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Abstract

Identifying ancestry-specific molecular profiles of late-onset Alzheimer’s Disease (LOAD) in 

brain tissue is crucial to understand novel mechanisms and develop effective interventions in non-

European, high-risk populations. We performed gene differential expression (DE) and consensus 

network-based analyses in RNA-sequencing data of postmortem brain tissue from 39 Caribbean 

Hispanics (CH). To identify ancestry-concordant and -discordant expression profiles, we compared 

our results to those from two independent non-Hispanic White (NHW) samples (n = 731). In CH, 

we identified 2802 significant DE genes, including several LOAD known-loci. DE effects were 

highly concordant across ethnicities, with 373 genes transcriptome-wide significant in all three 

cohorts. Cross-ancestry meta-analysis found NPNT to be the top DE gene. We replicated over 

82% of meta-analyses genome-wide signals in single-nucleus RNA-seq data (including NPNT and 

LOAD known-genes SORL1, FBXL7, CLU, ABCA7). Increasing representation in genetic studies 

will allow for deeper understanding of ancestry-specific mechanisms and improving precision 

treatment options in understudied groups.
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1. Introduction

Genetic and environmental factors conferring risk for late-onset Alzheimer’s disease 

(LOAD) are known to differ across ancestral and ethnic populations (Reitz and Mayeux, 

2014), though non-Hispanic White (NHW) cohorts still dominate genomic studies (Sirugo 

et al., 2019), particularly for neurodegenerative diseases. This work has been foundational 

for building our understanding of the pathological mechanisms of late-onset Alzheimer’s 

disease (LOAD), and points toward perturbations in a broad set of biological pathways most 

often including neuroimmune responses and inflammation, synaptic regulation, oxidative 

stress and glucose metabolism, and fatty acid metabolism (Calabrò et al., 2020; Morgan 

et al., 2022). In fact, based on existing literature, the functional reach of LOAD-related 

pathways is nearly universal; a recent text-mining study of over 200,000 abstracts identified 

that 91% of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways show LOAD 
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associations within at least 5 published studies (Morgan et al., 2022). Direct bulk and 

single-cell transcriptomic analyses have also found consistent changes in excitatory and 

inhibitory neuronal, microglial, and astrocytic cellular populations in LOAD (Consens et 

al., 2022; Grubman et al., 2019; Mathys et al., 2019). However, with respect to identifying 

potentially targetable molecular risk mechanisms, the relative lack of data from populations 

other than NHW has the potential to exacerbate existing disparities in global health equity 

(Jooma et al., 2019; Weinberger et al., 2020).

Recent work has shown important differences in the genes and molecular pathways involved 

in risk for and progression of LOAD among different populations, though the scarcity 

of tissue samples outside of NHW populations has led to a strong bias in the literature 

toward the least invasive modalities. For example, multi-ancestry genetic analyses how 

include tens of thousands of individuals from African, African American (AA), Asian, and 

Hispanic populations (Bellenguez et al., 2022; Kunkle et al., 2021; Lake et al., 2022). Fewer 

studies have evaluated gene expression profiles in minority groups, with some evidence of 

differences in cell-free, protein coding messenger RNA (cf-mRNA) abundance in blood 

between LOAD and controls in AA individuals (Reddy et al., 2022). Transcriptomic 

analyses of brain tissue in LOAD outside of NHW populations are rarer yet, though single-

nucleus RNA sequencing (RNAseq) analysis of frontal cortex from six African American 

(AA) and NHW individuals found that expression of LOAD-implicated genes (i.e. APOE in 

ε4 carriers) and gene clusters (neuronal and astrocytic) are differentially expressed between 

populations (Celis et al., 2020). Additionally, multi-ancestry expression analyses have 

demonstrated that the inclusion of diverse ancestral populations in expression quantitative 

trait loci (eQTL) experiments reveals previously unknown mechanistic explanations for 

known LOAD risk variants (e.g. rs117618017 and expression of APHB1) (Zeng et al., 

2022).

Specifically, Caribbean-Hispanics represent an important population of individuals for the 

study of late-life neurodegenerative disease, as they are uniquely genetically admixed 

(Moreno-Estrada et al., 2013) and have undergone the most rapid demographic aging 

within Latin America over the last ten years (Acosta et al., 2021). Recent RNA sequencing 

analyses of blood in CH individuals (including LOAD and cognitively normal elderly) 

from Puerto Rico found that approximately 30% of gene expression regulatory variants 

were not shared between CH and either NHW or African American (AA) populations 

(Griswold et al., 2021). Despite this, there have been no postmortem brain gene expression 

studies of LOAD in Hispanic/Latinos populations to date, largely due to the scarcity of 

available tissue samples and the historical deprioritization of molecular-genetic research in 

this group. Here we present the first RNA-sequencing analysis of cortical brain tissue from 

Caribbean-Hispanics (CH) with and without a pathological diagnosis of LOAD. We aimed 

to identify genes and pathways with ancestry-specific (i.e. those identified in CH only) 

and ancestry-independent (i.e. those replicating across groups) differential gene expression 

by comparing transcriptome-wide association differential expression (DE) analyses and 

co-expression network-based analyses performed in CH and two independent NHW cohorts, 

processed with identical pipelines.
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2. Results

Fig. 1 provides a schematic of our overall study design and Table 1 reports demographic 

and RNA sequencing depth measures for each cohort included in our study. For the CH 

cohort, global admixture analysis (Tosto et al., 2015b) (see Supplementary file, Fig. S1) 

revealed that six individuals did not show all three ancestral components (European, African 

and Native-American), resulting in 39 genetically-confirmed three-way admixed subjects 

(nLOAD = 23, nnon-LOAD = 16); five carried a PSEN1 mutation, the G206A substitution - a 

known mutation associated with familial LOAD in Caribbean Hispanic populations (Athan 

et al., 2001).

2.1. Caribbean-Hispanics LOAD transcriptome-wide differential expression analysis

We first sought to identify LOAD-differentially expressed genes in CH brain. Robust 

regression modelling of LOAD status on gene transcript abundance (log2(CPM)) was 

adjusted for demographic and technical covariates, including a term for PSEN1 mutation 

carrier status. To further ensure that PSEN1 status would not bias our results, we 

performed principal components analyses on the CH expression dataset with and without 

the removal of co-variate effects, confirming that mutation carriers did not cluster 

separately from the rest of the sample (Fig. S2). Differential expression analysis found 

a total of 2802 differentially-expressed genes at an FDR significant threshold of q 
< 0.05 (Table S1). Among the most significantly differentially expressed genes were 

many with known roles in LOAD, including CD33, TREM2, CR1, CD2AP, HLA-DRB1, 

MS4A4A, FBXL7, among additional genes identified by the most recent LOAD GWAS 

meta-analysis (Bellenguez et al., 2022). To functionally characterize differentially expressed 

genes, we analyzed those significantly up- (n = 1335) and down-regulated (n = 1467) 

separately, using the FUMA-GWAS tool. Up-regulated genes were significantly enriched 

for the “BLALOCK_ALZHEIMERS_DISEASE_UP” gene set (pFDR = 9.4 × 10−29) as 

well as 2578 additional gene sets primarily related to immune cell activation, vascular 

function, cancers, and components of the extracellular matrix (full results are reported 

in Table S2). In contrast, the LOAD down-regulated gene set was enriched for the 

“BLALOCK_ALZHEIMERS_DISEASE_DN” gene set (pFDR = 6.2 × 10−21) and showed 

fewer additional significant enrichments (152), mostly corresponding to neuronal signaling 

components, consistent with synaptic loss observed in LOAD.

2.2. Non-Hispanic differential expression analyses and cross-ancestry gene expression 
comparison

In the Religious Orders Study and Memory and Aging Project (ROS/MAP) and Mayo 

Clinic non-Hispanic samples, differential expression analyses found 2066/17,665 and 

10,878/19,380 significant genes, respectively (Fig. 2D–E; summary statistics in Tables 

S3 and S4). Validation of these results against published differential expression analyses 

in these cohorts (Canchi et al., 2019; Logsdon et al., 2019; Mostafavi et al., 2018) 

demonstrated substantial coherence of transcriptome-wide effects (Supplementary file; Figs. 

S3 and S4). Comparing between populations, 373 genes reached genome-wide significance 

in all three differential expression analyses (nuniverse = 15,834, expected overlap = 184; 

overlap hypergeometric p = 6.6 × 10−43); 364 (98%) with concordant directions of effect 
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(Fig. 2F). Among these, many were of known significance to LOAD, including TREM2, 

ICA1, VASP, MTMR3, GFAP, and GRIK1 (cross-sample effects of top up- and down-

regulated genes shown in Fig. 2G). At uncorrected p < 0.05, 1441 genes were significant 

in all three analyses, 1360 (94%) with concordant directions of effect. Cross-ancestry meta-

analysis found NPNT to be the top DE gene (p = 1.04 × 10−19). Among the LOAD-known 

genes, several were significantly DE, including FBXL7, TREM2, IQCK, RIN3, CD33, 
INPP5D, PTK2B, CLU, AD2AP, MEF2C and WWOX (full list in Table S5), with 43 

LOAD-known genes at least nominally DE.

We then aimed to identify genes with ancestry-specific effects by comparing differential 

expression statistics between 1) CH vs. ROS/MAP, 2) CH vs. Mayo, and 3) ROS/MAP vs. 

Mayo, among the set of genes analyzed in all three studies (ngenes = 15,834). We observed 

a greater proportion of replicated signals between CH and Mayo (1937 in common out of 

2588 in CH = 75% replication; expected overlap = 1511, overlap p = 7.8 × 10−81) than 

between CH and ROS/MAP (450/2588 = 17% replication; expected overlap = 315, overlap 

p = 1.3 × 10−17). Consistently, pairwise Pearson correlations of the three study’s t-statistics 

revealed moderate positive relationships (CH vs. Mayo r = 0.57, C. I.99% = [0.56,0.59]; CH 

vs. ROS/MAP r = 0.47, C.I.99% = [0.46,0.49]; ROS/MAP vs. Mayo r = 0.46, C.I.99% = 

[0.45,0.48]) (Fig. S5). There were 118 individual genes with significant effects in CH (pFDR 

< 0.05) and an opposite direction of effect in both Mayo and ROS/MAP (top 10 over- and 

under-expressed shown in Table S6).

2.3. Identification of ancestry-discordant and –concordant LOAD-related biological 
processes

To harness the full sets of ranked summary statistics for differential expression in all 

three analyses, we calculated the pairwise product of t-statistics (“tprod”) for each gene 

between each pair of analyses. This metric provides a transcriptome-wide ranked measure 

of similarity in expression magnitude and direction between samples, and was used as input 

for rank-based gene set enrichment tests. Using this approach, we identified 20 unique, 

semantically non-redundant biological processes with significant ancestry-discordant or 

-concordant LOAD-related effects in at least one cross-sample comparison (Fig. 3A). CH 

vs. Mayo (the comparison with the greatest number of discordant (n = 5) and concordant 

(n = 11) gene sets): discordant processes included those related to transcription and 

translation, whereas concordant processes included those related to cellular metabolism, 

immune response, synaptic transmission, and biomineralization. Notably, the “response 

to beta-amyloid” (pFDR = 0.013) process was also concordantly downregulated in both 

datasets, though it was not assigned a dispensability score of 0 by REVIGO (disp = 

0.07). Similar themes emerged for both the CH vs. ROS/MAP and ROS/MAP vs. Mayo 

comparisons, where ribosomal genes were again found to be enriched for discordant effects 

and neuronal genes for concordant effect, though concordant signals between ROS/MAP 

and Mayo also included exocrine system development (Fig. 3A,B). Importantly, several of 

the identified GO groups across sample comparisons had strong overlap in gene identity 

(S7 Figure), with a core set of 78 genes highly overrepresented in protein localization, viral 

transcription, and translational initiation categories driving discordant effects.
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2.4. Weighted Gene Co-Expression Network Analysis (WGCNA)

Moving beyond the individual gene level to gene networks, we performed consensus co-

expression network analyses on all three datasets to understand the degree of shared and 

distinct network architecture among CH and NHW transcriptomes. A total of 35 discrete 

consensus gene modules were identified across CH and NHW samples, ranging from 51 

to 2715 genes in size (Fig. 4A; Table S7), with 16 modules significantly enriched for at 

least one biological process (Table S8). Association tests of module eigengenes with LOAD 

in each dataset revealed largely conserved network-level effects, where CH vs. ROS/MAP 

effects were most cohesive (r = 0.81, C.I.95% = [0.65,0.90]), followed by Mayo vs. CH (r 
= 0.68, C.I.95% = [0.45,0.83]) and Mayo vs. ROS/MAP (r = 0.56, C.I.95% = [0.28,0.75]). 

Several modules with concordant and discordant LOAD associations were identified (Fig. 

4B–E; full results in Table S9), among which the blue concordant module was enriched for 

mitochondrial genes. Further, the discordant pink module (significantly over-expressed in 

CH, but under-expressed in Mayo) largely represented ribosomal genes (“SRP-dependent 

cotranslational protein targeting to membrane” pFDR = 7.0 × 10−80).

2.5. Comparison of bulk RNAseq to single cell transcriptomics

To localize our previous findings to specific brain cell types, we analyzed high-depth 

single-nucleus RNAseq data (snRNAseq) from entorhinal cortex (EC) and superior frontal 

gyrus (SFG) (Leng et al., 2021). Following clustering, we determined seven major 

cell types: astroglia, microglia, inhibitory neurons, excitatory neurons, oligodendrocytes, 

oligodendrocyte progenitors and endothelia (Fig. 5A, B). We then performed differential 

expression analysis between AD cases and controls (Braak stage 6 versus Braak stage 0, 

full results for EC per cell type in Table S10) within each cell type cluster separately 

and cross-referenced these results with our bulk brain-based findings. Regarding the cross-

ancestry meta-analysis, 1050 genes were gene-wide significant (p < 1 × 10−6; Table S8): 

938 of these genes were expressed in at least 1 cell type in the scRNA-seq, while 829 

genes were differentially expressed (DEGs) in at least one cell type in the single cell (Fig. 

5D). Excitatory neurons (ExN) showed 679 DEGs (64.7% of the GWA genes in Table S8), 

followed by astroglia (AG, 636 DEGs, 60.1%), inhibitory neurons (InN, 564 DEGs, 53.7%), 

oligodendrocytes (OD, 551 DEGs, 52.5%), oligodendrocyte progenitors (OPC, 543 DEGs, 

51.7%), microglia (MG, 341 DEGs, 32.5%), and endothelia (EN, 93 DEGs, 8.9%) (Fig. 5D). 

These genes included the top hit NPNT (AG, InN, OPC, ExN). In addition, 69 out of 75 

known LOAD-associated genes were also differentially expressed in at least one cell type 

in our single-nucleus analysis (Fig. 5C), including SORL1, ABCA7, PLCG2, CLU, FBXL7, 
UNC5C. For instance, ABCA7 was found DE in neurons only while FBXL7 and IQCK 
were differently expressed in all cell types but microglia. Finally, GYPC (top DE gene in CH 

transcriptome) was also found upregulated in astroglia (p = 0.012), microglia (p = 0,009), 

OPC (p = 3.9 × 10−6), excitatory neurons (p = 2.2 × 10−8).

3. Discussion

To our knowledge, this is the first investigation of gene expression from postmortem LOAD 

brain in CH individuals. Understanding ancestry-specific molecular profiles of LOAD brain 

tissue is a first step toward developing interventions effective in non-European Caucasian 
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high-risk populations. We report over 2000 genes differentially expressed in LOAD brain 

vs. controls within the CH cohort, many with known relevance to LOAD pathophysiology. 

For example, the top up-regulated gene was GYPC, or glycophorin C, which is found 

upregulated in human LOAD microglia (Srinivasan et al., 2020) (notably, this gene is also 

nominally significant in both ROS/MAP and Mayo; p = 0.003, p = 0.0003 respectively). In 

our single-cell analyses, we consistently found this gene upregulated in astroglia, microglia, 

oligodendrocyte progenitors and excitatory neurons (Table S9). Up-regulated genes in CH 

were found significantly enriched for several GWAS catalog traits, including “late onset 

Alzheimer’s disease” (pFDR = 0.03) and “intraocular pressure” (pFDR = 5.6 × 10−3). The 

latter is a condition associated with open-angle glaucoma, which shows higher prevalence in 

Hispanics than NHW (Grosvenor and Hennis, 2011; Quigley et al., 2001) as well as overlaps 

with genetic risk for LOAD across multiple populations (Gharahkhani et al., 2020).

Our results show substantial overlap in LOAD-related genes between CH and NHW - 

particularly when comparing same brain region (i.e. in temporal cortex; CH vs. Mayo). This 

higher concordance suggests that differences in LOAD-related gene expression patterns are 

greater between sampled brain regions than between ancestries. This degree of inter-regional 

concordance mirrors recent findings of differential gene expression across multiple brain 

regions in LOAD (Patel et al., 2019) and Schizophrenia (Collado-Torres et al., 2019). 

Several genes were consistently differentially expressed across cohorts: among the most 

significant, many were LOAD known-loci. Notably, BACE2, the lesser known homolog 

(Wang et al., 2019, p. 2) of the LOAD-associated β-secretase enzyme BACE1, was the 

eighth most strongly overexpressed gene in our study (pFDR = 4 × 10−5). Most importantly, 

we found the known CH GWAS-implicated LOAD risk gene, FBXL7 (Tosto et al., 2015a), 

overexpressed in LOAD at FDR-corrected pFDR < 0.05 in all three samples. At the pathways 

level, those related to immune cell proliferation, cell killing, and neurotransmitter secretion 

were found overlapping.

In contrast, among the strongest ancestry-specific genes was CSPG4 (see Table S6), a 

chondroitin sulfate proteoglycan (also known as neuron-glial antigen 2) which is expressed 

in oligodendrocyte precursor cells and a subpopulation of NG2+ astrocytes, has been 

strongly linked to LOAD pathology in humans and mice (Nielsen et al., 2013; Vanzulli 

et al., 2020), and harbors rare genetic variants in Central American/Hispanic families linked 

to schizophrenia (de Vrij et al., 2019). Core genes that were increased in LOAD in CH, but 

decreased in NHW, suggested ancestry-driven differences in the activation of translational 

machinery in LOAD. Ancestry-specific enrichment analyses highlighted roles of ribosomal 

genes and those involved in protein synthesis and trafficking, which are emerging as robust 

and important markers of LOAD pathogenesis (Garcia-Esparcia et al., 2017; Ghosh et al., 

2020; Grothe et al., 2018; Hernández-Ortega et al., 2016; Patel et al., 2020; Rasmussen 

et al., 2015; Shigemizu et al., 2020). We speculate that (SRP)-dependent protein targeting 

may be disproportionately perturbed in CH patients, given the strong population-specific 

enrichment in both the single gene and network co-expression analyses. Intriguingly, 

SRP-dependent genes are strongly dysregulated in periodontitis-affected periodontal tissue 

(Lundmark et al., 2018). The main driver of periodontitis pathogenesis, P. gingivalis, is 

known to secrete gingipains which have been linked to LOAD pathogenesis in mice 

(Ilievski et al., 2018) and humans (Dominy et al., 2019). This connection is re-enforced 
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by the significant enrichment of the GWAS catalog periodontitis gene set in our CH LOAD-

upregulated genes. Notably, nephronectin, coded by the NPNT gene (the top DE gene in our 

cross-ancestral meta-analysis) has been shown to have a critical role in human dental pulp 

stem cells (Tang and Saito, 2017) and is a top ranking gene in large AD proteomic studies 

(Bai et al., 2020).

Among our top results, the “protein localization to endoplasmic reticulum” GO group was 

unanimously enriched in discordantly LOAD-related genes, whether comparing between 

ancestry, between sampled brain regions, or both ancestry and region (Fig. 3A). Notably, 

this enrichment was most significant in the between ancestry comparison (same brain 

region; CH vs. Mayo), highlighting a hierarchy of effects for protein trafficking and 

related biological processes (e.g. “translational initiation” and “viral transcription; see Fig. 

S7 for overlap) between the three cohorts. In CH, these genes are largely up-regulated, 

whereas in Mayo (NHW), these genes are downregulated. While there is moderate trend 

toward downregulation in ROS/MAP (also NHW), the overall signal driving the strongest 

enrichment appears to be driven by the unique increases in protein trafficking genes in 

the CH cohort. While this result is difficult to contextualize given the lack of comparable 

CH samples, previous work has demonstrated that the effects of LOAD biomarkers (e.g. 

CSF tau, CSF IL-9, MRI-based functional connectivity) may be strongly attenuated or even 

reversed in direction between NHW and African American populations (Babulal et al., 

2019; Howell et al., 2017; Wharton et al., 2019). Pilot analyses (n = 9 AA; n = 11 NHW) 

from postmortem brain has also showed over 180 proteins with significant race x LOAD 

diagnosis interactions, pointing again to ancestry discordant molecular signatures of LOAD 

and motivating future multi-ancestry ‘omic investigations (Stepler et al., 2020).

Bulk RNA sequencing is a powerful method for determining tissue-level differences in 

gene abundance. However, is incapable of determining cell type-specific changes in a 

definitive manner. In our single-nucleus analyses, we validated over 82% of the genes 

identified by our cross-ancestry meta-analysis, including the top hit, NPNT. This gene was 

found upregulated in astroglia, oligodendrocyte progenitors and neurons. Several genes with 

known significant to LOAD showed high consistency between our bulk and scRNAseq 

data. For example, ABCA7 was found downregulated in neurons only and MS4A6A was 

found differentially expressed in microglia. UNC5C was found upregulated in all major 

cell types, with the exception of endothelial cells, where it was found to be downregulated. 

CLU (found to be upregulated in bulk analyses) was upregulated in endothelial cells and 

oligodendrocyte precursors, but downregulated in other cell types. This suggests that these 

genes may have different roles in cell-specific physiology. In contrast, FBXL7 – which has 

a genome-wide significant risk variant for LOAD in CH individuals (Tosto et al., 2015a) 

- was found upregulated in nearly all cell types. Our results demonstrate that comparison 

between bulk and single cell sequencing data can provide useful information on cell types 

that differentially express genes of interest. This approach can refine biological hypotheses 

on the functional relevance of these genes to LOAD pathophysiology.

Key limitations in this study include different methods of tissue ascertainment and study 

design that ultimately impact the results; ROS and MAP are community-based, prospective 

cohort studies, whereas the CH and Mayo samples are case-control designs selected for 
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diagnosis. Additionally, CH samples were not scanned for rare LOAD mutations using 

whole genome sequencing, though PSEN1 carriers were identified by imputation or 

brain-bank record (see Supplementary file). CH specifically are a relatively small brains 

sample collected over several decades; the difficulties of ascertaining brains in this specific 

population have mired the availability of large sample sizes of tissue collected over shorter 

periods (i.e. higher quality). Hispanics tend to not participate in either organ donation in 

general, or brain donation more specifically, to the same extent as non-Hispanic Whites 

(NHW) (Frates and Garcia Bohrer, 2002). This resulted in samples with relatively low 

RNA quality (median RIN = 4.5). Nevertheless, by performing ribosomal RNA depletion 

prior to sequencing, we ensured that the impact of low RNA quality was mitigated. In 

fact, ribosomal RNA depletion has been shown to perform very well (Kumar et al., 2017; 

Schuierer et al., 2017) at amounts far below recommendation and over a wide range of intact 

and degraded material. Despite these challenges, our analyses proved reliable by showing a 

moderate concordance between results from all three samples at the genome-wide scale. We 

were also able to identify many well-known LOAD-associated loci from previous GWAS 

and sequencing studies such as FBXL7 (previously identified by a CH-specific GWAS from 

our group (Tosto et al., 2015a)). Finally, we note that differences in age at death between 

LOAD and non-LOAD participants in the ROS/MAP and CH cohorts were observed (Table 

1), meaning that correction for age at death in linear modelling may have partially accounted 

for a small portion of LOAD-specific differences between groups.

In sum, we performed RNA-sequencing on postmortem brain from a small sample of CH 

elderly and two large independent NHW cohorts, ultimately identifying numerous candidate 

genes and biological processes that are consistently dysregulated in LOAD across ancestry 

or show ancestry-specific dysregulation. Among those genes showing the strongest ancestry-

specific effects, we found significant enrichment for ribosomal pathways. Further work in 

large admixed cohorts will permit a deeper understanding of ancestry-specific mechanisms 

that may be used to predict risk, onset of pathology, and potentially provide precision 

treatment options.

4. Materials and methods

4.1. Caribbean Hispanic cohort

We processed postmortem temporal cortex (TCX) tissue from 45 unrelated self-reported CH 

individuals ascertained from the New York Brain Bank (NYBB) at Columbia University 

(New York, NY, USA). This research clinic referral-based brain bank consists of over 

600 brains from autopsies performed between 1989 and 2016. Cases were selected if 

age > 50 years old, and neuropathologically defined LOAD or control without any 

neuropathological diagnosis. The protocol was approved by the institutional review boards 

of the New York State Psychiatric Institute and Columbia University. Details of the tissue 

preparation and neuropathological assessment are reported in the Supplementary file and 

extensively described elsewhere (Vonsattel et al., 1995, 2008). RNA-sequencing methods, 

expression quantification, and initial quality control are reported in the Supplementary file. 

Whole-genotyping and admixture estimation has been extensively described in a recent 

publication(Sariya et al., 2021) from our group and also reported in the Supplementary file.
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4.2. Non-Hispanic White (NHW) cohorts

We included in this study two NHW cohorts: 1) The Religious Orders Study and 

Memory and Aging Project (ROS/MAP) and 2) the Mayo Clinic RNAseq cohort. The 

sample characteristics of the ROS/MAP cohort subset studied here have been published in 

detail elsewhere (Bennett et al., 2018). Briefly, RNA sequencing data was analyzed from 

postmortem dorsolateral prefrontal cortex (DLPFC) of 595 subjects (Bennett et al., 2018). 

After quality control (QC; see Supplementary file), 583 subjects remained (nAD = 354, 

nnon-AD = 229). The Mayo RNAseq cohort has also been described in detail (Allen et al., 

2018; Allen et al., 2016). After QC (see Supplementary file), 148 subjects remained (nAD = 

80, nnon-AD = 68). Protocols were approved by the Mayo Clinic Institutional Review Board 

and all subjects or next of kin provided informed consent. Neuropathological evaluation 

details and RNAseq methods are reported in the Supplementary file.

4.3. Ethics approval and consent to participate

For the Caribbean-Hispanic Alzheimer’s Disease Research Centre (ADRC) New York Brain 

Bank dataset, the protocol was approved by the institutional review boards of the New 

York State Psychiatric Institute and Columbia University. For the Religious Orders Study 

and Memory and Aging Project, all study participants provided informed consent and both 

studies were approved by the Rush University Institutional Review Board. For the Mayo 

dataset, protocols were approved by the Mayo Clinic Institutional Review Board and all 

subjects or next of kin provided informed consent.

4.4. RNAseq processing and LOAD Transcriptome-wide differential expression analysis

Gene counts for all three cohorts were post-processed identically. Counts were read into R 

(v3.6.3) for processing with edgeR (Robinson et al., 2010) and limma/voom (Law et al., 

2014; Ritchie et al., 2015). TMM normalization values (using edgeR calcNormFactors) and 

mean-variance derived observational-level weights were then calculated for linear modelling 

using limma/voom. For differential expression analyses, the limma package ‘lmFit’ function 

was used to model log2(expected counts) as a linear function of pathological LOAD status, 

sequencing batch (brain bank source and flowcell included for Mayo), age, sex, RIN, 

postmortem interval (not available for the CH sample), percent of usable bases (not included 

for CH, as it was highly co-linear with RIN, and additional parameters were detrimental to 

model performance given small sample size), percent duplicated reads, median 3′ bias, and 

percent of mapped ribosomal bases. In CH models that included PSEN1 mutation carriers, 

a parameter was added to model its effect. Significance of the contrast between LOAD 

and non-LOAD status (LOAD vs. control for Mayo) was performed using empirical Bayes 

moderation (eBayes function).

For ROS/MAP, a stratified sensitivity analysis was performed to ensure that differences 

in the age range between ROS/MAP and CH samples did not impact our comparisons 

(Supplementary file). Further validation analyses were performed to ensure consistency 

of our differential expression analyses of ROS/MAP and Mayo cohorts with previously 

published work (Supplementary file).
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4.5. Differential expression cross-ancestry meta-analysis

We meta-analyzed results from the three transcriptome-wide differential expression analyses 

employing a fixed-effect model and using logFC and its standard error (SE) as inputs, 

consistently with previous studies of transcriptomics in LOAD (Patel et al., 2019). The SE 

was calculated from the logFC values for each gene, separately in each cohort, and used for 

standard meta-analysis using the R package “rmeta”. LogFC and se ensured that direction 

of effect was taken into consideration when performing the meta-analysis. Multiple testing 

correction was applied using the false discovery rate (FDR) method.

4.6. Cross-ancestry comparison of differential expression

To compare differential expression results from our CH and NHW sample analyses (i.e. 

ROS/MAP and Mayo), we identified genes with 1) ancestry-independent effects - i.e. 

those with replicated associations with LOAD across CH and NHW samples, and 2) 

ancestry-specific effects - i.e. those significant in CH and neither NHW samples. To 

incorporate directionality of effect, magnitude of effect, and effect standard error into our 

assessment of effect concordance and discordance across samples, we ranked genes by 

the product of their t-statistics (“tprod”) for association with AD, assigning the highest 

ranks to genes with the largest discrepancy in direction and effect size between ancestries 

(i.e. CH vs. Mayo and CH vs. ROS/MAP, separately). Thus, higher ranks indicated sample-

specific (“ancestry-discordant”) effects, whereas lower ranks indicated sample-nonspecific 

(“ancestry-concordant”) effects. To test the impact of gene inclusion criteria, effect statistic, 

and effect direction on inter-sample correlations, we performed a series of sensitivity 

analyses (Supplementary file and S6 Figure).

4.7. Functional enrichment analyses

To functionally characterize AD-associated genes in our CH DE analysis we used 

the Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA-

GWAS) GENE2FUNC online utility (https://fuma.ctglab.nl/gene2func/). We performed 

hypergeometric tests for gene set enrichment separately for genes significantly 

(transcriptome-wide FDR-adjusted p-value <0.05) up- and down-regulated in LOAD. For 

rank-based enrichment analyses of cross-sample concordant and discordant gene lists, 

an area under the curve (AUC) rank-based method was used, as implemented in the 

tmod R package (Weiner, 2020). Resulting significant GO groups (pFDR < 0.05) were 

consolidated to minimize semantic redundancy using the REVIGO tool (Supek et al., 

2011). For the presentation of results, we chose to select only GO terms with a REVIGO 

dispensability score of 0; this decision was made to provide the most succinct summary 

of an otherwise large number of enrichment results while retaining all major relevant 

pathways. Annotations were limited to those including between 10 and 200 tested genes. GO 

annotations were extracted from the org.Hs.eg.db and GO.db (version 3.10.0) R packages 

(Carlson, 2016a, 2016b). For gene co-expression modules, hypergeometric testing was used 

to evaluate functional enrichment, using the background universe of genes passing QC for 

consensus module analysis. For all three samples, genes assigned to each consensus module 

were tested for GO term enrichment including categories of biological processes, cellular 
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components, and molecular functions (Ashburner et al., 2000). FDR correction was used (q 
< 0.05) to determine significant enrichment.

4.8. Consensus Weighted Gene Co-Expression Network Analysis (WGCNA)

Consensus gene co-expression modules were defined across all three samples using 

Weighted Gene Co-Expression Analysis (WGCNA) (Zhang and Horvath, 2005) applied 

to batch- and covariate-corrected partial gene expression residuals (partial with respect to 

LOAD diagnosis). Detailed description of the method and non-default parameters used in 

the Supplementary file.

4.9. Comparison of bulk tissue results with single-nucleus RNA sequencing data from 
human brain

single-nucleus RNA sequencing data (n = 10) for human superior frontal gyrus (SFG) 

and entorhinal cortex (EC) samples were downloaded from the Gene Expression Omnibus 

repository under the following GEO ID; GSE147528 (Leng et al., 2021). After extensive 

QC, we used Seurat V3.1.5 (Hao et al., 2021) for further analyses as described in the 

Supplementary file. In total, 26 cell clusters (numbered from 0 to 25) were identified. We 

then generated heat maps and cell types were inferred based on the characteristic gene 

expression patterns. Major cell types were identified using the following markers (based on 

Leng et al., 2021): GFAP, SLC1A2 and AQP4 (astroglia); MBP and MOG (oligodendrocytes 

or OD); PDGFRA and SOX10 (oligondendrocyte precursors or OPC); CD74 and CX3CR1 
(microglia); SLC17A7 and CAMK2A (excitatory Neurons, or ExctN); GAD1 and GAD2 
(inhibitory Neurons or OD); CLND5 and FLT1 (endothelial cells or EndoCells). Details are 

provided in the Supplementary file. To identify the differentially expressed genes (DEGs), 

we compared cases (samples with Braak stage 6) vs. controls (Braak Stage 0) within each 

main cell type, across Entorhinal Cortex (EC) and superior frontal gyrus (SFG), using the 

FindMarker function in Seurat. To identify which cell types exhibited overlapping DEGs 

with our findings from bulk RNAseq, we selected experiment-wide significant (p-value <1.0 

× 10−6) from our cross-ancestry meta-analysis, and searched for differentially expressed 

genes (p < 0.05) in the single-nucleus experiment. We also perform the same investigation 

for LOAD known-genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

Some data used is currently available within online repositories, and some will be made 

available online at time of publication (as described in article).
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Fig. 1. 
Schematic showing study design and top results. CH = Caribbean Hispanic; con = non-

LOAD control; DLPFC = dorsolateral prefrontal cortex; FDR = false discovery rate; LOAD 

= late-onset Alzheimer’s disease; logFC = log fold-change; ROS/MAP = Religious Orders 

Study / Memory and Aging Project; WGCNA = weighted gene correlation network analysis. 

Created with BioRender.com.
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Fig. 2. 
Results of single-gene transcriptome-wide associations with LOAD in Caribbean-Hispanics 

and non-Hispanic Whites. Gene-level volcano plots for association of genes with LOAD 

status in A) genetically-confirmed CH subjects (n = 39), and two independent samples 

of non-Hispanic whites: B) ROS/MAP and C) the Mayo RNAseq cohort. The top ten 

significantly differentially expressed genes in each analysis are labeled. The Y-axes indicate 

two-sided −log10(p-values) for robust regression testing differential expression The X-axes 

indicate log2 fold-change in expression. D) Barplot showing the number of transcriptome-

wide FDR-significant (q < 0.05) differentially expressed genes in common between each 

pair of samples and across all three datasets. Green dots below each bar indicate which 

sets of significant genes are intersecting. Bar color indicates the p-value for hypergeometric 

testing of overlap probability (scale shown). E) The top 20 up- and top 20 down-regulated 

LOAD genes with significant, concordant effects across all three samples, ranked by 
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significance in the CH sample. The color is proportional to moderated t-statistics (blue 

for positive effect, or higher expression in LOAD, and red for negative effect, or lower 

expression in LOAD), with FDR-adjusted two-sided p-values labeled inside of tiles. DLPFC 

= dorsolateral prefrontal cortex source tissue; LogFC = log2 fold-change in expression; 

NHW = non-Hispanic White; TCX = temporal cortex source tissue.
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Fig. 3. 
Enrichment analyses for genes with concordant and discordant LOAD effects between 

ancestry and brain region tissue source. A) Barplot summarizing AUC-based GO enrichment 

analysis using tprod ranks for all FDR-significant GO terms with a REVIGO dispensability 

score of 0. The x-axes indicate the enrichment −log10 (two-sided p-values), with values 

above 0 indicating enrichment toward higher ranks (greater discordance of between-sample 

effect) and values below 0 indicating enrichment toward lower tanks (greater concordance of 

between-sample effect). B) Scatterplots for the top discordant (left column) and concordant 

(right column) groups from panel A for each sample contrast, showing the LOAD 

differential expression t-values for genes belonging to each enriched gene set within the 

context of all genes. Genes belonging to labeled GO sets in panel B are colored to match 

the barplot in panel A. CH = Caribbean-Hispanic; FDR = false discovery rate; GO = gene 

ontology; DLPFC = dorsolateral prefrontal cortex source tissue; ROS/MAP = Religious 

Orders Study and Memory and Aging Project; TCX = temporal cortex source tissue.
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Fig. 4. 
Consensus gene co-expression network module analysis with LOAD. A) Clustered 

dendrogram showing the common gene set hierarchical structure and consensus gene 

module definitions. Panels B–D show consensus module eigengene associations with LOAD 

(Pearson r) for all modules compared between pairwise sample combinations. Modules with 

concordant effects (pFDR < 0.05 with same direction of effect) in all three samples, or 

significantly discordant (pFDR < 0.05 in at least two samples but with opposite direction 

of effect), are labeled; six modules were significantly associated with LOAD in all three 

samples; greenyellow, brown, and royalblue modules were consistently downregulated, 

while the red, purple, and lightyellow modules were upregulated. In contrast, four 

modules showed significant but directionally discordant effects on LOAD when comparing 

CH to Mayo; salmon and lightcyan modules were significantly upregulated in CH but 

downregulated in Mayo, whereas black and cyan modules were downregulated in CH but 

upregulated in Mayo. Colors correspond to module definitions. CH = Caribbean-Hispanic; 

DLPFC = dorsolateral prefrontal cortex; ROS/MAP = Religious Orders Study and Memory 

and Aging Project; TCX = temporal cortex.
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Fig. 5. 
Secondary independent validation of the bulk RNA sequencing with single cell 

transcriptomics from human brains. (A) Clustering of single cell dataset in Leng et al., 2021 

(human brains, EC and SFG, AD cases versus controls; Braak stage 6 versus 0). 7 major 

cell types were identified as indicated. (B) tSNE plots for major cell type markers (only one 

out of many were shown) AQP4 for astroglia, PDGFRA for oligodendrocyte progenitors, 

CD74 for microglia, GAD1 for inhibitory neurons, MBP for oligodendrocytes, SLC17A7 
for excitatory neurons. (C) Genes in Table 8 were run against the single cell datasets and 

differentially expressed genes in various cell types in entorhinal cortex (EC) and superior 

frontal gyrus (SFG) of human brains with and without 17 CE genes are shown for their 

differential gene expression in major cell types. Green: upregulation, red: downregulation, 

left hemisphere: EC, right hemisphere: SFG. No color indicates no significant differential 

expression. (D) Comparison of GWA genes (Table 8) in single cell dataset (human EC, 

Braak stage 6 vs 0). 869 genes (82.6% of the initially selected GWA genes) were validated 

for their differential expression in human EC in at least 1 cell type. Cell types and the 

number/percentage of the initially selected GWA genes are shown for astroglia (AG), 
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microglia (MG), inhibitory neurons (InN), excitatory neurons (ExN), oligodendrocytes 

(OD), oligodendrocyte progenitors (OPC), and endothelia (EN).
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Table 1

Sample Demographics for Caribbean-Hispanic and Non-Hispanic White RNAseq Samples.

Sample Non-LOAD LOAD P-value

CH (n = 16) (n = 23)

sex (M/F) 8 M, 8F 7M, 16F 0.32

age 66.9 (11.8) 79 (10.9) 0.0026

RIN 5.8 (1.5) 4.2 (1.5) 0.0024

PSEN1 carriers (+/−) 16− 5+/18− 0.07

Library size, millions 16.2 (4.1) 15.6 (3.8) 0.65

ROS/MAP (NHW) (n = 229) (n = 354)

sex (M/F) 88 M, 141F 113 M, 241F 0.11

age 87 (7.2) 90.1 (5.9) 7.7 × 10−8

RIN 7.2 (1.1) 7 (0.9) 0.015

PMI 7.1 (4.1) 7.6 (5.2) 0.18

Library size, millions 30.1 (13.5) 26.5 (8.8) 4.9 × 10−4

Mayo (NHW) (n = 68) (n = 80)

sex (M/F) 33 M, 35F 31 M, 49F 0.25

age 82.9 (8.4) 82.6 (7.7) 0.84

RIN 7.6 (1) 8.6 (0.6) 1.4 × 10−9

PMI 6.5 (6.5) 6.7 (4.3) 0.84

Library size, millions 40.9 (11.1) 45.4 (10) 0.013

Note:

*
p-values correspond to those from two-sided, two-sample t-tests for continuous measures (age, RIN, library size, and PMI) and from two-sided 

Fisher’s exact tests for dichotomous measures (sex and PSEN1 G206A mutation status).

Summary measures for continuous outcomes are means (standard deviations in brackets). RIN = RNA integrity number; LOAD = late-onset 
Alzheimer’s disease; M = male; F = female; PMI = postmortem interval; CH = Caribbean-Hispanic (all genetically-confirmed, three-way admixed 
subjects); NHW = non-Hispanic white; ROS/MAP = Religious Orders Study / Memory and Aging Project; PMI = postmortem interval.
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