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Aims Current non-invasive screening methods for cardiac allograft rejection have shown limited discrimination and are yet to be 
broadly integrated into heart transplant care. Given electrocardiogram (ECG) changes have been reported with severe car
diac allograft rejection, this study aimed to develop a deep-learning model, a form of artificial intelligence, to detect allograft 
rejection using the 12-lead ECG (AI-ECG).

Methods 
and results

Heart transplant recipients were identified across three Mayo Clinic sites between 1998 and 2021. Twelve-lead digital ECG 
data and endomyocardial biopsy results were extracted from medical records. Allograft rejection was defined as moderate 
or severe acute cellular rejection (ACR) based on International Society for Heart and Lung Transplantation guidelines. The 
extracted data (7590 unique ECG-biopsy pairs, belonging to 1427 patients) was partitioned into training (80%), validation 
(10%), and test sets (10%) such that each patient was included in only one partition. Model performance metrics were based 
on the test set (n = 140 patients; 758 ECG-biopsy pairs). The AI-ECG detected ACR with an area under the receiver op
erating curve (AUC) of 0.84 [95% confidence interval (CI): 0.78–0.90] and 95% (19/20; 95% CI: 75–100%) sensitivity. A pro
spective proof-of-concept screening study (n = 56; 97 ECG-biopsy pairs) showed the AI-ECG detected ACR with AUC = 
0.78 (95% CI: 0.61–0.96) and 100% (2/2; 95% CI: 16–100%) sensitivity.

Conclusion An AI-ECG model is effective for detection of moderate-to-severe ACR in heart transplant recipients. Our findings could 
improve transplant care by providing a rapid, non-invasive, and potentially remote screening option for cardiac allograft 
function.
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Graphical Abstract

An artificial intelligence enabled ECG can effectively detect cardiac allograft rejection among heart transplant recipients. AI, artificial intelligence; AUC, area 
under the receiver operating characteristic curve; ECG, electrocardiogram; ISHLT, International Society for Heart and Lung Transplantation; NPV, negative 
predictive value; PPV, positive predictive value.
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Introduction
Current clinical practice at some centres following heart transplantation 
still rely on multiple endomyocardial biopsies (EMBs)1,2 every 1–4 weeks 
within the first year (each patient having up to 14 biopsies or more) to 
screen for allograft rejection.3,4 Beyond the inconvenience related to 
frequent hospital visits and the associated cost of an EMB procedure, 
complications can also occur from EMBs.5 These can range from mild, 
such as pericardial effusion, to severe as seen with significant tricuspid 
valve regurgitation requiring repeat cardiac surgery. As such, it is impera
tive that non-invasive, safer, options are made available to heart trans
plant recipients to screen for cardiac allograft rejection. Developing 
novel diagnostic tools that may allow for remote screening would im
prove our ability to monitor patients with increased frequency and re
duce the need for frequent visits to the transplant centre for all their 
care.

Over the past decade, less-invasive options to screen for cardiac allo
graft rejection have been developed to address this need. While some 
centres have taken advantage of these novel methods to reduce the num
ber of EMBs performed, there remains significant variability across heart 
transplant centres regarding the use of these novel methods and number 
of EMBs performed at each site within the first year of heart transplant
ation. These changes in practice highlight the transplant community’s de
sire to find non-invasive methods to detect allograft rejection. These 
methods include the use of gene expression profiling6 (GEP) and donor- 
derived cell-free DNA (dd-cfDNA),7,8 with both methods requiring a 
blood draw.9 However, studies utilizing these methods have shown lim
ited discrimination6–8 to detection of acute cellular rejection (ACR).

Electrocardiogram (ECG) changes are known to occur following a 
cardiac transplant, including a completely new ECG signature (donor 

heart) different from the native/recipient heart as well as changes re
lated to both sympathetic denervation and reinnervation such as in
creased heart rate and QT changes.10–12 Some ECG changes have 
also been reported at the time of severe cardiac allograft rejection in
cluding low voltages and conduction abnormalities.13–16 It is unknown if 
subtle changes on the ECG correlating with cardiac allograft rejection 
can be detected using machine-learning methods. Our objective was 
to develop and validate a deep-learning model, leveraging the effective
ness of digital ECG signals to provide a scalable framework for non- 
invasive evaluation of cardiac allograft rejection in heart transplant 
recipients. Thus, providing a means to evaluate cardiac allograft function 
in clinical and non-clinical settings, provide remote care, and potentially 
reduce the need for EMBs among patients with a low likelihood of allo
graft rejection.

Methods
Study design
We initially conducted a retrospective cohort study to evaluate the ability 
of an artificial intelligence model to identify cardiac allograft rejection using 
data from a 12-lead ECG (AI-ECG). Following model development, we in
itiated a proof-of-concept prospective single-arm observational study to 
validate the effectiveness of the developed model for detection of allograft 
rejection.

Study population
We retrospectively identified 1587 unique patients who had a heart trans
plant at three Mayo Clinic US sites between January 1988 and April 2021 
with 11 044 unique ECGs performed within 30 days prior to an EMB. All 
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EMBs were performed at the discretion of the ordering providers either as 
part of routine rejection surveillance or for any other clinical indication. We 
then limited the data set to unique ECGs matched to the closest EMB per
formed within 30 days prior. Only one ECG was selected for each EMB path
ology result. We excluded patients younger than 18 years, those without 
digital ECGs and those with inconclusive EMB pathology results. Our final 
study sample corresponded to 1427 unique heart transplant recipients 
and 7590 unique ECG-biopsy pairs for model training and development 
(Figure 1). A large proportion (72.4%, n = 5495) of ECGs were performed 
within 7 days prior to EMB.

In recognition of the need for further validation studies, we designed a 
proof-of-concept screening study to prospectively gather ECGs in order 
to provide a preliminary estimate of model performance in a setting that 
might ultimately mirror a clinical implementation of the algorithm. We en
rolled 56 consecutive heart transplant recipients following informed con
sent at Mayo Clinic in Florida, between 19 October and 8 December 
2021, with 97 unique ECG-biopsy pairs. The criteria for inclusion in the 
study were: age 18 years and older, heart transplant recipient, and sched
uled for an EMB. Study exclusions were age <18 years or unable to provide 
informed consent. Standard 12-lead ECGs were performed in the supine 
position on the same day prior to a scheduled EMB procedure, as such 
EMB pathology results were not available to study staff at the time of 
ECG recording. EMB procedures were performed, and results reported ac
cording to standard clinical protocols by the managing provider. AI-ECG 

prediction results were not made available to the proceduralist or patholo
gist prior to the EMB procedure and result reporting.

Measures
We extracted all standard 12-lead ECG digital data and EMB results for the 
study cohort from the electronic health record. All ECGs were acquired at a 
sampling rate of 500 Hz using a GE Marquette ECG machine (Marquette, 
WI, USA) and stored using the MUSE ECG data management system (GE 
Healthcare, Chicago, IL, USA). Cardiac allograft rejection was defined as 
moderate or severe ACR based on the International Society for Heart 
and Lung Transplantation (ISHLT) guidelines from 1990, 2004, and 
2013.17,18 Antibody-mediated rejection (AMR) was not included due to var
iations in its definition, changes in key elements required for diagnosis over 
the years, and lack of routine screening in many heart transplant centers.19

The EMB results were extracted using a text-processing algorithm to identify 
ACR classified as none or mild (ACR negative) and moderate or severe 
(ACR positive). None or mild rejection included ISHLT 1990 Grades 0R, 
1A, 1B, and 2 and ISHLT 2004 Grades 0R and 1R. Moderate or severe rejec
tion included ISHLT 1990 Grades 3A, 3B, and 4 and ISHLT 2004 Grades 2R 
and 3R. The final classification groups were reviewed and approved by a car
diovascular pathologist and transplant cardiologist. Demographic and other 
clinical variables were abstracted from the electronic health records through 
a unified data platform. Co-morbid conditions were classified into disease 
groups using International Classification of Diseases (ICD) 9 and 10 diagnosis 

Figure 1 Study flow diagram.
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codes.20,21 Co-morbid conditions were included if the diagnosis was present 
in the medical records after 60 days following heart transplant in order to 
exclude post-operative complications that are expected to resolve.

Model development
Our retrospective data set was split into three sets: training (80%), valid
ation (10%), and test (10%). All samples from the same patient were kept 
within a specific set. The training/validation/test sets contained 1146/141/ 
140 unique patients and 6074/758/758 unique ECG-biopsy pairs, respect
ively. Of those, 127/14/11 unique patients with 159/20/20 ECG-biopsy pairs 
were positive for ACR. A convolutional neural-network model was trained 
using the Keras framework with Tensorflow (Google, Mountain View, CA, 
USA) and backend implemented in Python,22 using the 12-lead ECG signal 
as input. The AI-ECG model consisted of 39 layers, with 80 161 trainable 
parameters. The input to the model is a 12 by 5000 array, representing 
each of the 12 leads for 10 s at 500 Hz. The first two layers apply random 
noise and translation to the ECG arrays, followed by repeated blocks of 
convolution, batch normalization, activation, and pooling. The final layers 
consisted of a dense sigmoid activation function, whose output represents 
the probability of ACR (Figure 2). The model was trained using binary cross- 
entropy as the loss function on the training set, after which, the predictions 
were obtained on the validation set, and the area under the receiver oper
ating curve (AUC) and other diagnostic performance metrics were com
puted. The best model was chosen after a randomized hyperparameter 
search over optimizer, learning rates, class weights, batch size, and regular
ization. Final model performance was assessed on the test data set.

Statistical analysis
Sample demographic and clinical characteristics data were summarized at 
the patient level with median, lower quartile (Q1), and upper quartile 
(Q3) for the continuous variables and with frequencies and percentages 
for the categorical variables. ECG characteristics were similarly summarized 
for each available ECG. The Wilcoxon rank sum test for continuous vari
ables and Fisher’s exact test for categorical variables were used to compare 
differences in demographic and clinical characteristics between patients 
classified as positive or negative for ACR.

For diagnostic performance of the AI-ECG model, the reported mea
sures of diagnostic accuracy were based on the test data. There were 
two levels of clustering present in the data. At the highest level, patients 
had multiple biopsies. Then for each biopsy, a lower level of clustering could 
have occurred when multiple ECGs were obtained prior to EMB results. To 

account for this statistically, the analyses selected the ECG obtained most 
recently prior to the EMB procedure to remove the lower level clustering 
from the data. For the higher level of clustering in the data, the analysis as
sumed statistical independence of the repeated EMBs within a patient. This 
decision, while subject to some statistical limitations [confidence intervals 
(CIs) that are more precise due to not accounting for the design effect im
posed by the clustering], mimics how the algorithm would be utilized in clin
ical practice. To assess the sensitivity of this limitation, a patient-level 
analysis using only the last EMB-ECG pairing was also evaluated.

A receiver operating characteristic (ROC) curve was generated in the 
retrospective test data set by computing the predicted probabilities from 
the neural-network model and evaluating the true-positive rate and false- 
positive rate for various threshold values ranging from 0 to 1. Sensitivity, 
specificity, positive predictive value, and negative predictive value were cal
culated, with each ECG-biopsy pair, treated as an independent unit, using a 
threshold predicted probability value of 0.4, selected as the optimal thresh
old to maximize the sensitivity of the test relative to specificity.

For the prospective study, we modelled the prediction probabilities for ACR 
generated by the developed AI-ECG model in relation to EMB pathology re
sults for rejection using ECGs performed on the same day as the EMB proced
ure. Measures of diagnostic performance based on dichotomized predictions 
were obtained at the previously determined threshold of ≥0.4 to indicate a 
positive AI-ECG screen. CIs were also calculated for all measures of diagnostic 
performance using exact methods. For the AUC, the large sample approxima
tion of the DeLong method23 with optimization by Sun and Xu24 was used. All 
statistical analyses were performed using R version 4.0.3 (Vienna, Austria)25 and 
a P-value of <0.05 was considered statistically significant.

Results
Sample clinical and ECG characteristics are provided in Tables 1 and 2. 
The median age at last biopsy in the retrospective cohort was 58.3 years 
(Q1: 48.7, Q3: 65.2) and 28.9% were females. The median number of 
ECG-biopsy pairs per patient was 5 (Q1: 2, Q3: 7). The majority 
(97.4%) of EMB results were classified as none or mild rejection and 
2.6% had moderate or severe rejection. Heart transplant recipients 
who had at least one episode of ACR were more likely to be younger 
(P < 0.001) and further out from their transplant date (P < 0.001). They 
were also more likely to have a documented diagnosis of any cancer 
(P = 0.022) following heart transplant. There were also notable differ
ences in ECG features obtained during an episode of ACR (Table 2) 

Figure 2 Artificial intelligence electrocardiogram—model architecture.
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Table 1 Demographic and clinical characteristics of heart transplant recipients by cardiac allograft rejection status in 
the retrospective cohort

Median (Q1, Q3) or no. (%) of patients

Characteristic n Overall (n = 1427) ACR (positive) (n = 152) ACR (negative) (n = 1275) P-value

Demographics

Age at heart transplant (years) 1427 55.6 (45.1, 62.0) 52.1 (39.1, 58.5) 56.0 (45.8, 62.2) <0.001
Age at last biopsy (years) 1427 58.3 (48.7, 65.2) 56.5 (46.6, 64.5) 58.4 (49.0, 65.4) 0.096

Sex (female) 1427 413 (28.9%) 54 (35.5%) 359 (28.2%) 0.072
Time since heart transplant to last biopsy (months) 1427 24.9 (5.1, 59.1) 49.4 (23.7, 91.2) 24.2 (3.8, 49.9) <0.001
Race 1402 0.45

Black or African American 179 (12.8%) 18 (12.2%) 161 (12.8%)
Other 81 (5.8%) 5 (3.4%) 76 (6.1%)

White 1142 (81.5%) 124 (84.4%) 1018 (81.1%)

Ethnicity (Hispanic or Latino) 1272 108 (8.5%) 8 (7.1%) 100 (8.6%) 0.72
Echocardiographic features

Left ventricular ejection fraction (%) 1374 62.0 (58.0, 66.0) 62.0 (58.0, 65.5) 62.0 (58.0, 66.0) 0.88

Left ventricular end diastolic dimension (mm) 1200 44.0 (41.0, 47.0) 44.0 (41.0, 47.0) 44.0 (41.0, 47.0) 0.84
Cardiac output (L/min) 966 5.8 (5.0, 6.8) 5.8 (5.1, 6.5) 5.8 (5.0, 6.9) 0.70

Co-morbid conditions post-transplant

Hypertension 1418 1294 (91.3%) 140 (92.7%) 1154 (91.1%) 0.65
Diabetes 1418 799 (56.3%) 75 (49.7%) 724 (57.1%) 0.083

Peripheral vascular disease 1418 692 (48.8%) 73 (48.3%) 619 (48.9%) 0.93

Cerebrovascular disease 1418 351 (24.8%) 43 (28.5%) 308 (24.3%) 0.27
Cancer 1418 274 (19.3%) 40 (26.5%) 234 (18.5%) 0.022
Connective tissue disease or rheumatic disease 1418 75 (5.3%) 8 (5.3%) 67 (5.3%) 1.00

P-values result from a Wilcoxon rank sum test (continuous variables) or Fisher’s exact test (categorical variables). The bold numeric values in the ‘P-value’ column represent statistically significant 
results (i.e. P-value < 0.05). The bold values in the ‘characteristic’ column represent group headings for example age, sex, time since, and race/ethnicity are all considered demographic variables.
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Table 2 Electrocardiogram characteristics of heart transplant recipients by cardiac allograft rejection status in the 
retrospective cohort

Median (Q1, Q3) or no. (%) of patients

Characteristic n Overall  
(n = 7590)

ACR (positive)  
(n = 199)

ACR (negative)  
(n = 7391)

P-value

Heart rate 7572 92 (84, 103) 95 (87, 106) 92 (83, 103) 0.009
PR interval (ms) 7526 148 (132, 168) 156 (134, 170) 148 (132, 166) 0.049
QRS duration (ms) 7572 100 (88, 128) 108 (92, 133) 100 (88, 128) 0.002
QT interval (ms) 7572 372 (348, 398) 376 (351, 404) 372 (348, 398) 0.15
Corrected QT interval (ms) 7572 460 (439, 483) 473 (444, 496) 460 (439, 483) <0.001
Sinus rhythm 7572 5107 (67.4%) 114 (57.3%) 4993 (67.7%) 0.003
Sinus tachycardia 7572 2007 (26.5%) 66 (33.2%) 1941 (26.3%) 0.034
Sinus bradycardia 7572 38 (0.5%) 3 (1.5%) 35 (0.5%) 0.077

1st degree AV block 7572 303 (4.0%) 13 (6.5%) 290 (3.9%) 0.094

Mobitz Type 1 AV block 7572 10 (0.1%) 1 (0.5%) 9 (0.1%) 0.23
Left bundle branch block 7572 65 (0.9%) 1 (0.5%) 64 (0.9%) 1.00

Right bundle branch block 7572 2939 (38.8%) 91 (45.7%) 2848 (38.6%) 0.046
Atrial fibrillation/flutter 7572 218 (2.9%) 12 (6.0%) 206 (2.8%) 0.015
Pacemaker (ventricular pacing) 7572 452 (6.0%) 13 (6.5%) 439 (6.0%) 0.65

Prolonged QT 7572 515 (6.8%) 18 (9.0%) 497 (6.7%) 0.20

Non-specific interventricular conduction delay (IVCD) 7572 229 (3.0%) 9 (4.5%) 220 (3.0%) 0.20

P-values result from a Wilcoxon rank sum test (continuous variables) or Fisher’s exact test (categorical variables).  The bold numeric values in the ‘P-value’ column represent statistically significant 
results (i.e. P-value < 0.05). The bold values in the ‘characteristic’ column represent group headings for example age, sex, time since, and race/ethnicity are all considered demographic variables.
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including higher heart rate, longer PR, QRS, and corrected QT intervals. 
ACR-positive ECGs were also less likely to be in sinus rhythm (P = 
0.003), whereas sinus tachycardia (P = 0.034), right bundle branch block 
(P = 0.046), and atrial fibrillation (P = 0.015) were more prevalent. 

Given, the observed differences, we also evaluated the ability of the 
ECG variables to detect ACR and performance was inferior to the 
AI-ECG model with AUC value of 0.579 (see Supplementary material 
online, Figure S1).

The AI-ECG model detected ACR with an AUC of 0.84 (95% CI: 
0.78–0.90) in the test set (Figure 3). Additional metrics of diagnostic 
performance in the test set were sensitivity: 95% (95% CI: 75.1– 
99.9%; 19/20), specificity: 52.6% (95% CI: 48.9–56.2%; 388/738), posi
tive predictive value: 5.1% (95% CI: 3.1–7.9%; 19/369), and negative 
predictive value: 99.7% (95% CI: 98.6–100%; 388/389).

Subgroup analysis
We also evaluated model performance in specific patient subgroups. 
The subgroups included age, sex, time between ECG and biopsy, 
time from transplant to biopsy, and transplant date as shown in 
Figure 4. The AI-ECG model remained effective in each subgroup 
with slightly better performance among persons older than 60 years 
and men. Similar performance across subgroups was demonstrated in 
the training data set (see Supplementary material online, Figure S2). 
Given the model was trained using ECGs obtained within 30 days of 
an EMB, we considered different time points in the subgroup analysis. 
These were: ECGs obtained within 7 days and >7days of an EMB and 
compared model performance metrics across the time points. As 
shown in Figure 4 and Supplementary material online, Table S1, model 
performance was noted to be better for ECGs performed within 
7 days of ECG (0.87) compared with >7 days (0.77). Similarly, we eval
uated the AI-ECG model based on time since the heart transplant as 
follows: within 60 days (≤2 months), >60 days (>2 months), >90 
days (>3 months), >120 days (>4 months), >180 days (>6 months), 
>365 days (>1 year), and >730 days (>2 years) days. The AUC values 
remained stable in these categories ranging from 0.81 to 0.89 (see 
Supplementary material online, Table S1). As described in the methods 

Figure 3 Receiver operating characteristic curve for detection of 
cardiac allograft rejection in a retrospective cohort of heart transplant 
recipients using a deep-learning model.

Figure 4 Subgroup analysis showing deep learning model performance in a retrospective cohort of heart transplant recipients.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad001#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad001#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad001#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad001#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad001#supplementary-data
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above, we also evaluated the performance of the model in a patient- 
level analysis using only the last EMB-ECG pairing and the AUC value 
in the training and test sets were 0.86 (95% CI: 0.80–0.93) and 0.87 
(95% CI: 0.67–1.0) respectively. 

To demonstrate the unique ability of the AI-ECG model to detect 
ACR, we evaluated a patient example in the test data with multiple 
ECG-biopsy pairs and show an upward trend in AI-ECG prediction 
probabilities around an episode of ACR and how the prediction prob
ability drops below the positive threshold following recovery from the 
episode of rejection (Figure 5). A review of the ECG images performed 
prior to and during the episode of ACR showed no clinically discernible 
changes (Figure 5).

Prospective proof-of-concept study
The prospective cohort included a total of 56 heart transplant recipi
ents with 97 unique ECG-biopsy pairs. Sample clinical and ECG charac
teristics for the prospective cohort are provided in Supplementary 
material online, Tables S2 and S3. Approximately a quarter (26.8%) 
were females, and the median age at enrolment was 60.2 years (Q1: 

55.5, Q3: 66.1). The developed AI-ECG model was able to identify 
ACR with an AUC of 0.78 (95% CI: 0.61–0.96; Figure 6). Sensitivity, spe
cificity, positive predictive value, and negative predictive value were 
100% (95% CI: 15.8–100%; 2/2), 60% (95% CI: 49.4–69.9%; 57/95), 
5% (95% CI: 0.6–16.9%; 2/40), and 100% (95% CI: 93.7–100%; 57/ 
57), respectively. All cases of ACR (2/2 ECG-biopsy pairs) were cor
rectly identified and 34% (13/38 ECG-biopsy pairs) of the false-positive 
predictions were noted to have mild rejection based on EMB results. In 
addition, the two EMB confirmed positive ACR cases were noted to 
have had a positive AI-ECG prediction for ACR on analyses of ECGs 
performed ∼1 month prior, even though the EMB results at the time 
were negative for ACR. This suggests that the AI-ECG may potentially 
recognize subclinical ACR prior to confirmation with an EMB.

Exploratory analyses to estimate clinical 
use cases
The prior results represent the development and validation of the algo
rithm. These summaries do not capture how the algorithm might be 

Figure 5 (A) Twelve-lead electrocardiogram obtained prior to rejection episode. (B) Twelve-lead electrocardiogram obtained during the rejection epi
sode. (C) Deep learning prediction probabilities for a single patient over time—prior to, during an episode of, and following recovery from moderate acute 
cellular rejection. The grey-shaded area (corresponding to values less than 0.4) highlights prediction probabilities below the threshold for a positive screen.
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used in the practice. To provide some initial data to inform the design of 
future studies examining the AI-ECG implementation, a set of explora
tory analyses were also conducted. Supplementary material online, 
Figure S3 demonstrates a simulated use case based on the retrospective 
test data set. This analysis that assumes this tool would be used as the 
first-line screening test for ACR among heart transplant recipients. This 
analysis shows that ECG-based screening would result in 369 positive 
AI-ECG predictions, each of which would likely still go on to have con
firmatory ACR testing. However, it could potentially reduce the need 
for a biopsy in more than half (51.3%, n = 389) of our patient cohort 
which may result in reduced health care utilization and cost. The per
centage of cases screened as test negative, which is the main driver in 
this calculation, is directly affected by the selected threshold. While 
the initial threshold of 0.4 was selected to maximize the sensitivity of 
the test relative to specificity, alternative thresholds that maximize 
negative predictive value may also be of interest to rule out the need 
for biopsy based on a negative test result. In multiple simulations, as 
shown in Supplementary material online, Table S4 using an alternative 
threshold of 0.35 will yield a 100% sensitivity and 100% negative pre
dictive value in the retrospective test data set, will lead to a 41% 
(314/758) reduction in number biopsies performed.

Discussion
In this study, we demonstrate for the first time that an AI-ECG can be 
an effective tool for detecting ACR among heart transplant recipients 
with an AUC of 0.84, showing improved performance when compared 
with AUC values for available blood test-based options for detecting 
ACR (0.64–0.70).6–8 We also performed a small, prospective 
proof-of-concept study to evaluate the effectiveness of the AI-ECG 
model and it remained robust.

Given that ECG changes are known to occur with ACR, some pub
lished studies have attempted to use ECG characteristics and features 
to predict the presence of rejection. Published results from a systematic 

review of 17 studies demonstrated significant variability in the study de
signs evaluating ECG features in relation to rejection26 as well as per
formance and concluded that the only effective approach available for 
detecting rejection was an EMB. Doering et al.27 published a study 
protocol that aimed to evaluate the utility of remote ECG monitoring 
for detecting ACR, and subsequent results in a sample of 220 heart 
transplant recipients showed that increased QRS, QT, QTc, and PR in
tervals, right bundle branch block, and fascicular block were associated 
with moderate to severe ACR13 but no AUC was provided. This study 
also suggested the need for computerized algorithms utilizing ECG data 
for the detection of ACR. Similarly in our study, we found multiple ECG 
variables to be associated with ACR including heart rate, PR interval, 
QRS duration, QTc, sinus tachycardia, RBBB, and atrial fibrillation. 
Although we found a combination of these variables using a logistic re
gression model had a lower AUC for detecting ACR compared with the 
deep-learning model, it is possible that some of these ECG features may 
potentially be features utilized by the deep-learning model and further 
analysis geared towards model explainability might provide potential in
sights into this.

Existing non-invasive options for detection of ACR are based on 
blood tests, GEP and dd-cfDNA6–8,28 with AUCs ranging from 0.64 
to 0.69. In a study with 63 patients and 132 samples the combination 
of both tests yielded an AUC of 0.78.8 Non-published results described 
by the manufacturer of these tests also list AUC values of 0.68, 0.77, 
and 0.81 for GEP, dd-cfDNA and a combination of both tests, respect
ively.29 Three small studies evaluating the utility of dd-cfDNA to detect 
all forms of cardiac allograft rejection (ACR and AMR combined) 
among 65, 171, and 223 patients showed an AUC of 0.83,30 0.9231

and 0.8632 respectively. The AUCs from these studies are notably high
er than prior studies likely because the outcome of interest was differ
ent as these studies included detection of both ACR and AMR. Studies 
evaluating the detection of ACR alone, otherwise have shown lower 
AUC values compared with our AI-ECG model.6–8 These tests require 
a blood draw by trained personnel with specific blood collection equip
ment/kits and samples need to be kept at a low temperature prior to 
transporting to the laboratory for analysis to ensure test quality.33 In 
addition, there are concerns for potential RNA degradation for samples 
stored for greater than 24 h which may also affect test results.34 More 
recent advances have demonstrated the effectiveness of serum 
microRNAs (miRNA) to effectively detect allograft rejection among 
heart transplant recipients with validation AUC of 0.80 for detection 
of ≥Grade 2R ACR using a single miRNA, albeit based on a small sample 
size (212 serum samples paired with EMB results).35 A prior study had 
demonstrated that four separate miRNAs were able to detect all forms 
of cardiac allograft rejection (ACR + AMR) with AUC values ranging 
from 0.87 to 0.98 in an external validation sample of 53 heart transplant 
recipients.36

The ECG, however, is an ideal tool in this patient population given the 
relative frequency of obtaining an ECG for other clinical indications as 
part of the management of heart transplant recipients. The ECG is inex
pensive, painless, non-invasive, and can be performed by hospital or clin
ic staff with minimal training, compared with blood test methods and the 
results can be made available within a few minutes following ECG acqui
sition as opposed to non-invasive blood test options utilizing GEP and 
dd-cfDNA which have a turnaround time ranging from 3 to 4 days.28

In addition, the use of ECG data may unlock the possibility for remote 
monitoring for ACR, potentially reducing health care costs, decreasing 
the need for patients to travel to heart transplant centres for frequent 
follow-up studies, and improving patient satisfaction. Other studies util
izing a machine learning approach for evaluation of ACR have mostly fo
cused on an automated assessment of EMB slides37–39 due to the 
recognized limitation of conventional histologic analysis of EMB tissue 
slides3 and these have shown excellent results with AUCs ranging 
from 0.92 to 93.37,38 More importantly, these machine-learning 

Figure 6 Receiver operating characteristic curve for detection of 
cardiac allograft rejection in a prospective cohort of heart transplant 
recipients using a deep-learning model.
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methods may potentially address limitations related to EMB testing, par
ticularly interobserver variability in the reported results based on the 
ISHLT criteria.40

Limitations of our study include a relatively small sample size used for 
model derivation (n = 1427) and prospective cohort (n = 56) which lim
its finer analysis of multiple subgroups, limited explainability of the AI 
model, a known shortcoming of deep-learning models, and the exclu
sion of AMR. In addition, the smaller proof-of-concept had only two 
cases of rejection, so the area under the ROC curve was a coarse 
step function with very low precision, i.e. the 95% CI spanned 0.61– 
0.96; virtually the entire range of plausible values. Numerically, the 
AUC in the proof-of-concept study was lower (AUC of 0.78) when 
compared with the test sample used to evaluate the initial model per
formance (AUC of 0.84); however, these differences are difficult to in
terpret given the low precision of the estimate and the limited number 
of events. These limitations notwithstanding, we did demonstrate the 
model correctly identified all cases of ACR in the prospective study 
and 34% of those flagged as false positive were noted to have mild re
jection based on EMB results. A previously developed AI-ECG algo
rithm for detection of low left ventricular ejection fraction in an 
unselected patient sample noted that patients with false-positive pre
dictions had a four-fold higher risk of developing a low ejection fraction 
in the future.41 As such, it would be important to understand if the 
false-positive predictions from our AI-ECG model may represent early 
markers of subclinical allograft dysfunction. Additional next steps will 
include continued follow-up of the patients with false-positive predic
tions. It is important to clarify that a positive screen based on the 
AI-ECG is not intended to dictate therapeutic intervention, rather it 
is intended to support the need for confirmatory testing with an 
EMB or alternate testing. A negative AI-ECG screen would be other
wise reassuring and in the absence of other clinical evidence of rejection 
would allow an EMB be deferred at the discretion of the managing 
provider.

Clearly, there are clinically identifiable ECG changes seen during an 
episode of ACR as shown in Table 2, but none of these changes may 
raise a red flag for rejection in clinical practice and are not specific 
for allograft rejection alone. Our hypothesis is that subtle changes in 
addition to those identified clinically are likely present on the ECG early 
in the clinical course of ACR and these may or may not be overtly mani
fest when interpreting the ECG clinically. Situations like this, is where 
deep-learning models often excel as demonstrated with other similar 
studies utilizing AI-ECG models for cardiovascular disease detec
tion.41–43 In addition, subsequent validation studies and clinical trials 
have demonstrated AI-ECG model reliability and effectiveness.44–46

Strengths of this study include the use of a truly non-invasive modality, 
the ECG, to screen for ACR and a proof-of-concept prospective ana
lysis of the derived AI-ECG model. Potential use cases for this technol
ogy will include the ability to increase ACR screening frequency with 
serial ECGs which is non-invasive with minimal patient discomfort 
and screening for ACR in non-transplant centres without the capacity 
to perform EMB. More importantly, essential steps needed prior to 
adopting this method in clinical practice includes external, multi-centre, 
validation of findings from this study, larger, robust prospective studies 
including clinical trials to evaluate its potential impact on clinical out
comes, as well as implementation studies.

Conclusion
We demonstrate that a deep-learning model based on the 12-lead ECG 
can effectively detect moderate-to-severe ACR among heart transplant 
recipients with a proof-of-concept prospective analysis showing prom
ising results. This study adds to the growing body of evidence showing 
the potential ability for artificial intelligence models to enhance cardio
vascular care. Future directions would include evaluating the potential 

benefit of combining AI-ECG screening with blood testing methods, 
evaluation of the AI-ECG for detecting ACR and AMR combined, as 
well as AI-based EMB slide analysis and interpretation.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.
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