.26 ± 0.74 3.04 ± 1.50
DIRNet Base model 1.85 ± 0.45 1.52 ± 0.86 1.97 ± 0.78

2 2.63 ± 1.01 3.46 ± 0.90 3.70 ± 2.75
3 2.86 ± 0.65 2.87 ± 2.37 2.92 ± 0.94
4 1.61 ± 0.46 1.17 ± 0.15 1.06 ± 0.42
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Performance on Bladder

The DIRNet 4 network, trained with more Conv layers, 
showed a better performance with respect to the basic DIR-
Net model in terms of the Dice, ASSD, and Jaccard indices. 
This indicates that adding more Conv layers would signifi-
cantly improve the performance of the model for all three 
organs. Furthermore, the basic DIRNet and DIRNet 4 mod-
els exhibited improved performance in image registration 
for the bladder. However, the remaining models failed to 
improve bladder deformation.

Performance on Rectum

Based on the Dice, Jaccard, and average symmetric surface 
distance metrics, the DIRNet 4 model achieved a higher 
score for the rectum. Mean Dice, ASSD, and Jaccard 
coefficients of 0.93 ± 0.02, 1.06 ± 0.42, and 0.88 ± 0.04, 
respectively, were obtained from the DIRNet 4 model 
for the rectum. More detailed results are presented in 
Tables 2, 3, and 4. Additionally, a radar plot of the results 
was generated to show the models’ performance based 
on multiple quantitative metrics (Fig. 8). Representative 

Fig. 7  Representative slices of the registered image by the different DIRNet models, in comparison with the conventional intensity-based image 
registration (SimpleElastix). Red, blue, and yellow contours correspond to the bladder, cervix, and rectum, respectively

Fig. 8  Radar plots of the quantitative metrics. Results are shown for 
three metrics, five DIRNet models, and three organs averaged over 
15 patients. The colored polygon represents the organs (blue: cervix, 
red: bladder, and green: rectum). Each corner corresponds to a vari-
ant of DIRNet models. Each model has three scores (at the corners) 
for three organs. For the Dice measure (left plot), the DIRNet 4 has a 
greater dice score relative to all other DIRNet variants, except for the 

DIRNet 3 in the bladder. Similarly, for the Jaccard coefficient (mid-
dle plot), the DIRNet 4 has a greater score for all organs, in compari-
son with all other DIRNet variants. Regarding the average symmetric 
surface distance (ASSD) (right plot), the DIRNet 4 also has a lower 
score (best match) for all organs, and the DIRNet 3 has a similar 
ASSD score as the DIRNet 4 for the cervix
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slices from the input fixed and moving images, together 
with the registered image, are provided in Fig. 7 for quali-
tative visual assessment of the registration results based 
on the test data.

Discussion

This study demonstrated the feasibility of deep learning-
based DIR to account for inter-fraction organ motion in the 
HDR brachytherapy. This method exploits image similar-
ity features between fixed and moving images to train a 
CNN model for the DIR. The CNN model was evaluated 
for pelvis CT images. Since there is no specific dataset 
(publicly available) for such an application, a deforma-
tion simulation was introduced considering realistic image 
deformation within the bladder and rectum organs. In the 
proposed method, DIRNet architecture, introduced by de 
Vos et al. [50], was considered the basic model. To evalu-
ate the effect of the loss functions, Conv layer, and pooling 
layers, different types of the DIRNet model were trained 
and tested. All models were separately evaluated for all 
three organs (i.e., bladder, cervix, and bladder) using the 
binary masks obtained from the models’ output and the 
ground-truth data. For this purpose, the Dice, Jaccard, 
and average symmetric surface distance metrics were 
employed to assess the performance of deep learning-
based image deformation within the specified organs. Fur-
thermore, the synthetic deformation based on correlated 
stochastics field was applied to simulate an inter-fraction 
organ deformation.

To compare the proposed method to conventional inten-
sity-based DIR algorithms, SimpleElastix was implemented 
on the dataset with tuned parameters. Results showed that 
the DIRNet 4 model that benefits from more Conv layers 
(eight layers, in comparison with the basic DIRNet model) 
achieved better results on all three organs; nevertheless, 
slightly increased errors were observed for the bladder due 
to the large deformation of this organ. It is suggested that the 
number of Conv layers has a significant effect on the perfor-
mance of the model, in comparison with the average pool-
ing layer. The reason is as Conv layers increase, the model 
can extract more discriminative features from the input 
images that help the transformation function to estimate 
better deformation parameters. On the other hand, the aver-
age pooling layer may decrease the image dimension which 
results in poor resolution in the deformation estimation field. 
However, for large image deformation within the rectum, 
pooling layers had a greater effect on the performance of the 
model, compared to the loss function. For medium deforma-
tion relative to the rectum, such as within the cervix, the 
loss function was important, in comparison with the pool-
ing layer. The mean squared loss function, which magnifies 

the estimated errors, would show more sensitivity to small 
errors between the predicted and the ground-truth images. 
Therefore, the MSE loss function could not be a good choice 
for small deformations. Furthermore, for low deformation, 
such as bladder, most of the DIRNet models did not improve 
registration accuracy. However, DIRNet 1 model (the basic 
DIRNet model) improved bladder registration.

In comparison with similar studies on the rigid-registration 
problem, Miao et al. [37] used a CNN model to predict rigid 
transformation parameters for 2D/3D X-ray attenuation maps 
and 2D X-ray images of the volar plate for virtual implant 
planning systems. They proposed a hierarchical regression 
in which the six transformation parameters were categorized 
into three groups. By transforming the aligned data, synthetic 
ground-truth data was created. Their proposed methodol-
ogy beat registration algorithms (by using mean target reg-
istration error (TRE)) based on gradient correlation (TRE: 
0.315 mm), mutual information (TRE: 0.285 mm), and an 
optimization-based (TRE: 0.282 mm) method. In a study 
conducted by Eppenhof et al. [33], a 3D CNN was used to 
estimate deformable image transformation directly from two 
input images. To automatically annotate the ground-truth data 
for supervised training, they applied a random modification of 
aligned inhale-exhale 3D lung CT picture pairings. Synthetic 
deformations generated by a random transformation estima-
tor were applied to images. They compared their approach 
against other state-of-the-art lung registration by measuring 
the registration error across 10 subjects with 300 landmarks. 
A mean TRE of 4.02 ± 3.08 mm across 10 subjects was 
achieved by this model. Fast registration time and automatic 
annotation are the most important aspects of their study. To 
enhance the diversity of the registration dataset, Sokooti et al. 
[41] used random DVFs to augment their dataset. They used 
a multi-scale CNN on intra-subject 3D chest CT images to 
estimate the DVF. They proposed a late fusion approach for 
the input data to the model. For single resolution, B-spline 
RegNet has a better TRE (4.39 ± 7.54 mm), in comparison 
with a single resolution with a TRE of 5.48 ± 7.56 mm. How-
ever, multi-resolution B-spline exhibited an improved TRE 
of 2.19 ± 6.22 mm.

Hu et al. [56] proposed an end-to-end CNN approach to 
predict the displacement field for multimodal image regis-
tration between multiple labeled structures. Furthermore, 
they addressed the challenges of the ground-truth genera-
tion for supervised learning by higher-level correspondence 
information for voxel-level labeling. They used 108 pairs of 
T2-weighted MRI and 3D transrectal US images for several 
network architectures. The mean TRE of 3.6 mm on land-
mark centroids and the median Dice of 0.87 on the pros-
tate gland were achieved. In a study conducted by de Vos 
et al. [50], an end-to-end deep learning DIR called DIRNet 
was proposed. They trained a different variant of DIRNet 
on 69,540 cardiac cine MRI image pairs for the training and 
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63,840 image pairs for validation. They compared the results 
with the conventional intensity-based DIR (SimpleElastix) in 
terms of the Dice, MAD, and 95th SD metrics. In compari-
son to SimpleElastix, they concluded that a DIRNet model 
with overlapping patches and Conv layers before and after 
the pooling layer produced better results.

In the present experiment, it was found that the main advan-
tage of this study was conducting deformation simulation 
based on anatomical changes by inserting applicators inside 
the vaginal cavity. This simulation also improved the proposed 
models through the use of binary masks which resulted in 
pixel-level accuracy for model evaluation. Future studies will 
aim to further improve the proposed method by adding more 
Conv layers and testing different loss functions. Although a 
dataset of 57 cervical patients was used in this study, increas-
ing the training dataset would result in a model with improved 
accuracy and generalizability by using data augmentation [57] 
and decentralize federated learning [58] approaches. Another 
suggestion would be the use of more structure contours to 
take into account more anatomical considerations. Defor-
mation simulation has a great effect on results; therefore, in 
future studies more sophisticated deformation models would 
be applied, and a variety of more patients may be investigated 
from different treatment strategies in terms of the type of appli-
cators and the relevant anatomical deformation.

Conclusion

In summary, a deep learning-based DIR was introduced in 
this study to take into account inter-fraction deformation in 
high-dose-rate cervical cancer BT. The trained network ena-
bles a fast and fully-automatic DIR algorithm using a pair of 
fixed and deformed images. The trained models were applied 
to 15 cervical cancer patients with manually defined labels 
for the bladder, cervix, and rectum. The deep learning-based 
registration results were compared to the SimpleElastix, 
which is a conventional intensity-based DIR algorithm. The 
proposed method outperformed the SimpleElastix in all 
three organs based on the Dice, Jaccard, and ASSD metrics. 
Finally, it could be concluded that DIRNet 4 model is able 
to consider large and low deformation for the rectum and 
bladder, respectively.
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