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Abstract
Multiple sclerosis (MS) is one of the most serious neurological diseases. It is the most frequent reason of non-traumatic dis-
ability among young adults. MS is an autoimmune disease wherein the central nervous system wrongly destructs the myelin 
sheath surrounding and protecting axons of nerve cells of the brain and the spinal cord which results in presence of lesions 
called plaques. The damage of myelin sheath alters the normal transmission of nerve flow at the plaques level, consequently, 
a loss of communication between the brain and other organs. The consequence of this poor transmission of nerve impulses 
is the occurrence of various neurological symptoms. MS lesions cause mobility, vision, cognitive, and memory disorders. 
Indeed, early detection of lesions provides an accurate MS diagnosis. Consequently, and with the adequate treatment, cli-
nicians will be able to deal effectively with the disease and reduce the number of relapses. Therefore, the use of magnetic 
resonance imaging (MRI) is primordial which is proven as the relevant imaging tool for early diagnosis of MS patients. But, 
low contrast MRI images can hide important objects in the image such lesions. In this paper, we propose a new automated 
contrast enhancement (CE) method to ameliorate the low contrast of MRI images for a better enhancement of MS lesions. 
This step is very important as it helps radiologists in confirming their diagnosis. The developed algorithm called BDS is 
based on Brightness Preserving Dynamic Fuzzy Histogram Equalization (BPDFHE) and Singular Value Decomposition 
with Discrete Wavelet Transform (SVD-DWT) techniques. BDS is dedicated to improve the low quality of MRI images with 
preservation of the brightness level and the edge details from degradation and without added artifacts or noise. These features 
are essential in CE approaches for a better lesion recognition. A modified version of BDS called MBDS is also implemented 
in the second part of this paper wherein we have proposed a new method for computing the correction factor. Indeed, with 
the use of the new correction factor, the entropy has been increased and the contrast is greatly enhanced. MBDS is specially 
dedicated for very low contrast MRI images. The experimental results proved the effectiveness of developed methods in 
improving low contrast of MRI images with preservation of brightness level and edge information. Moreover, performances 
of both proposed BDS and MBDS algorithms exceeded conventional CE methods.
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Introduction

Multiple sclerosis  is a chronic inflammatory demyelinat-
ing disease touching both the spinal cord and the brain.  
It is disseminated in both time (i.e., lesions arise at differ-
ent times) and space (i.e., multiple lesions occur in various 
regions of the brain). At the onset of the disease, one or more 
diverse symptoms are present [1, 2]. They are often transient. 
They most often settle quickly within hours or days. They 
depend on the region of the brain or spinal cord affected 
by the lesions. MS symptoms are numerous and vary from  
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patient to another including motor and balance disorders 
such fatigue [3], limitation of walking, partial paralysis of 
a limb, facial paralysis, abnormal movements, and vertigo. 
Symptoms may involve also sensitivity disorders as numb-
ness or tingling, pain and electric shocks, abnormal sensa-
tions of streaming, hot, cold, and loss of sensitivity [4].

MS can present some other clinical features like psycho-
logical and cognitive symptoms: disturbances of attention, 
memory, mood, and depression [5–7].

The diagnosis of the disease is difficult because there is 
no specific examination. Often, the disease spreads in flare-
ups (relapses) with phases of remission [8]. After years of 
development, a permanent disability can set in.

To confirm the diagnosis, a bundle of clinical and radi-
ological arguments and follow-up of the evolution of the 
symptoms are needed. For example, the presence of symp-
toms reflecting the existence of lesions in several areas of the 
nervous system (a reduction in the muscle strength of a limb 
and eye damage) confirms the MS diagnosis. In addition, 
neurological symptoms must evolve over time [9]. The neu-
rological examination is completed by an MRI of the brain 
and the spinal cord. MRI is the most expressive examina-
tion, revealing lesions as dark or white spots (plaques) in the 
central nervous system according to the used MRI sequence.

Nowadays, MRI has become the reference imaging exam-
ination for the diagnosis and follow-up of MS patients espe-
cially in the absence of clinical signs or symptoms.

Indeed, MRI provides an image of the brain, optic nerves, 
and spinal cord and precisely highlights the differences in 
contrast existing between normal tissues of different natures 
or between normal and diseased tissues. Thus, MRI provides 
precise information of the anatomy of the brain and spinal 
cord and help to distinguish the different areas of tissue. 
MRI also makes it possible to locate and specify the nature 
and age of central nervous system lesions and in particu-
lar, the demyelination plaques present in the case of MS in 
the white matter [10]. Also, MRI can detect disease activity 
even in the absence of visible signs and symptoms. Indeed, 
the activity of MS may not be expressed in an obvious way 
and may be underlying, manifesting itself only in the form 
of lesions (inflammation or damaged areas in the central 
nervous system), detected by MRI.

The presence of signs of MS activity on follow-up MRIs 
can lead the medical team to initiate or change disease-
treatment, even in the absence of relapses [11]. But, some 
MRI images present low contrast; hence, gadolinium is fre-
quently employed to improve contrast of MRI images, for 
better visualization of organs [12]. However, gadolinium is 
contraindicated for some patients such pregnant women, in 
case of allergy to the product and for patient with chronic 
kidney disease [13, 14].

Various contrast enhancement algorithms have been 
developed to ameliorate the MRI contrast without the need 

to contrast agent’s injection. Contrast enhancement meth-
ods attempt to ameliorate image quality by increasing vis-
ibility of image details with reduced amount of noise and 
artifacts. Enhanced images can be used later for processing 
tasks such segmentation or lesion and tumor detection to 
extract pertinent information [15].

Among the literature, numerous studies have been car-
ried out for image enhancement in various fields [15–18] 
including medical image enhancement [19–26].

The study of [19] suggested an adaptive genetic algo-
rithm to improve the contrast of medical images. For 
several years, global histogram equalization (GHE) [27] 
had been the top used method for improving low contrast 
of digital images due to its important features which are 
simplicity of use and short execution time. The enhance-
ment process consists to expand the histogram of the input 
image to cover the entire gray scale range resulting in an 
overall contrast enhancement. However, recent studies [24, 
25] proved that GHE cannot be convenient for the medi-
cal image enhancement as it oversaturates several parts of 
the image and does not preserve some important features 
which can be significant for the clinical interpretation such 
tumors or lesions.

A second branch of histogram equalization; local histo-
gram equalization (LHE) [28]; and its extensions: adaptive 
histogram equalization (AHE) [29] and contrast limited adap-
tive histogram equalization (CLAHE) [30] use sub-blocks to 
ameliorate the contrast locally, but this improvement costs in 
complexity. In 2020, Subramani and Veluchamy [26] have 
developed a medical image enhancement method. It consists 
to divide the histogram into sub-histograms according to the 
exposure threshold to preserve the mean brightness and then 
the equalization is done through contrast limited bi-histogram 
equalization method. In [20], the author combined the image 
processing concepts and statistical methods to enhance MR 
and x-ray images by using logarithmic image processing 
(LIP) and adaptive linear stretching method. Recently, Chai 
Hum et al. [31] presented a contrast enhancement framework 
composed of a pixel-based bi-histogram equalization method 
termed as mean brightness bidirectional histogram equaliza-
tion (MBBDHE), based on the human visual perception rep-
resented by the just-noticeable-difference (JND) to manage the 
enhancement process.

Other researchers [32, 33] used gamma correction adaptively 
to increase the contrast of dark images wherein the gamma cor-
rection factor is automatically computed. In [21], Somasunda-
ram et al. implemented an adaptive gamma correction method 
based on the image cumulative histogram to boost the low con-
trast of MR brain images and computed tomography (CT) scan 
images. The forementioned approaches perform well, but the 
resulted images are generally oversaturated.

Several methods subsumed under histogram equalization 
such as (brightness preserving bi-histogram equalization 
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(BBHE), dualistic sub image histogram equalization 
(DSIHE), and minimum mean brightness error bi-histogram  
equalization (MMBEBHE)) attempt to defeat the problem 
of oversaturation by proposing approaches conserving the 
brightness level. Those methods preserve the brightness to 
some extent, still, they do not meet that desirable property 
quite well [34]. In [35, 36], the authors proposed more 
efficient techniques to maintain the average brightness 
like brightness preserving dynamic histogram equalization 
(BPDHE) and BPDFHE. Nonetheless, they do not conserve 
the edge details resulting in damage of some important 
features such lesions.

To protect the edge details from degradation, SVD-
DWT technique [37] is generally employed. The authors of 
[23] have proposed a new method: gamma correction with 
discrete wavelet transform and singular value decomposi-
tion (GCDWT-SVD) based on the combination of singular 
value decomposition and adaptive gamma correction to 
boost the low contrast of CT scan. The work of [24] com-
bined the gamma correction and the DWT-SVD algorithms 
to ameliorate the low contrast of medullary images.

Most conventional medical images enhancement methods 
enhance low contrast without attention to the image’s bright-
ness despite it is an important feature as the non-preservation  
of the input brightness will lead to oversaturation of the 
enhanced image and sometimes the loss of some important 
details such tumors or lesions. Whereas, most existing image 
enhancement approaches focused either on preservation of 
the brightness [34, 36] or conservation of edges from distor-
tion [23, 24]. In our work, we propose to deal with both of 
these problems.

In this study, we present a novel automated method 
called BDS wherein we associated the BPDFHE method 
with DWT-SVD. The proposed method took the advantages 
of both associated methods which are the conservation of 
brightness level and the edge details respectively. Hence, 
BDS permits to enhance the low contrast of MRI images 
with protection of brightness and edge information from 
degradation. In fact, enhancing the low contrast improves 
the structure visibility which permits the accurate segmen-
tation of lesions and consequently more precise diagnosis.

As a first step in our algorithm, the original image is 
enhanced with BPDFHE. The second step, the DWT is used 
to decompose the original and the equalized images into four 
frequency sub-bands: low–low sub-band (LLO), low–high 
sub-band (LHO), high–low sub-band (HLO), and high–high 
sub-band (HHO) of the original image, and low–low sub-
band (LLB), low–high sub-band (LHB), high–low sub-band 
(HLB), and high–high sub-band (HHB) of the equalized 
image with BPDFHE. Therefore, the singular value matri-
ces of the low–low sub-bands (LLO and LLB) are calculated, 

and the correction coefficient factor for singular value matrix 
of the LL components is computed. Then, the inverse dis-
crete wavelet transform (IDWT) is employed to recombine 
the processed LL sub-bands image with the LHO, HLO, 
and HHO sub-bands of the original image to generate the 
enhanced image with BDS.

The second part of this paper consists to develop a modi-
fied method named MBDS (modified BDS) in which, we 
propose a new correction factor to ameliorate the overall 
contrast of the original image. MBDS gives prominent 
results even when applied on very low contrast MRI images.

This manuscript is organized as follows: The “Introduc-
tion” section presented the concern of this study and the 
problems related with CE algorithms of medical images, 
summarizes the related works, and highlights our contri-
bution. In the “Overview of the Proposed Methodology” 
section, the proposed method is detailed. “Results and Dis-
cussion” section shows the results of application of the pro-
posed methods on two datasets and the comparison with 
other existing methods and discusses them. The “Conclu-
sion” section describes the main contribution of our current 
work and its benefit in the medical image enhancement field.

Overview of the Proposed Methodology

The two main phases of the BDS proposed approach are 
BPDFHE and SVD-DWT methods as shown in Fig. 1. The 
first phase consists to equalize the input image with BPD-
FHE. This step is to maintain the average brightness of the 
input image. The second step is to insert the previously 
enhanced image with BPDFHE simultaneously with the 
original non-equalized image to the second phase wherein 
DWT technique is used. DWT permits to decompose the 
images into their low and high frequencies in order to apply 
the enhancement process only on low frequency sub-bands. 
This step is considered to preserve the edge information 
embedded in other sub-bands. Therefore, the enhancement 
of low frequency sub-bands only will protect these features 
(edges) from degradation.

In the second stage, three essential steps are needed. First, 
the computing of the singular value matrix 

∑

 for LL sub-
band images and finding the maximum elements of 

∑

 for 
both images (original and equalized). Second, the calculation 
of the correction factor which will be utilized to manage the 
enhancement process. Third step is to use this correction factor 
to generate the new enhanced singular value matrix ̄

∑

 and to 
reconstruct the new LL image. The final step is to use IDWT 
to recombine this new enhanced LL sub-band with other non-
processed subbands of the input image. Hence, the enhanced 
image with the proposed method BDS will be obtained.
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Singular Value Decomposition

Several works have used singular value decomposition 
(SVD) for enhancement of low contrast images [37–39]. 
SVD of an image can be symbolized by a matrix I:

where UI and VI are respectively hanger and aligner 
orthogonal square matrices, and the I matrix includes, on 
its main diagonal, the sorted singular values. The singular 
value matrix characterizes the intensity information of an 
input image and consequently the intensity of like image is 

(1)I = UI

∑

IV
T
I

affected by any modifications on its singular values. Thus, 
the SVD method could be considered to equalize image with 
low contrast. The SVD utilizes the ratio of the largest singu-
lar value of the generated normalized matrix, with mean zero 
and variance of one, over a normalized image which can be 
determined using Eq. (2) [33]:

where (
∑

N(�=0,var=1)) represents the singular value matrix of 
the synthetic intensity matrix. This coefficient can be used 
to determine an equalized image Ieq according to Eq. (3):

(2)� =
(
∑

N(�=0,var=1))

max(
∑

I)

Fig. 1   General process of the proposed method BDS for contrast enhancement of low contrast MRI images

Fig. 2   a Input image and b corresponding LL, LH, HL, and HH sub-band images
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The correction coefficient � is used to obtain the new singu-
lar value matrix 

∑

I
 of the equalized image by scaling up the 

singular values of the input image ( 
∑

I) where 
∑

I
 is the sin-

gular matrix of the processed image using the GHE since the 
mean brightness of the histogram-equalized image is always 
the mid-gray level regardless of the mean of the input image 
by using Eq. (4) [33]:

Discrete Wavelet Transform

In DWT technique [40], an input image is decomposed into 
four frequency sub-bands Fig. 2: LL, LH, HL, and HH. Where 
LL sub-bands contains the illumination information while the 
three other sub-bands contain edges information. Therefore, 
applying SVD only on LL sub bands will protect edge infor-
mation from degradation.

Brightness Preserving Dynamic Fuzzy Histogram 
Equalization

Some works have improved the brightness of low contrast 
images using dynamic fuzzy histogram equalization [36]. 
BPDFHE utilizes fuzzy statistics of considered images for 
their representation and processing in the fuzzy area which 
allows the technique to handle the approximation of gray level 
values in a better way for a better presentation. It consists 
firstly on partitioning the fuzzy histogram. Then, the equaliza-
tion of each sub-histogram with dynamic histogram equaliza-
tion. The remapped values for the ith sub-histogram are found 
by using Eq. (5) [36]:

where y(j) corresponds to the new intensity level cor-
responding to the initial jth intensity level on the original 
image, h(k) is the histogram value at the kth intensity level 
on the fuzzy histogram, and rangei and starti can be obtained 
by using Eqs. (6) and (9) respectively [36]:

where highi and lowi represent the highest and lowest inten-
sity values of the ith input sub-histogram and Mi is the total 

(3)Ieq = UI(�
∑

I)V
T
I

(4)
∑

I
= �

∑

I

(5)y(j) = starti + rangei
∑j

k=starti

h(k)

Mi

(6)rangei =
(L − 1) × factor i
∑n+1

k=1
factork

(7)factor i = spani × log10Mi

(8)spani =highi − lowi

number of pixels in that partition. Spani is the dynamic range 
of the specified partition and rangei is the dynamic range of 
the output sub-histogram.

The final step is the normalization of the image bright-
ness in such a way the algorithm reinforces that the mean 
brightness of the enhanced image be the same as the original 
image by using Eq. (11) [36]:

where mi and m0 are the mean brightness levels of the input 
image, “f” corresponds to resulted image after the dynamic 
histogram equalization step, “g” is the enhanced image with 
BPDFHE and g(x,y) is the gray level value at the pixel loca-
tion (x,y).

Proposed Method

BDS

First of all, the low contrast input image is enhanced using 
the BPDFHE method which give a resulted image “B”. SVD 
is considered to deal with an illumination problem and there-
fore to improve the contrast of low contrast images. Digital 
image “B” can be expressed as the product of three matrices 
[37]:

where 
∑

B corresponds to the singular value matrix includ-
ing, on its main diagonal, the sorted singular values, UB 
and VB correspond to orthogonal square matrices and T is 
transpose operator. The singular value matrix represents the 
intensity information of the input low contrast image. Inten-
sities of the considered image are affected by any modifica-
tion on the singular values. This explain why SVD can be 
used to improve the contrast of images. SVD-based enhance-
ment algorithm uses a correction factor corresponding to the 
ratio of the highest singular value of generated normalized 
matrix, with mean zero and variance of one, over a normal-
ized image as given by Eq. (13):

where 
∑

B(mean=0,variance=1) represents the singular value 
matrix of the synthetic intensity matrix. This coefficient may 

(9)start i =
∑i−1

k=1
rangek + 1

(10)stopi =
∑i

k=1
rangek

(11)g(x, y) =
mi

m0

f (x, y)

(12)B = UB

∑

B V
T
B

(13)�1 =
max

∑

B(mean=0,variance=1)

max(
∑

O)
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be considered for the regeneration of an enhanced image 
using Eq. (14):

where IBDS is the equalized image with BDS.
In the DWT–SVD algorithm, only the low frequency 

sub-bands, calculated using DWT, are processed using SVD 
method [40]. In fact, illumination information is stored in 
LL sub-band while other sub-bands (i.e., LH, HL, and HH) 
contain the edges. Hence, separating the high-frequency sub-
bands and applying a contrast enhancement only on LL sub-
band will protect the edge information from degradation.

First, the input low contrast image “ O ” is equalized using 
BPDFHE to generate “ B .” This step is to preserve the bright-
ness of the enhanced image closer to the original image and so 
avoid oversaturation. Then, DWT is applied on the two images; 
the original and the equalized image with BPDFHE. Both 
original image “ O ” and equalized image “B” will be respec-
tively divided into LLO, LHO , HLO , HHO , and LLB, LHB , HLB , 
and HHB sub-bands.

The correction factor �1 is calculated by Eq. (15) [33]:

The enhanced singular value matrix ̄∑

LL
B

 is defined by Eq. 
(16):

The enhanced LL sub-bands image using SVD algorithm 
LLS is determined with Eq. (17):

The generated enhanced LL sub-bands  image, LLS,  
is recombined with other sub-band images of the original 
image (LHO , HLO , and HHO) using IDWT to generate the 
resulted equalized image “ IBDS”:

MBDS

We have noted that the adjustment of the correction fac-
tor could increase the performances of enhancement algo-
rithm. In this section, we propose an improved method 
MBDS dedicated specially for contrast enhancement of 
very low contrast images. In this modified version of BDS, 
we have proposed to modify the correction factor �1 . The 

(14)IBDS = UB(�1

∑

B
)VT

B

(15)�1 =
max(ULLB

) + max(VLLB
)

max
(

ULLO

)

+ max
(

VLLO

)

(16)
∑

LL
B

= �1

∑

LL
B

(17)LLS = ULLB

∑

LLB
VT
LLB

(18)IBDS = IDWT(LLS,LHO,HLO,HHO)

different steps of the proposed method MBDS are the same 
as BDS. The optimization is done at the level of SVD 
method where we have proposed a new correction factor 
�1 which is determined by Eq. (19):

(19)�1 =
√

�11.�12

(20)where �11 =
max

(

ULLB

)

max
(

ULLO

)

Low contrast
Input image

Equalized image
with BPDFHE

DWTDWT

SVD SVD

Calculate
,

and σ for

LLB subband images and find the

maximum element of σ

Calculate
,

and σ for

LLo subband images and find the

maximum element of σ

Calculate the correction factor

1 using Eq. 19

Calculate the new σ and

reconstruct the new LL

subband using Eq.23

IDWT

Enhanced image

With MBDS

Fig. 3   Flowchart of the proposed method MBDS
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The enhanced singular value matrix ̄∑

LL
B

 is defined with:

The enhanced LL sub-bands image using SVD algo-
rithm LLSVD is determined with Eq. (23):

The generated enhanced LL sub-bands image, LLSVD,  
is recombined with other sub-bands of the original image 
(LHO , HLO , and HHO) using IDWT to generate the resulted 
equalized image “ IMBDS”:

(21)and �12 =
max(V

LL
B
)

max

(

V
LL

O

)

(22)
∑

LLB
= �1

∑

LLB

(23)LLSVD = ULLB

∑

LLB
VT
LLB

(24)IMBDS = IDWT(LLSVD,LHO,HLO,HHO)

The different steps of the proposed method MBDS are 
resumed in the diagram of Fig. 3.

Step 1: In a first step, a low contrast MRI image has 
been chosen as an input image.
Step 2: The input image is equalized using BPDFHE.
Step 3: Apply the discrete wavelet transform on the 
equalized and the input image to get separated subbands 
LLO, LHO, HLO and HHO and LLB, LHB, HLB, and HHB.
Step 4: Calculate U,V  and the singular value matrix 
∑

 for LL subband images and find the maximum ele-
ment of 

∑

 for both images (original and equalized).
Step 5: Calculate the correction factor �1 using Eq. 
(19).
Step 6: Calculate the new enhanced singular value 
matrix ̄

∑

 by using Eq. (22).
Step 7: Apply IDWT to recombine the new enhanced 
LL subbands with other non-processed subbands of 
the input image.
Step 8: Enhanced image with MBDS is obtained.

Fig. 4   T1-weighted MRI image 
of the brain (sagittal section). 
a Original image and b–g 
enhanced images with DWT-
SVD, AGC, GCDWT-SVD, 
MBBDHE, BDS, and MBDS 
respectively

474 Journal of Digital Imaging  (2023) 36:468–485

1 3



Results and Discussion

Material and Datasets

In order to validate the proposed algorithms for MRI 
image enhancement and to prove their efficiency in sup-
porting radiologists in MS lesion detection, we carried 
out experiments using a large dataset of real MS patients  
including brain and spinal cord images from a multi-
center and a multi-scanner clinical trial. In this work, we 
have used two clinical datasets. The first one is the database  

HB collected from the University Hospital Center (UHC) 
Habib Bourguiba Sfax which contains 100 MRI images 
of the brain and the spinal cord of patients with multiple  
sclerosis. All images were scanned by 1.5 T Siemens scan-
ner with the following sequence parameters:

•	 T1: repetition time = 450 ms, echo time = 8.9 ms with 
a flip angel = 90°.

•	 T2: repetition time = 3430 ms, echo time = 90 ms with 
a flip angel = 150°.

Fig. 5   h1–h7 The corresponding histograms for Fig. 4
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The second MRI dataset is the MSDB database pro-
vided by the laboratory of eHealth at the University of 
Cyprus [41–44] which includes 38 patients (17 males and 
21 females), aged 31.4 ± 12.6 (mean age ± standard devia-
tion). All MRI images were scanned using 1.5 T scanner 
with repetition time = 4408 ms, echo time = 100 ms, echo 
spacing = 10.8 ms. Each patient has two examinations: 
an initial examination (month 0) and a 2nd examination 
(6–12 months).

The image decomposition is performed using DWT 
technique with Meyer (dmey) mother wavelet and one level 
decomposition. Contrast enhancement methods were imple-
mented using MATLAB environment and the results were 
evaluated and compared to various state of the art methods.

Experimental Results and Subjective Analysis

The both proposed methods, BDS and MBDS, for MRI 
image enhancement permit to boost the overall contrast; 
consequently, they ameliorate the visual quality of medical 
images. It is imperative to carry out a rigorous assessment 

of the quality of processed images. The qualitative assess-
ment is confirmed by an expert radiologist. Various MRI 
slices involving T1, T2, and T2-Flair of the brain and the 
spinal cord are used to prove the performance of the pro-
posed method in enhancing low contrast MRI images with 
better visibility of fine details such lesions.

For the evaluation process, all images of the databases 
used in this study are equalized with DWT-SVD [38], adap-
tive gamma correction (AGC) [32], GCDWT-SVD [23], 
MBBDHE [31], and the proposed method BDS and its 
extension MBDS. Figure 4 displays T1-weighted MRI image 
of the brain and enhanced images processed with proposed 
and existing methods. From Figs. 4b and 6b, we observe 
that the overall contrast of the image is increased but, there 
is much added noise and artifacts; hence, images obtained 
with DWT-SVD may mislead the lesion detection which is 
also justified with plentiful existing peaks in the correspond-
ing histogram which is also moved to the right (Figs. 5h2 
and 7h2). The obtained images after using AGC (Figs. 4c 
and 6c) are washed out, the algorithm is unable to preserve 
the fine details, and the lesion edges are blurry. Such type 
of images are not practical for the lesion detection which is 

Fig. 6   T1-weighted MRI image 
of the brain (axial section). 
a Original image and b–g 
enhanced images with DWT-
SVD, AGC, GCDWT-SVD, 
MBBDHE, BDS, and MBDS 
respectively
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also verified by many peaks and gaps in the equivalent histo-
grams (Figs. 5h3 and 7h3). Enhanced images with GCDWT-
SVD are over saturated; therefore, lesion details cannot be 
identified which is confirmed as well by the difference of the 
histogram’s shape from the input histogram’s shape (Figs. 
5h4 and 7h4). As it appears in Fig. 4e which shows the pro-
cessed image with MBBDHE, the contrast is significantly 
improved but, the structures are blurry with imprecise edges 
which is also proved by the spread of the corresponding his-
togram over the entire grayscale range, whereas it includes 
a lot of peaks and gaps.

In addition, in Fig. 6e, the output image contains much 
noise which influences negatively the quality of the image. 
So, the enhanced images with MBBDHE are not convenient 
to be used for the lesion detection. It is clearly noticed from 
Figs. 4f and 6f that the overall contrast of images enhanced 
with BDS is perfectly improved without added artifacts and 
noise and no washed-out appearance in the output images. 
Lesions are properly highlighted and clearly visible (Fig. 6f); 
additionally, the edge details are well preserved. This is due 
to the combination of BPDFHE which improved the low 
contrast of input image while conserving the brightness level 

Fig. 7   h1–h7 The corresponding histograms for Fig. 6
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and SVD-DWT which preserves the edge details. Thus, cli-
nicians will be able to detect the lesions accurately and con-
sequently, they will provide more accurate diagnosis.

As it is shown in Figs. 5h6 and 7h6, the corresponding 
histograms are spread equally over the entire grayscale range 
with reduced peaks and without any gaps and the shape is 
similar to the shape of the input image’s histogram.

From Figs. 4g and 6g which describe the results of pro-
posed method MBDS, we observed that the contrast is well 
enhanced. It is also justified with the increase of the entropy 
values which indicates that the processed image is rich in 
details and the edge informations are well preserved. Moreo-
ver, the shape and the borders of MS lesions are clearly vis-
ible and the noise is noticeably removed. The corresponding 
histograms (Figs. 5h7 and 7h7) cover a wider range of the 
grayscale range with reduced peaks and the shape is very 
similar to the histogram’s shape of the input image. So, the 
proposed MBDS method is the better approach for identify-
ing multiple sclerosis lesions in MRI brain images and it 
assists radiologists in affirming their diagnosis.

From the previous figures, we noted that the enhanced   MR 
images with existing methods suffer generally from over satu-
ration, noise, blur, washed-out appearance, and added artifacts. 
Thus, structures and fine details such lesions in the image get 
degraded. Contrariwise, proposed method BDS conserves 
structures and edges which permits a better discrimination 
between tissues leading to an accurate diagnosis. Hence, BDS 
provides better results compared to all other existing methods.

MBDS also outperforms other existing algorithms in 
improving low contrast and in enhancing the fine details of 
MR images. Furthermore, MBDS even outperforms BDS 
by the fact that it works well even in very low contrast MR 
images with more reduced noise and a better improvement of 
very thin details. So, it helps radiologists to properly identify 
MS lesions. Therefore, MBDS assists clinicians to provide 
an accurate diagnosis even when the MR image is very dark.

Our proposed models BDS and its improved extension 
MBDS provide satisfactory results because decomposing 
the input medical image into high and low frequencies and 
applying the enhancement process only on low frequency sub-
bands will preserve edges (stored in high frequency sub-bands) 
from distortion. Also, the use of BPDFHE as a first step in 
the enhancement framework guarantees the conservation of 
the output brightness very close to the input brightness level. 
Consequently, the proposed method can properly differentiate 
each object from another and from the background when com-
pared to other state of the art methods which is also justified 
by the comparison of histogram plots of all other approaches, 
wherein the pixel intensity values are amassed at one section 
or they cover the entire grayscale range but not uniformly. 
The proposed BDS and MBDS methods solved this problem 
by stretching  the intensity values uniformly over the entire 
dynamic range. In fact, the proposed BDS algorithm permits 

Low contrast MRI images

Original image Enhanced image by BDS

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

(a5) (b5)

(a6) (b6)

ggg g gg y

Fig. 8   Original and enhanced images with the proposed method 
BDS; a1–a6 original low contrast MRI images and b1–b6 enhanced 
images by BDS with yellow and blue arrows representing MS lesions
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Low contrast Very low contrast 

(a) original image (b) enhanced image by

MBDS

(c) original image (d)  enhanced image by

MBDS

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

(a5) (b5) (c5) (d5)

(a6) (b6) (c6) (d6)
Fig. 9   Original and enhanced images with the proposed method 
MBDS; a1–a6 original low contrast MRI images and b1–b6 
enhanced images by MBDS with green and red arrows representing 

MS lesions. c1–c6 Original very low contrast MRI images and d1–d6 
enhanced images by MBDS with red and green arrows representing 
MS lesions
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to improve the overall contrast of low contrast MR images with 
reduced noise and maintains the brightness and edges from 
degradation leading to the accurate MS lesion identification. 
Hence, the proposed method BDS will be of great interest in 
the lesion detection as an effective diagnostic tool for clinicians 
to confirm their diagnostic. On the other hand, MBDS algo-
rithm increases the overall contrast of very low contrast and 
dark MR images with improvement of contrast of fine details 
with suppressed noise. So, MBDS can be also considered an 
important tool for the lesion identification even in very low 
contrast MR images.

To validate our proposed contrast enhancement methods 
clinically, and to prove that these methods are applicable 
to different types of data, we considered several FLAIR, 
T1-w, and T2-w sequences used for the diagnosis of multiple 
sclerosis. The results of MR image enhancement with our 
proposed methods BDS and MBDS were shown to an expert 
radiologist and he performed the annotations of MS lesions. 
He confirmed the proficiency of the proposed method BDS 
in outlining the border and the shape of multiple sclerosis 
lesions in both the brain and the spinal cord.

In the figure below, there are some examples of images 
of the brain and the spinal cord enhanced with proposed 
method BDS. Figure 8a1–a4 represent original low contrast 
T1-w MRI images of the brain, Fig. 8a5 represents original 
low contrast T2-Flair image of the brain, and Fig. 8a6 illus-
trates original low contrast T2-w MRI image of the spinal 
cord. Figure 8b1–b6 are the corresponding enhanced images 
with BDS respectively. In Fig. 8b1–b6, the lesions marked 
with yellow arrows had become sharper than those in the 
original image and their edges are well-defined. According 
to the radiologist, there is two hidden lesions which were 
not visible in Fig. 8a2, they became visible in the enhanced 
image with BDS in Fig. 8b2 marked with blue arrows. Fur-
thermore, in Fig. 8a3, there are two extra lesions which were 
not visible in the original image, but, after using our pro-
posed method BDS, the lesions appear clearly in Fig. 8b3 

marked with blue arrows. In Fig. 8b4, the expert radiologist 
affirmed that BDS succeeds to define perfectly the shape and 
the borders of the MS lesion which is blurry in the original 
image (Fig. 8a4).

In the figure below, there are some examples of images 
enhanced with proposed method MBDS. The first two col-
umns (on the left) represent low contrast MR images of the 
brain and the spinal cord. The two other columns (on the 
right) represent brain MRI images with very low contrast. 
Figures 9a1-a6 and 9c1–c6 show the original images. Fig-
ures 9b1-b6 and 9d1–d6 are the corresponding processed 
images with MBDS. In Figs. 9b1–b6 and 9d1–d6, red arrows 
show well-defined MS lesions with sharp edges in enhanced 
images which were blurry in original non-enhanced images. 
The expert proclaimed that inner structures of the brain are 
well enhanced and MS lesions marked with red arrows in 
Fig. 9b1–b3 are noticeably highlighted and consequently, 
they will be properly detected in enhanced images with MBDS 
method. Also, as illustrated in Fig. 9b3, the radiologist detected 
more lesions marked with green arrows which were hidden 
in the original non-enhanced image (Fig. 9a3). Moreover, the 
proposed method MBDS proved its efficiency for contrast 
improvement of low contrast MR images of the spinal cord. 
In Fig. 9b4, by using the proposed MBDS method, radiolo-
gist declared that the inner structures of the spinal cord which 
are very thin and small are perfectly defined and the lesions 
(marked with red arrows) are easily identified with high accu-
racy which helps the radiologist in providing a precise diag-
nosis. Cross section area (CSA) of the spinal cord is generally 
used to confirm the presence of lesion because it provides more 
accurate and visible view than the whole image of the spi-
nal cord. In the enhanced images with the proposed MBDS 
method shown in Fig. 9b5 and b6, medullary MS lesions pre-
sent in the CSA of the spinal cord and marked with red arrows 
have become clearly visible and highlighted. Hence, the radi-
ologist will easily identify the lesion accurately and provide a 
proper diagnosis.

Fig. 10   Original image and its 
corresponding enhanced image 
using the proposed method 
MBDS and CSA of the spinal 
cord; a T2-w MRI of the spinal 
cord (sagittal section); b equal-
ized image with the proposed 
method and c T2-w axial view 
confirming the existence of 
multiple sclerosis lesion

+
(a) (b) (c)
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In Fig. 9d3, there are two additional lesions with green 
arrows which are difficult to be directly detected from the 
original very low contrasted image. Instead, they became 
evidently visible in the enhanced image with MBDS.

For more confidence in lesion detection, the axial view of 
T2-w MRI of the same patient is commonly used to assert 
the presence of MS lesion. Figure 10 presents a low con-
trast T2-w image of the spinal cord, its enhanced image by 
MBDS, and T2-w axial view. According to T2-w axial view 
which consolidates the existence of MS lesion marked with 
white arrow (Fig. 10c), the radiologist affirmed the presence 
of one lesion in the output image of MBDS (marked with 
yellow arrow in Fig. 10b) which was non-detectable from 
the original MR image of the sagittal view of the spinal cord.

Experts indicated that the processed images using MBDS 
are well enhanced, free of noise and artifacts, lesions could 
be accurately identified, and the inner structures are well 
highlighted with preservation of edges. Hence, MBDS is 
suitable for finding MS lesions in brain and medullary MR 
images. Furthermore, according to the experts, MBDS has 
performed well in detection of MS lesions even in very low 
contrast MRI images.

Both of radiologist and neurologists involved in this study 
have approved that proposed methods BDS and MBDS sig-
nificantly improved the visualization of MS lesions, initially 
with not-well defined outline in the original images.

Objective Analysis: Image Quality Measures

For quantitative analysis, we have considered different 
evaluation metrics. The discrete entropy (H) measures the 
degree of contrast enhancement [45]. The effective measure 
of enhancement (EME) measures the average contrast in the 
image [46]. Absolute mean brightness error (AMBE) is also 
considered to evaluate the degree of brightness preserva-
tion [45]. Peak signal-to-noise ratio (PSNR) measures the 
similarity between the input and output images based on the 
mean squared error (MSE) of each pixel [47]. Both struc-
ture similarity index measurement (SSIM) [48] and feature 
similarity index measurement (FSIM) [49] are considered to 
evaluate the structures and features preservation respectively.

Tables 1 and 2 resume the average entropy (H), EME, 
AMBE, PSNR, MSE, SSIM, and FSIM values for the state-
of-the-art methods: DWT–SVD, AGC, GCDWT-SVD, 
MBBDHE, and the proposed methods BDS and MBDS. 
We considered all MRI images of both considered HB and 
MSDB datasets. Better values for each parameter are shown 
in bold.

From Table  1, we observed that the higher value of 
entropy (H = 6.70) is obtained with MBBDHE method. Our 
proposed method MBDS presented also a good value of 
entropy (H = 6.27) followed by GCDWT-SVD method. We 
also observed that the performances of our proposed contrast 

Table 1   Comparison of the 
proposed methods with DWT–
SVD, AGC, GCDWT-SVD, and 
MBBDHE methods considering 
the mean of 100 T1-w, T2-w, 
and T2 flair-w MRI image’s 
metrics from the database HB 

Metric Input image DWT-SVD AGC​ GCDWT-SVD MBBDHE BDS MBDS

Entropy 3.54 3.98 4.83 5.32 6.70 4.99 6.27
EME 11.93 7.17 13.44 12.94 12.38 16.01 16.75
AMBE NA 6.64 15.26 10.01 18.38 2.34 2.01
PSNR NA 13.01 10.48 10.19 8.16 18.28 18.77
MSE NA 17.26 51.39 14.41 37.83 6.06 5.99
SSIM NA 0.83 0.62 0.89 0.30 0.91 0.91
FSIM NA 0.84 0.78 0.95 0.54 0.98 0.98

Table 2   Comparison of the 
proposed methods with DWT–
SVD, AGC, GCDWT-SVD, and 
MBBDHE methods considering 
the mean of 38 T2-weighted 
image’s metrics from the 
database MSDB 

NA Not Assigned

Metric Input image DWT-SVD AGC​ GCDWT-SVD MBBDHE BDS MBDS

Entropy 4.22 4.71 5.13 5.35 7.33 5.44 5.94
EME 4.61 4.67 4.89 5.13 7.18 8.41 6.96
AMBE NA 8.58 7.56 4.15 17.36 3.37 1.24
PSNR NA 9.67 11.78 13.01 9.08 13.95 15.98
MSE NA 27.19 23.81 15.96 37.83 13.57 14.82
SSIM NA 0.83 0.83 0.84 0.32 0.89 0.90
FSIM NA 0.83 0.88 0.90 0.61 0.91 0.91
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also the lowest value of MSE (equal to 5.99) followed by 
BDS method (MSE = 6.06) then GCDWT-SVD with MSE 
value equal to 14.41.

The nearer the value of SSIM and FSIM of an image 
to 1 reveals that the structures are more preserved, which 
is required in image enhancement algorithms. The second 
contribution of our developed methods is the preservation 
of edges and structures from alteration which is vindicated 
by the highest values of SSIM = 0.91 and FSIM = 0.98 for 
our both proposed methods MBDS and BDS followed by 
GCDWT-SVD (SSIM = 0.89 and FSIM = 0.95).

For a further performance evaluation of the proposed con-
trast enhancement methods, the considered evaluation met-
rics are computed using very low contrast T2 MRI images. 
Table 2 shows the attained values for the different evaluation 
metrics. We noticed that MBBDHE has the highest value of 
entropy (equal to 7.33) followed by MBDS (H = 5.94) and 
BDS (H = 5.44). Lower values of entropy are obtained with 
AGC (H = 5.13) and DWT-SVD (H = 4.71) methods. We 
noted also that BDS method has the most important value 
of EME equal to 8.41. MBBDHE has the second highest 
value of EME equal to 7.18, then, MBDS with 6.96. Lower 
EME values are observed for other methods and are variable 
between 4.67 for DWT-SVD and 5.13 for GCDWT-SVD.
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Fig. 11   Average values of EME, H, and AMBE evaluation metrics 
for HB dataset
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Fig. 12   Average values of PSNR, MSE, SSIM, and FSIM evaluation 
metrics for HB dataset
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Fig. 13   Average values of EME, H, and AMBE evaluation metrics 
for MSDB dataset

enhancement method are better than BDS method. Hence, 
we note the effect of modifying the correction factor which 
leads to the increase of the entropy from 4.99 for BDS to 
6.27 for MBDS.

High values of EME reflects that the details of processed 
images are clearly visible. We noticed that the proposed 
algorithm MBDS provides the highest value of EME (equal 
to 16.75) followed by the proposed method BDS with an 
EME value equal to 16.01. Other considered contrast 
enhancement methods presented lower performances and 
EME values are between 7.17 for DWT-SVD and 13.44 for 
the AGC method.

In fact, the contribution of our proposed method is the 
conservation of the brightness level and this is justified 
with the lowest AMBE value equal to 2.01 for the proposed 
MBDS method followed by BDS method with AMBE value 
equal to 2.34. Obtained results prove that the proposed 
approaches preserve well the brightness.

The highest values of PSNR are recorded for our both 
proposed MBDS and BDS methods and the corresponding 
values are respectively equal to 18.77 and 18.28. Other con-
trast enhancement methods presented lower performances 
and the lowest value of PSNR (equal to 8.16) is noted for 
MBBDHE technique. MBDS proposed method presented 
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Fig. 14   Average values of PSNR, MSE, SSIM, and FSIM evaluation 
metrics for MSDB dataset
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The lowest value of AMBE is 1.24 recorded for our 
method MBDS. Then, BDS method has the second lowest 
value equal to 3.37 which reflects that our proposed methods 
preserve mean brightness level even in very low contrast 
images.

The highest value of PSNR is 15.98 obtained with our 
proposed method MBDS. The lowest value of MSE equal 
to 13.57 is recorded for our proposed BDS method. The 
highest values of SSIM equal to 0.90 and FSIM equal to 
0.91 are obtained when our proposed method MBDS is con-
sidered for contrast enhancement of very low contrast T2 
MRI images. SSIM and FSIM values of the proposed BDS 
method are respectively equal to 0.89 and 0.91.

Although MBBDHE has the highest values of entropy, 
this may lead to an over enhancement of some  parts of 
the image. Moreover, we noted that MBBDHE has very 
low values of SSIM and FSIM, respectively equal to 0.30 
and 0.54 for low contrast images (Table  1), and 0.32 
and 0.61 for very low contrast images (Table 2). Hence, 
MBBDHE is unable to preserve structures and features 
of the image leading to the loss of some important details 
such lesions.

Obtained results verify the success and the robustness 
of our proposed methods BDS and MBDS in increasing 
the overall contrast of the original image with conserva-
tion of features and structures from any distortion and with 
preservation of the output brightness very close to the input 
brightness.

Figures 11 and 12 compare the average entropy, EME, 
AMBE, SSIM, and FSIM values between the contrast 
enhancement methods used in this study for HB dataset. 
Figures 13 and 14 represent the obtained average values of 
the previously mentioned  metrics for the MSDB dataset.

Conclusion

In this work, we have proposed a novel automated image 
enhancement method BDS dedicated for enhancement of 
medical images. It is based on the brightness preserving 
dynamic fuzzy histogram equalization technique, which 
preserves the brightness level, and then the discrete wavelet 
transform is applied on both original and resulted images 
to get their high and low frequency components separately. 
Thereafter, the singular value decomposition is used only on 
low sub-bands to conserve the edge details stored in other 
sub-bands from alteration. Then, the correction factor for the 
singular value matrix is computed to generate the enhanced 
singular value matrix. The next step is the recombination 
of the enhanced LL sub-bands with other sub-bands of the 
original image using IDWT to generate the equalized image.

Experimental results revealed that the proposed method 
BDS is able to enhance the low contrast of all types of MRI 

images. It also ameliorates the visibility of fine details 
better than conventional methods such AGC, DWT-SVD, 
GCDWT-SVD, and MBBDHE with better preservation of 
brightness and structures.

MBDS method is the proposed extension of BDS where 
we have optimized BDS by modifying the correction factor. 
The optimized technique MBDS improves considerably the 
overall contrast of very low-contrast images and provides 
better visualization of small details including MS lesions.

Both proposed methods BDS and MBDS are able to 
increase the overall contrast of the image with preservation 
of edge details, leading to a natural looking of the image 
with sharper structures and with no added artifacts.

When applied to various multiple sclerosis MRI images 
(T1, T2, and T2-Flair of the brain and the spinal cord), MS 
lesions present in both the brain and the spinal cord in the 
enhanced images had become sharper than those in the 
original image and their edges are well-defined. Proposed 
methods provide a better visualization and detection of MS 
lesions. Therefore, BDS and MBDS would be a proficient 
diagnostic tool for lesion identification.
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