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Abstract

Reward processing is implicated in the etiology of several psychological conditions including depressive disorders. In the current paper, 
we examined the psychometric properties of a neural measure of reward processing, the reward positivity (RewP), in 279 adult women 
at baseline and 187 women 8 weeks later. The RewP demonstrated excellent internal consistency at both timepoints and good test–
retest reliability using estimates from both classical test theory and generalizability theory. Additionally, the difference between RewP 
following reward and loss feedback was marginally associated with depressive symptoms in a subsample of participants. We also 
examined the relationship between subject-level dependability estimates and depression severity, finding that depressive symptoms 
may contribute to lower dependability on reward trials. However, this finding did not survive correction for multiple comparisons and 
should be replicated in future studies. These findings support RewP as a useful measure of individual differences of reward processing 
and point to the potential utility of this measure for various forms of psychopathology.
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Introduction
Abnormalities in reward processes may be central to the eti-
ology of different clinical conditions including substance abuse 
(Hixsona et al., 2019), eating disorders (Simon et al., 2016), and 
depressive disorders (Henriques et al., 1994; Henriques and David-
son, 2000). Researchers have relied on behavioral and self-report 
measures (Kasch et al., 2002; Pizzagalli et al., 2008; Whitton 
et al., 2015), as well as neuroimaging techniques (e.g. functional 
magnetic resonance imaging; fMRI), to examine reward process-
ing. For example, individuals with major depressive disorder 
exhibit reduced activation in the ventral striatum, a brain region 
implicated in reward processing (Forbes et al., 2009; Pizzagalli 
et al., 2009). To examine the time course of reward processing, 
researchers have used the reward positivity (RewP), a positive 
deflection in the event-related potential (ERP1) component of the 
electroencephalogram (EEG) approximately 250–350 ms after the 
presentation of a reward (for review, see Proudfit et al., 2015). 

1 Previous research has been inconsistent in the naming convention of 
reward-processing ERPs. Feedback negativity (FN) and RewP have been used 
to refer to raw ERP measures following reward and loss feedback, as well as 
the difference between the two. To increase clarity, in this paper, we refer to 
the raw ERP measures following feedback as RewP-gain and RewP-loss. We will 
refer to the difference between the two as ΔRewP.

Neural reactivity after rewards (RewP-gain) and after loss (RewP-
loss) and the difference between the two (ΔRewP) are typically 
assessed using a guessing task such as the doors task (Dunning 
and Hajcak, 2007; Foti and Hajcak, 2009, 2010). In the doors task, 
participants see two identical images of doors on a computer 
screen and select one of them by pressing a mouse button. The 
selection will result in either a monetary reward (e.g. $0.50) or a 
monetary loss (e.g. $0.25), thereby generating a RewP-gain or a 
RewP-loss, respectively, approximately 250–350 ms after the pre-
sentation of the feedback. The doors task is the most frequently 
used method of eliciting RewP measures across developmental 
stages and in clinical samples, in part due to the low participant 
burden (typically <7 min). Thus, we focus on the doors task as a 
measure of reward sensitivity in the current paper.

A blunted ΔRewP while completing the doors task has been 
associated with increased depressive symptoms in children, ado-
lescents (Bress et al., 2015; Belden et al., 2016), and adults (Foti 
and Hajcak, 2009; Funkhouser et al., 2021). Moreover, the ΔRewP 
is related to risk for depression. For example, a blunted ΔRewP 
may be a risk factor for depression in never-depressed children 
and adolescents (Kujawa et al., 2018; Nelson and Jarcho, 2021) and 
interact with other prominent risk factors (e.g. maternal suicidal-
ity) to predict increases in depression in children (Burani et al., 
2021). Finally, ΔRewP can predict remission status and successful 
response to treatment in depressed adults (Klawohn et al., 2021) 
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as well as change in depressive symptoms in anxious children and 
adolescents following treatment (Kujawa et al., 2018). Thus, these 
studies suggest that ΔRewP can predict the onset and course of 
depression at the individual level. However, in order to incorporate 
neural markers of reward sensitivity such as ΔRewP into diagnos-
tic classification and examine mechanism of change as a result 
of gold standard treatments, it is essential to ensure adequate 
psychometric properties of these measures at the individual level 
(Hajcak et al., 2019).

Examining this question in late childhood and adolescence, 
Bress et al. (2015), Luking et al. (2017), and Kujawa et al. (2018) 
found that split-half estimates of internal consistency were 
high for RewP-gain and RewP-loss (r’s > 0.79) but not ΔRewP 
(r’s = 0.28–0.50). Similarly, RewP-gain and RewP-loss demon-
strated acceptable test–retest reliability (r’s = 0.52–0.67) across 2-
to-3 years. However, ΔRewP showed low-to-moderate test–retest 
reliability (r’s = 0.18–0.43).

Examining this question in adult populations, Levinson et al.
(2017) and Distefano et al. (2018) found that RewP-gain and 
RewP-loss showed high internal consistency (split-half, Cron-
bach’s alpha, dependability; 0.71–0.91) but the ΔRewP did not 
(a’s = 0.28–0.45). Moreover, RewP-gain showed good 1-week test–
retest reliability (r = 0.71), while RewP-loss (r = 0.45) and ΔRewP 
(r = 0.27) showed moderate-to-low test–retest reliability, respec-
tively (Levinson et al., 2017). Finally, in one of the largest studies 
examining the internal consistency of RewP (split-half, Cron-
bach’s alpha, and dependability) in participants aged 10 to 55, 
Ethridge and Weinberg (2018) found that RewP-gain and RewP-
loss had excellent (0.86–0.93) internal consistency, but residual 
and subtraction-based ΔRewP scores demonstrated more vari-
able and overall weaker internal consistency (0.43–0.85). To exam-
ine whether internal consistency varied by age, these researchers 
divided their sample into three age groups (adolescence: ages 
10–17, n = 27; early adulthood: ages 18–24, n = 182; and middle 
adulthood: ages 33–55, n = 31). Age did not significantly moderate 
the split-half reliability of any reliability components. However, 
a larger number of trials were required to reach an acceptable 
internal consistency in the adolescent and middle adult groups, as 
compared to early adults. These researchers concluded that this 
age difference in the number of trials needed may be in part due to 
differences in sample size in each age group. Indeed, most of the 
participants in this study as well as other adult studies (Levinson 
et al., 2017; Distefano et al., 2018) comprised young adults (age 
18–24).

In summary, similarities across youth and adult samples sug-
gest test–retest reliability, and internal consistency of RewP-gain 
and RewP-loss are moderate to excellent, whereas ΔRewP reli-
ability is typically low to moderate. Lower reliability of differ-
ence scores is common across areas of research due to highly 
correlated constituent scores (Clayson et al., 2021a). Moreover, 
difference scores are affected by noise and measurement error 
found in both constituent scores (Furr and Bacharach, 2014), thus 
restricting the amount of true variance.

Thus, four questions remain regarding the psychometric prop-
erties of the RewP. First, few studies have examined the psycho-
metric properties of RewP in an adult samples aged 24 and older. 
Indeed, across various studies, only Ethridge and Weinberg (2018) 
included adults aged 24 and older and their sample comprised 31 
individuals. Depressive disorders begin to increase in prevalence 
in those aged 20 to 30 and continue to increase into middle age, 
with the highest rates of depression reported among those aged 
40–59 (Centers for Disease Control and Prevention (CDC), 2010; 
Pratt and Brody, 2014). Moreover, incidence of depression is higher 

among women in this age group. Thus, it important to establish 
the reliability of RewP and its relationship with depression in a 
sample of middle-aged women.

Second, previous studies have focused on reporting group-level 
reliability estimates (i.e. a single reliability score for the entire 
group) of RewP measures. It is possible that this single score can 
mask low reliability or data quality of some participants. Here 
we consider two different measures of subject-level data quality: 
(i) standardized measurement error (SME) and (ii) subject-level 
dependability.

Luck et al. (2021) recommended the computation of SME as an 
estimate of individual-level data quality. The SME is computed for 
time window (i.e. average ERP activity between 250 and 350 ms fol-
lowing feedback) separately for each condition (i.e. gain and loss) 
and for each participant. Briefly, the SMEij for trial scores, i, from 
a given person, j, is estimated by calculating the standard devia-
tion of the single-trial scores for a given person (σij) and dividing 
by the square root of the number of trials (nij). The SMEij quan-
tifies the data quality for each individual participant, making it 
possible to identify participants with ‘low quality’ data relative to 
the rest of the sample, such that higher SMEij scores reflect greater 
measurement error than lower SMEij scores. SMEij scores are trial-
dependent such that a participant with few trials will have a larger 
SME than a participant with many trials when between-trial stan-
dard deviations (σij) for the two participants are identical. SMEij

scores provide no information on whether between-trial variance 
is small compared to between-person variance. Therefore, a per-
son’s data could have high internal consistency in one group but 
low internal consistency in another group, despite the fact that 
SMEij would be identical.

Subject-level dependability quantifies whether person-specific 
data quality is high enough for the examination of individual dif-
ferences within a specific group (Clayson et al., 2021b). Briefly, 
subject-level dependability (ϕjk) for a given person, j, from a 
group, k, is calculated as a function of between-person vari-
ance (σ2

p), person-specific between-trial variance (σ2
ijk), and the 

person-specific number of trials (nijk). Conceptually, ϕjk is the ratio 
comparing the size of between-person differences in average ERP 
scores from a group to the variability of single-trial ERP scores that 
contribute of an individual’s average ERP score. A benefit of ϕjk is 
that it uses an approximation of data quality estimates in its cal-
culation and scales it using between-person variance. Thus, ϕjk is 
conceptually an estimate of data quality for an intended purpose 
(e.g. is data quality high enough to examine individual differences 
in the current sample?). The interpretation of ϕjk is similar to that 
of group-level estimates ranging between 0 and 1, with estimates 
closer to 1 indicating higher internal consistency (i.e. dependabil-
ity). Scores with high internal consistency (e.g. >0.80) are well 
suited for examining individual differences between participants 
(Clayson et al., 2021b).

Third, although previous ERP studies have shown subject-level 
reliability varies within a sample (Clayson et al., 2021b), it is 
unclear what factors (e.g. demographic and psychiatric measures) 
may contribute to lower reliability of RewP in some individuals. 
For example, while Distefano et al. (2018) suggested differences 
in sample size may be one explanation for why adolescents and 
middle-aged adults required a larger number of trials to reach 
acceptable internal consistency in their study, it is also possi-
ble that data quality and reliability varied as a function of age, 
in turn requiring a larger number of trials needed to achieve a 
reliable RewP in certain age groups. This may be a particularly
important consideration for studying RewP in developmental 
studies when change in RewP measures is assessed multiple times 
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across different ages. It is also possible that psychiatric symp-
toms (e.g. depression) may be uniquely related to subject-level 
variability of RewP. While previous EEG and fMRI studies have 
found that individuals with autism, attention-deficit hyperactiv-
ity disorder, and schizophrenia demonstrate abnormal trial-to-
trial neural variability compared to healthy controls (Trenado 
et al., 2019), this area has been largely underexplored in RewP
research.

Finally, the current study expands on previous research 
examining group-level internal consistency estimates of RewP. 
Group-level estimates indicate whether between-person variance 
(i.e. differences between person average scores) is larger than 
the average between-trial variance (i.e. differences between trial 
scores within a person), justifying subsequent analysis of individ-
ual differences (e.g. relationship with other correlates). Most ERP 
studies have calculated reliability using two approaches derived 
from classical test theory. The first is split-half reliability (rxx), 
calculated by examining the correlation between two halves of 
the data, and correcting this estimate using the Spearman–Brown 
prophecy formula (Nunnally et al., 1967). This approach is bene-
ficial because it includes all trials available for all participants. 
However, this approach is limited in that it is specific to only 
one way of splitting the data. Thus, the typical ERP study also 
calculates Cronbach’s alpha (α; Cronbach, 1951), which is approx-
imately equal to computing all possible split-half correlations. 
However, this approach also has significant shortcomings. The 
calculation of Cronbach’s alpha requires an equal number of tri-
als between participants, typically resulting in the exclusion of 
some participants, trials, or both. In response to some of the limi-
tations of the classical test theory, Clayson, Miller, and colleagues 
(Clayson and Miller, 2017; Clayson et al., 2021a, 2021b) have pro-
posed that generalizability theory (G theory) may be more suitable 
for use in ERP research. G theory augments classical test the-
ory estimates by considering multiple sources of variance such as 
measurement occasion, diagnostic group, number of trials, and 
event type, in addition to unaccounted for measurement error. 
Perhaps, the most significant advantage of G theory over classical 
test theory is that it can handle unbalanced designs (e.g. unequal 
number of trials retained for averaging), which is common in ERP 
studies due to artifact rejection procedures necessary for ana-
lyzing ERP scores (Clayson and Miller, 2017). In brief, G theory 
calculations result in two different types of reliability coefficients: 
(i) generalizability coefficient (Eρ2

D) and (ii) dependability coeffi-
cient (ϕ)D. The generalizability coefficient (Eρ2) is concerned with 
relative decisions (whether participants are ranked similarly in 
each condition of a facet). The dependability coefficient (ϕ) is con-
cerned with absolute decisions (similar scores between conditions 
of a facet). Given the doors task contains two feedback condi-
tions (i.e. gain and loss feedback) that remain constant across 
trials and participants (i.e. no variability in valence of reward or 
loss), the ranking of ERP scores within an object of measurement 
is not of interest. As such, previous RewP literature has relied 
on the dependability coefficient to calculate group-level reliabil-
ity obtained from the doors task (Levinson et al., 2017; Distefano 
et al., 2018; Ethridge and Weinberg, 2018; Clayson et al., 2021b). 
Briefly, group-level dependability (ϕk) is estimated as a function of 
between-person variance (σ2

p), between-trial variance (σ2
ik), and 

a given number of trials (nik
′). The number of trials used for nik

′ is 
a central tendency estimate (e.g. mean or median) for the number 
of included trials for a group of participants. When between-
person variance is large compared to error variance, ϕk will be 
high. When between-person variance is small compared to error 
variance, ϕk will be low. ϕk will range between zero and one, with 

estimates closer to one indicating higher levels of dependability 
(reliability; Clayson et al., 2021b).

In the current study, we examined the psychometric proper-
ties of RewP in a large community sample of adult women. We 
first examined the group- and subject-level internal consistency 
of RewP. Although we emphasize the utility of G theory to estimate 
the internal consistency of the RewP, we also report estimates 
using classical test theory to facilitate the comparison to previous 
studies. Next, we report the 8-week test–retest reliability of RewP. 
Consistent with previous literature, we hypothesized that RewP-
gain and RewP-loss would demonstrate good-to-excellent internal 
consistency and test–retest reliability, but ΔRewP would demon-
strate low-to-moderate reliability. Next, we report the relationship 
between depression and averaged RewP scores. We hypothesized 
that ΔRewP, but not RewP-gain or RewP-loss, would relate to 
symptoms of depression. Finally, we examined whether age and 
depression symptoms are potential factors that contribute to poor 
subject-level reliability.

Methods
Participants
Participants comprised 279 adult females who were mothers of 
adolescents enrolled in a large longitudinal trial examining the 
effect of attention bias modification (ABM) on psychophysiologi-
cal measures in a community sample of youth (ClinicalTrials.gov 
Identifier: NCT03176004).2

We used the ERP reliability analysis (ERA) Toolbox v. 0.5.2 to 
determine the number of trials needed to achieve stable average 
RewP scores (Clayson and Miller, 2017). We excluded three partic-
ipants who did not have enough trials to achieve a reliable RewP 
in either the gain (9 trials) or loss conditions (10 trials) at baseline, 
resulting in 276 participants. Participants’ ages ranged from 27 
to 58 years old (M = 44.57, SD = 5.90).3 Sixty-two participants were 
identified as Hispanic or Latino (23.5%). Ethnicity data were not 
available for one participant. Most participants self-identified as 
White (n = 213, 77.2%), 11 as Black (4.0%), 13 as Asian (4.7%), four 
as Native Hawaiian or Pacific Islander (1.4%), two as Native Amer-
ican or Alaskan Native (0.72%), 12 as two or more races (4.3%), and 
21 declined to answer or did not have race data available (7.6%). 
Median household income of the sample was $100 000. The distri-
bution of key demographic variables from this sample is provided 
in the Supplementary Materials. A subset of these participants 
(n = 192) then returned to the lab 8 weeks later to complete the 
doors task again. We excluded five participants who did not have 
enough trials needed to achieve a reliable RewP in either the gain 
(11 trials) or the loss (11 trials) conditions at the 8-week visit. Thus, 
the matched sample at baseline and 8 weeks comprised 187 par-
ticipants. Demographic information for the sample at 8 weeks is 
reported in the Supplementary Materials.

Participants were recruited as part of a larger longitudinal 
study of ABM in their adolescent offspring. Thus, not all the 
mothers of the participants in that longitudinal study reported 
on their own depression. This measure was implemented toward 
the end of baseline data collection and was administered to par-
ticipants again at a third visit 2 years later. Thus, 46 participants 

2 As part of the larger study, participants in the current study also com-
pleted a Flanker task and emotional-interrupt task. The emotional-interrupt 
task data is reported here in McGhie et al. (2021).

3 Age data were unavailable for five participants at baseline. Household 
income data were unavailable for 28 participants at baseline.
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completed our measure of depression at baseline and 80 more 
mothers completed this measure during the third visit 2 years 
later for a total of 126 participants for the validity analysis. This 
subsample of participants was similar in age to the first visit sam-
ple (M = 44.98, SD = 5.36).4 Thirty-three participants identified as 
Hispanic or Latino (26.2%). Ethnicity data were not available for 
one participant. One hundred three participants were identified 
as White (81.7%), three as Black (2.4%), six as Asian (4.8%), one as 
Native American or Alaskan Native (0.79%), one as two or more 
races (0.79%), and 12 declined to answer or did not have race data 
available (9.5%). Median household income of the sample was 
$110 000. The distribution of key demographic variables from this 
sample is provided in the Supplementary Materials.

Procedure
Participants completed a computerized monetary guessing task 
while we recorded EEG continuously. We used Presentation Soft-
ware (Neurobehavioral Systems, Systems, Inc., Albany, CA) to 
present the task to participants. Participants returned to the labo-
ratory 8 weeks after the first visit to complete the same task again. 
Some participants returned for a third visit to complete the same 
computer task as well as a measure of depressive symptoms. We 
compensated participants at a rate of $20 per hour for their par-
ticipation. In addition, they received $7.50 for their winnings from 
the doors task. Participants provided written informed consent. 
The Institutional Review Board approved all procedure described 
here.

Tasks and materials
Doors task
In the doors task, participants see two identical images of doors 
on a computer screen (Foti and Hajcak, 2010). We ask partic-
ipants to select one of the doors by pressing a mouse button 
on that door. The winning door results in a monetary reward of 
$0.50, represented by a green arrow pointing up, while select-
ing the losing door results in losing $0.25, represented by a red 
arrow pointing down. We used this ratio as monetary losses are 
twice as valuable as monetary gains (Tversky and Kahneman, 
1992). The experiment comprised 60 trials divided into 3 blocks 
of 20 trials each. The blocks were separated by participant-timed 
breaks, during which the instructions ‘Pause – Click when ready 
to continue’ appeared on the screen until the participant clicked. 
Unbeknownst to the participants, there were an equal number of 
wins and loss trials (i.e. 30 each), regardless of the doors selected. 
Following a brief description of the experiment, we attached EEG 
sensors to the participant scalp and provided them with detailed 
task instructions.

The sequence and timing of the task stimuli was as follows: 
We presented a fixation cross (+) in the center of the screen for 
500 ms. Next, an image of the two doors appeared until the partici-
pants clicked the left or right mouse button. Then, participant saw 
the fixation cross again for 1500 ms followed by an upward facing 
green arrow (representing a win trial) or a downward facing red 
arrow (representing a loss trial) for 2000 ms. Next, participants 
saw another fixation cross for 1500 ms and the word ‘Click for 
next round,’ which appeared on the bottom of the screen until 
the participant clicked either mouse button. The total duration of 
the task ranged between 5 and 7 min.

4 Age data were not available for five participants in this subsample. 
Income data were not available for 19 participants.

Beck Depression Inventory-II
The Beck Depression Inventory-II (BDI-II) is one of the most used 
self-rating questionnaires for measuring the severity of depres-
sion in adults. It comprises 21 questions assessing the somatic, 
cognitive, and affective symptoms of depression, with the items 
rated on four-point scales ranging from 0 to 3 with a maximum 
total score of 63 (higher scores indicate severe depressive symp-
toms; Beck et al., 1996). The BDI-II demonstrates excellent internal 
consistency (α = 0.83–0.96), test–retest reliability (r = 0.73–0.96), 
and concurrent validity (Wang and Gorenstein, 2013). In the cur-
rent sample, the BDI-II showed excellent internal consistency 
(α = 0.88). The BDI-II comprises a two-factor scoring: cognitive and 
noncognitive symptoms. These two factors have both theoretical 
(Beck et al., 1996) and factor analytic support (Dozois et al., 1998; 
Steer et al., 1999, 2000; Viljoen et al., 2003). The BDI-II cognitive 
items comprise general depressive symptoms, whereas noncogni-
tive items comprise somatic symptoms and anhedonia symptoms 
of depression.

Psychophysiological recording, data reduction, 
and analysis
We followed recommendations from Keil et al. (2014) to provide all 
information on data collection and preprocessing. We collected 
EEG data using a 32-electrode Brainvision ActiChamp system 
(Brain Vision ActiChamp System, 2016) and an EasyCap electrode 
cap (EasyCap GmbH, n.d.). The active electrodes recorded (FP1, 
Fz, FCz, F3, F7, FC5, FC1, C3, T7, TP9, CP5, CP1, CPz, Pz, P3, P7, O1, 
Oz, O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FC6, FC2, F4, F8, and 
FP2) were a subset of the international 10–20 system. We sam-
pled the data at 1000 Hz utilizing a low-pass online filter set at 
100 Hz and referenced all channels to Cz during data collection. 
The ground electrode was placed at FPz. We used vertical elec-
trooculogram (EOG) passive electrodes placed above and below 
the left eye to detect eyeblinks and horizontal EOG electrodes on 
either temple to detect lateral eye movement, with ground placed 
on the forehead.

We performed all offline data processing in MATLAB (Math-
Works Inc., Massachusetts, USA), the EEGLAB open source 
toolbox (Delorme and Makeig, 2004), and the ERPLAB toolbox 
(Lopez-Calderon and Luck, 2014). We re-referenced the data to the 
average of the mastoid electrodes (M1 and M2) and removed noisy 
channels via the Artifact Subspace Reconstruction method by 
using the clean_artifacts function within the clean_rawdata plu-
gin in EEGLAB. Those channels were interpolated using a spherical 
interpolation algorithm. We did not interpolate channels used for 
referencing or for measurement (i.e. M1, M2, Fz, FCz, and Cz). 
A second-order infinite impulse response Butterworth filter was 
used for bandpass filtering on the continuous (nonsegmented) 
data between 0.01 and 30 Hz with a 12 dB/octave roll-off. We cre-
ated epochs from −200 to 800 surrounding the presentation of the 
feedback stimulus [green up arrow (win) or red down arrow (loss)]. 
Data were baseline corrected between −200 and 0 ms prior to the 
response. We implemented a semiautomatic artifact rejection and 
correction such that trials containing less than −200 μV or greater 
than 200 μV were removed. Next, we used a Moving Window Peak 
to Peak trial rejection to remove trials with a threshold differ-
ence greater than 150 μV in a 500 ms window and 100 ms window 
step. Next, we corrected for vertical and horizontal EOG artifacts 
using the method developed by Gratton and colleagues (Gratton 
et al., 1983; Miller et al., 1988). Finally, we quantified the RewP as 
the mean amplitude in the EEG signal in the time window 200 
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Table 1. Mean (SD) of RewP measures at baseline (N = 276) and 8 
weeks (N = 187)

Time 1, mean (SD) Time 2, mean (SD)

RewP-gain 11.64 (6.35) 11.05 (5.98)
RewP-loss 9.87 (5.89) 9.24 (5.82)
ΔRewP (gain–loss) 1.77 (2.82) 1.81 (2.95)

to 350 ms at FCz electrode site, where the ΔRewP was maximal 
for our sample. We quantified ERP values separately following the 
presentation of the reward (RewP-gain) and loss (RewP-loss) feed-
back. The ΔRewP was quantified as the mean difference between 
gain and loss trials (RewP-gain minus RewP-loss).

Data analytical plan
We conducted all statistical analyses in the R (version 4.1.0) pro-
graming language. Experimental effects of the task were assessed 
using a pairwise t-test between the gain and loss conditions. We 
calculate the dependability coefficient (ϕ) from G theory. Phi rep-
resents an estimate of internal consistency that is analogous to 
coefficient alpha from classical test theory (Shavelson and Webb, 
1991). We used the ERA Toolbox v 0.5.2 (Clayson and Miller, 2017) 
in MATLAB (version, 2019b) to calculate RewP score dependabil-
ity based on algorithms from G theory and used CmdStan v 2.19.0 
(Stan Development Team, 2019 to implement the analyses in Stan 
(Carpenter et al., 2017). To estimate the internal consistency of the 
ΔRewP, we used equations from classical test theory and general-
izability theory (Clayson et al., 2021a). Finally, we assessed 8-week 
test–retest stability of each ERP measure using Pearson’s corre-
lations and dependability coefficients of stability from G theory 
(Clayson et al., 2021c). To establish criterion validity, we exam-
ined the continuous relationship between RewP measures and 
depressive symptoms as measured by the BDI-II. 

Results
Descriptive statistics
Descriptive statistics for the matched sample at baseline and 
8 weeks are displayed in Table 1. Figure 1 presents the grand-
average stimulus-locked ERPs at FCz for RewP-gain, RewP-loss, 

and ΔRewP at baseline and 8 weeks. The topographical scalp plot 
of the ΔRewP at baseline is also presented in Figure 1.

Doors experimental effects
To establish basic experimental effects of the doors task, we 
conducted pairwise t-tests between conditions. Results revealed 
that the RewP-gain was larger than the RewP-loss at baseline 
[t(275) = 10.44, P < 0.001, 95% CI (1.44, 2.11), Cohen’s dz = 0.63]. This 
effect was replicated at 8 weeks such that the RewP-gain was 
larger than RewP-loss [t(185) = 8.28, P < 0.001, 95% CI (1.35, 2.19), 
Cohen’s dz = 0.61].

Data quality
The two data quality estimates of interest, SME (SMEij), and 
between-trial standard deviations (σij) are reported in Table 2 for 
baseline and 8 weeks. Figure 2 reveals a strong linear relation-
ship between SME and between-trial standard deviations. This 
is expected when the number of trials included in an estimate 
is very similar across persons, as is the case for RewP (Clayson 
et al., 2021c). As Luck et al. (2021) pointed out, it is difficult to 
know what constitutes a ‘small enough’ SME score, but compar-
ing SME estimates among participants can shed light on which 
participants might have poor data quality relative to other par-
ticipants within a group. Visual inspection of the baseline (top 
left and right) panels for RewP-gain and RewP-loss suggests one 
participant has poor data quality (high SME and between-trial 
standard deviation) relative to other participants. Corroborating 
this conclusion, the same participant had poor data quality for 
both the gain and loss conditions, suggesting poor data quality 
overall for that participant. As shown in both the 8-week (bot-
tom left and right) panels for RewP-gain and RewP-loss, it is less 
clear which participants have poor data quality relative to the 
rest of the sample. In order to explore the data quality further, 
participants who also demonstrate poor subject-level depend-
ability (see Section 3.4) are colored in red. These measures may 
be used in conjunction to determine which participants are not 
representative of the whole sample. However, because subject-
level dependability clarifies whether person-specific data quality 
is high enough within a specific group and provides a clear ‘cut-
off’ score, subject-level dependability may be a more methodical 
measure to determine which individuals are not characteristic of 
the rest of the sample. 

Fig. 1. RewP measures at FCz at baseline (left) and 8 weeks (right). The scalp topography reflects average topography for the matched sample at 
baseline (N = 187) for ΔRewP (Gain–Loss) between 200 and 350 ms.
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Table 2. Summary Statistics for ERP to Gain and Loss Trials

Gain Loss
Measurement M (SD) Range M (SD) Range

No. of trials
Baseline 29.36 (1.64) 18–30 29.32 (1.68) 19–30
Eight weeks 29.47 (1.51) 14–30 29.43 (1.51) 20–30
Data quality
SMEij

 Baseline 1.53 (0.41) 0.73–3.95 1.48 (0.55) 0.66–8.05
 Eight weeks 1.60 (0.46) 0.74–4.24 1.56 (0.47) 0.73–3.74
σij

 Baseline 8.25 (2.14) 3.80–16.77 7.99 (2.69) 3.45–36.87
 Eight weeks 8.65 (2.35) 3.91–22.83 8.44 (2.52) 3.99–20.48
Group-level internal consistency

Estimate 95% CI Estimate 95% CI
rxx

 Baseline 0.95 — 0.93 —
 Eight weeks 0.93 — 0.93 —
α
 Baseline 0.94 (0.93, 0.95) 0.94 (0.93, 0.95)
 Eight weeks 0.93 (0.92, 0.95) 0.93 (0.92, 0.95)
ϕk

 Baseline 0.93 (0.92, 0.94) 0.93 (0.92, 0.94)
 Eight weeks 0.93 (0.91, 0.94) 0.93 (0.91, 0.94)
ICC
 Baseline 0.32 (0.28, 0.36) 0.30 (0.27, 0.34)
 Eight weeks 0.28 (0.23, 0.32) 0.27 (0.23, 0.32)
Subject-level internal consistency

M (SD) Range M (SD) Range
ϕjk

 Baseline 0.93 (0.02) 0.81–0.96 0.93 (0.03) 0.58–0.96
 Eight weeks 0.92 (0.03) 0.77–0.97 0.92 (0.03) 0.79–0.97
ICC
 Baseline 0.33 (0.06) 0.18–0.49 0.32 (0.06) 0.06–0.46
 Eight weeks 0.30 (0.06) 0.10–0.48 0.30 (0.06) 0.11–0.48

Note: All estimates based on N = 276 at baseline and N = 187 at 8 weeks. 
SMEij = standard measurement error; σij = between-trial standard deviation; 
rxx = odd–even reliability with Spearman–Brown Prophecy adjustment; 
α = Cronbach’s alpha; ϕk = group-level dependability; ϕjk = subject-level 
dependability.

Subject-level internal consistency
Summary statistics for subject-level dependability and intraclass 
correlation coefficients (ICCs) are summarized in Table 2. Individ-
ual subject-level dependability and ICCs are plotted in Figures 3 
and 4. Data for participants with Bayesian 95% confidence inter-
val (a.k.a., credible interval) that do not include the group-level 
estimate are highlighted in red. These plots provide a simple 
visualization of how well group-level internal consistency char-
acterizes individual participant data. At baseline, the group-level 
dependability estimates were not reached by 12 (4.35%) and 11 
(3.99%) participants in the gain and loss conditions, respectively 
(see Figure 3). At baseline, the group-level ICC estimates were not 
reached by 13 (4.71%) and 10 (3.62%) participants in the gain and 
loss conditions, respectively (see Figure 4). At 8 weeks, the group-
level dependability estimates were not reached by 18 (9.63%) and 
21 (11.23%) participants in the gain and loss conditions, respec-
tively (see Figure 3). At 8 weeks, the group-level ICC estimates 
were not reached by 8 (4.28%) and 11 (5.88%) participants in the 
gain and loss conditions, respectively (see Figure 4).

Group-level internal consistency
Acceptable values of alpha range from 0.70 to 0.95 (Nunnally and 
Bernstein, 1994; Bland and Altman, 1997; Tavakol and Dennick, 

2011; DeVellis, 2017). Clayson and Miller (2017) recommended an 
internal consistency threshold (dependability, Cronbach’s α, split-
half, etc.) of 0.80 for ERP studies. Classical test theory–derived 
measures (Cronbach’s α and split-half) showed that RewP-gain 
and RewP-loss showed excellent internal consistency (0.93–0.95) 
at baseline and 8 weeks (see Table 2). As Cronbach’s alpha requires 
all participants to have the same number of trials, we computed 
alpha using the minimum number of trials available for all par-
ticipants at baseline: RewP-gain (18) and RewP-loss (19) and at 
8 weeks: RewP-gain (14) and RewP-loss (20). Similarly, G theory–
derived dependability estimates for RewP-gain and RewP-loss 
were excellent (0.93; see Table 2) when using all trials retained for 
each participant. At baseline, minimum recommended depend-
ability scores of 0.80 or above were reached at 9 and 10 trials 
for RewP-gain and RewP-loss, respectively. At 8 weeks, 11 trials 
were needed for both RewP-gain and RewP-loss. As mentioned 
in Section 2.1, three participants at baseline and five subjects at 8 
weeks were excluded from subsequent data analysis for not meet-
ing the trial cutoffs required for acceptable (>0.80) group-level 
dependability (Table 3).

To calculate the internal consistency of the ΔRewP, we used 
equations suggested by Clayson et al. (2021a). Consistent with pre-
vious literature and as expected, ΔRewP showed low-to-moderate 
internal consistency using classical test theory estimates at base-
line (ρDD

′ = 0.38) and 8 weeks (ρDD
′ = 0.42). Similarly, ΔRewP 

showed low internal consistency when using G theory estimates 
at baseline [ϕ = 0.27, 95% CI (0.16, 0.39)] and 8 weeks [ϕ = 0.31, 95% 
CI (0.19, 0.44)]. Lower ΔRewP reliability has been attributed to a 
high correlation between RewP-gain and RewP-loss, which may 
be the case in the current sample: RewP-gain and RewP-loss were 
highly correlated at baseline [r(274) = 0.90, P < 0.001] and 8 weeks 
[r(185) = 0.88, P < 0.001].

Test–retest reliability
Consistent with previous test–retest reliability studies in chil-
dren and adults (Bress et al., 2015; Levinson et al., 2017; Kujawa 
et al., 2018), we found good test–retest reliability for RewP-
gain [r(185) = 0.79, P < 0.001, 95% CI (0.73, 0.84)] and RewP-loss 
[r(185) = 0.81, P < 0.001, 95% CI (0.75, 0.85)] when using classical 
test theory. As expected, the ΔRewP demonstrated lower relia-
bility [r(185) = 0.37, P < 0.001, 95% CI (0.24, 0.49)] than its compo-
nents. We also calculated a dependability coefficient of stability 
from G theory, which is analogous to test–retest reliability esti-
mates (Clayson et al., 2021c). We used a dependability cutoff score 
of 0.80. The number of trials from each session needed was 24 for 
gain trials and 27 for loss trials. Fifteen participants were excluded 
after applying the trial cutoffs, resulting in 172 participants with 
an average of 29.68 gain trials and 29.71 loss trials. We found good 
stability for RewP-gain [0.78, 95% CI (0.72, 0.83)] and RewP-loss 
[0.81, 95% CI (0.75, 0.85)] over 8 weeks. The ERA Toolbox does 
not currently allow for estimation of coefficients of stability for 
difference scores (Clayson et al., 2021c).

Relationship between depression and averaged 
RewP scores
Depression comprises absence of pleasure in situations that 
would call for it (i.e. anhedonia) or the presence of displea-
sure (i.e. dysphoria emotions; Berridge and Kringelbach, 2015). A 
blunted ΔRewP has been associated with anhedonia (Santopetro 
et al., 2021), as well as general dysphoria symptoms (Distefano 
et al., 2018; Nelson and Jarcho, 2021). However, there is lit-
tle evidence for a relationship between somatic symptoms of 
depression (i.e. sleep disturbances, weight change, and fatigue) 
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Fig. 2. Relationship between data quality estimates for RewP-gain and RewP-loss at baseline (N = 276) and 8 weeks (N = 187).

Note: SME = standardized measurement error; Trial std = between-trial standard deviation. Participants with poor subject-level dependability (see Section 3.4) are 
highlighted in red. Note different limits on x- and y-axes.

and ΔRewP. In the current paper, we examined the relationship 
between RewP measures separately for cognitive items (i.e. sad-
ness, pessimism, past failure, guilty feelings, punishment feelings, 
self-dislike, self-criticalness, suicidal thoughts or wishes, inde-
cisiveness, and worthlessness) and noncognitive items (i.e. loss 
of pleasure, crying, agitation, loss of interest, loss of energy, 
changes in sleeping pattern, irritability, changes in appetite, con-
centration difficulty, tiredness or fatigue, loss of interest in sex) 
of the BDI-II. Both the BDI-II cognitive (a = 0.79) and noncog-
nitive (a = 0.83) item subscales demonstrated good internal
consistency.

Results are presented in Table 4. BDI-II cognitive scores were 
significantly correlated with ΔRewP, such that higher depres-
sive symptoms were related to a blunted ΔRewP. BDI-II cognitive 
scores were not significantly correlated to RewP-loss or RewP-
gain. BDI-II total scores and BDI-II noncognitive scores were not 
significantly correlated with average RewP measures. The corre-
lation between BDI-II cognitive scores and ΔRewP was no longer 
significant when we controlled for the false discovery rate (FDR) 
using the method of Benjamini and Hochberg (Benjamini and 
Hochberg, 1995). We considered a family, scores within a class of 
measures (i.e. depression or dependability) when correlated with 
another class.

We repeated reliability and data quality analyses for this sub-
sample of participants (see Supplementary Materials for results). 
11 participants demonstrated poor subject-level reliability for 
gain or loss trials. After removing these participants, the rela-
tionship between ΔRewP and BDI-II cognitive scores was only 
marginally significant [r(113) = -0.17, P = 0.08, 95% CI (−0.34, 
−0.02)]. All other correlations between BDI-II measures and aver-
age RewP measures remained nonsignificant (P’s >0.05).

Relationship between subject-level 
dependability, age, and depression
To determine whether age or depressive symptoms contribute to 
poor subject-level reliability, we performed correlational analy-
ses between subject-level dependability, age, and BDI-II total and 
subscale scores. Results are presented in Table 4. BDI-II total 
and BDI-II noncognitive scores were significantly correlated with 
RewP-gain dependability, such that higher depressive symptoms 
were related to poorer subject-level reliability on reward trials. 
However, this correlation was not significant after controlling for 
the FDR using the method of Benjamini and Hochberg method 
(Benjamini and Hochberg, 1995). Age was not significantly cor-
related to any of our measures of depression or subject-level 
dependability. After removing the 11 participants who demon-
strated poor subject-level reliability for gain or loss trials, the rela-
tionship between RewP-gain dependability and BDI-II total scores 
was no longer significant [r(113) = −0.14, P = 0.15, 95% CI (−0.31, 
−0.04)]. All other correlations between RewP-gain dependability 
and RewP-loss dependability and average remaining measures 
remained nonsignificant (P’s > 0.05).

Discussion
In the present study, we examined the psychometric properties 
of the RewP in a large adult sample using both generalizability 
and classic test theory constructions of reliability. Consistent with 
previous research in adults (Levinson et al., 2017; Ethridge and 
Weinberg, 2018), we found that both the RewP-gain and RewP-loss 
demonstrated excellent group-level internal consistency based on 
split-half reliability, Cronbach’s alpha, and G theory estimates 
of dependability. We also calculated subject-level internal con-
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Fig. 3. Subject-level dependability estimates (ϕjk) for each person with their respective 95% credible intervals.

Note: When the credible intervals do not include the group-level dependability estimate (shown on the dotted line), the credible intervals are highlighted in red. 
Data are ordered from the smallest to largest ϕjk estimate.

sistency estimates at baseline and 8 weeks using dependability 
estimates, finding that most participants demonstrated good-to-
excellent subject-level reliability. While group-level estimates of 
internal consistency were representative of the majority of our 
sample, these estimates mischaracterized between 3 and 11% of 
participants, suggesting that subject-level internal consistency 
provides additional information that focuses on individual dif-
ferences in RewP measures. It is possible that participants with 
lower subject-level reliability may contribute to misinterpretation 
or non-replicable results at the group level. This is particularly 
important in studies that examine the relationship between the 
RewP and psychopathology. We found this to be the case in the 
current study. We examined the relationship between reward pro-
cessing and depression by correlating a dimensional measure of 
depressive symptoms with RewP measures, finding that a smaller 
ΔRewP is related to increased symptoms of depression. Specifi-
cally, the ΔRewP related to cognitive symptoms of depression, as 
opposed to a subscale comprising somatic and anhedonic symp-
toms of depression. This is in line with previous research demon-
strating that the ΔRewP relates to subscale measures of anhe-
donia (Santopetro et al., 2021) and general dysphoria symptoms 
(Distefano et al., 2018; Nelson and Jarcho, 2021) when examined in 
a community sample. However, after excluding participants with 
poor subject-level dependability, this correlation was no longer 
significant. Thus, the ΔRewP only correlated marginally with 
depressive symptoms in a large community sample of women. 
Future studies should establish subject-level dependability in 
their study as a precursor to examining individual differences of 
RewP measures.

We found that both the RewP-gain and RewP-loss demon-
strated good long-term test–retest reliability measured across 8 
weeks. This is within the typical timeframe for evidence-based 
treatment batteries (i.e. 2–4 months). Thus, the RewP may be 
a useful and reliable measure to predict treatment response in 
an adult sample (Klawohn et al., 2021). However, these findings 
should first be replicated in a clinical adult sample. Consistent 
with previous research in children and adults, the ΔRewP (RewP-
gain − RewP-loss) demonstrated lower internal consistency and 
test–retest reliability (Bress et al., 2015; Levinson et al., 2017; Luk-
ing et al., 2017; Ethridge and Weinberg, 2018; Kujawa et al., 2018) 
than its constituent scores when using both classical test theory 
and G theory estimates at baseline and 8 weeks (Clayson et al., 
2021b). Difference score reliability is impacted by the internal 
consistency of its constituent scores and the correlation between 
them (Clayson et al., 2021a; Furr and Bacharach, 2014, Chap-
ter 6). Previous research has suggested that the ΔRewP demon-
strates lower reliability when compared to other difference score 
ERPs, such as the error-related negativity (ΔERN), due to a much 
higher correlation between RewP-gain and RewP-loss (0.79) than 
the ΔERN constituent scores (0.28; Clayson et al., 2021a). In the 
current study, RewP-gain and RewP-loss were highly correlated 
(0.88–0.90), likely contributing to the low reliability scores. The 
reliability of a measure indexes how much true score is con-
tained within that measure as opposed to error variance. Thus, 
the ΔRewP is more constrained in the amount of true score avail-
able when compared to its constituent scores. Thus, one reason 
for the lower reliability of the ΔRewP as compared to its con-
stituent scores is the high correlation between the constituent 
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Fig. 4. Subject-level intraclass correlation coefficients (ICCjk) for each person with their respective 95% credible intervals.

Note: When the credible intervals do not include the group-level ICC (shown on the dotted line), the credible intervals are highlighted in red. Data are ordered 
from the smallest to largest ICCjk estimate.

Table 3. Mean (SD) of RewP and BDI-II measures (N = 126)

Mean (SD)

RewP-gain 10.60 (6.91)
RewP-loss 9.25 (6.32)
ΔRewP (gain–loss) 1.35 (3.28)
BDI-II cognitive 2.36 (2.85)
BDI-II noncognitive 4.94 (4.28)
BDI-II Total 7.29 (6.46)

scores. A second argument for the low reliability of ΔRewP is that 
one would not expect a high test–retest reliability for ΔRewP if it 
varies with transient depressive symptoms. That is, to the extent 
that depressive symptoms vary over time, so should the ΔRewP. 
However, if ΔRewP corresponds to stable depressive symptoms, 
then its test–retest reliability should be in the range of self-report 
measures of depression. Delta RewP had a higher correlation 
with depression than its constituent scores. This may indicate 
that a larger portion of the ΔRewP true score variance relate to 
individual differences in depression (Levinson et al., 2017). Thus, 
use of the ΔRewP may be suitable for future examination of 
individual differences as its constituent scores show excellent 
internal consistency and test–retest reliability, and it consistently 
demonstrates a stronger relationship with measures of depres-
sion. These results highlight the utility of RewP measures and 
point out the importance of examining subject-level internal con-
sistence in clinical setting. Indeed, they call for better standard for 
acceptable subject-level internal consistency in clinical studies.

Table 4. Correlations between RewP, subject-level reliability, BDI-II 
scores, and age (N = 126)

1 2 3 4 5 6 7 8

1. BDI-II 
Total

2. BDI-II 
cognitive

0.86*

3. BDI-II 
noncognitive

0.94* 0.63*

4. Agea −0.15 −0.10 −0.17
5. Depend 

RewP-gain
−0.20** −0.17 −0.19** 0.10

6. Depend 
RewP-loss

−0.14 −0.10 −0.15 0.08 0.79*

7. RewP-
gain

−0.09 −0.16 −0.03 −0.05 −0.01 0.18**

8. RewP-
loss

−0.05 −0.08 −0.02 −0.04 −0.09 0.08 0.88*

9. Delta 
RewP

−0.10 −0.18** −0.03 −0.02 0.14 0.22** 0.41* −0.07

Note: *P < 0.001;
**P < 0.05;
aAge data were not available for five participants. Only the correlations within 
a family (i.e. BDI scores or dependability scores) survived the false discovery 
rate correction.

We also examined the relationship between RewP subject-
level dependability, age, and depression severity. We found that 
reduced dependability on gain trials was related to higher depres-
sion severity; however, our correlational analysis did not survive 
correction for multiple comparisons, and hence, these results 
should be viewed with caution. More research is needed to exam-
ine whether individuals with depression not only experience
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overall blunted response to reward (average ΔRewP) but experi-
ence increased variability in their response to reward (subject-
level dependability). Finally, we did not find a relationship 
between any of our subject-level dependability estimates and 
age. Although our study included participants from a wide age 
range, they were all middle-aged adults. Future studies exam-
ining RewP measures in participants across multiple age groups 
(e.g. children, adolescents, and young adults) should examine this
question.

Our study has limitations. For example, our sample included 
only women. Future research should expand this line of work 
to include men. We attempted to obtain data from a wide age 
range, ethnicity, and recruit from a community sample, in order 
to increase the generalizability of the results. However, examina-
tion of other factors, such as gender, socioeconomical status, and 
developmental consideration, should be addressed in future stud-
ies. We also did not exclude participants using criteria typical of 
EEG and neuroimaging studies (e.g. no history of previous head 
trauma or neurological issues). All participants in the current 
study were included if their adolescent child met this eligibility 
criteria. Thus, it is possible that some participants have a his-
tory of health-related issues. Also, we used a monetary doors task 
to elicit ERP measures of reward processing. Growing evidence 
suggest that social reward may influence reward sensitivity dif-
ferently than monetary rewards (Distefano et al., 2018; Ethridge 
and Weinberg, 2018; Nelson and Jarcho, 2021) and the compara-
tive clinical utility of monetary versus social rewards should be 
explored. Finally, one issue with the doors task may be that the 
outcome (win/loss) is confounded with the outcome symbol (color 
and orientation) and participants may simply be responding to the 
symbols and colors and not the actual monetary outcome. This 
possibility should be examined in future studies.

These limitations notwithstanding, the results of the
present study suggest that the reward processing components 
elicited from the monetary doors task remain relatively sta-
ble with predictive utility in assessing self-report symptoms of
depression.
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