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Abstract

Odor plumes in the wild are spatially complex and rapidly fluctuating structures carried by 

turbulent airflows1–4. To successfully navigate plumes in search of food and mates, insects must 

extract and integrate multiple features of the odor signal, including odor identity5, intensity6, and 

timing6–12. Effective navigation requires balancing these multiple streams of olfactory information 

and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. 

Studies dating back a century have indicated that, of these many sensory inputs, the wind provides 

the main directional cue in turbulent plumes, leading to the longstanding model of insect odor 

navigation as odor-elicited upwind motion6,8–12,14,15. Here, we show that Drosophila shape their 

navigational decisions using an additional directional cue – the direction of motion of odors – 
which they detect using temporal correlations in the odor signal between their two antennae. 

Using a high-resolution virtual reality paradigm to deliver spatiotemporally complex fictive odors 

to freely-walking flies, we demonstrate that such odor direction sensing employs algorithms 

analogous to those in visual direction sensing16. Combining simulations, theory, and experiments, 

we show that odor motion contains valuable directional information absent from the airflow alone, 

and that both Drosophila and virtual agents are aided by that information in navigating naturalistic 
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plumes. The generality of our findings suggests that odor direction sensing may exist throughout 

the animal kingdom and could improve olfactory robot navigation in uncertain environments.

Odor motion sensing without wind

Like many animals, insects sense odors using two spatially separated sensors – their 

antennae. This pair of sensors can detect local concentration differences, which encode odor 

concentration gradients and allow flies to navigate simple plumes such as steady ribbons, 

where gradients are resolvable and informative17,18. But the relevance of bilateral sensing 

for natural plume navigation is less clear, since in turbulent flows odor gradients fluctuate 

rapidly and do not reliably point toward the source3.

Here, we propose a distinct role for bilateral sensing: inferring the direction of motion of 

odor signals. To intuit the “motion” of an odor signal, picture smoke emanating from a 

chimney on a windy day. The dispersing smoke plume quickly breaks into disconnected 

filaments, and while these filaments move in seemingly random directions, their direction 

of motion at some instant is obvious by eye. We can think of the motion of odors (which 

are invisible) as analogous to the motion of these smoke filaments. Importantly, due to the 

dispersive effects of turbulence and molecular diffusion, the filaments’ direction can differ 

from the wind19, thereby providing a directional cue distinct from the local airflow.

To investigate whether flies sense and respond to odor motion, we first re-analyzed a dataset 

of walking Drosophila navigating a complex, visualizable odor plume whose odor statistics 

resemble those in turbulent flows10 (Fig. 1a). In this plume, gradients can be randomly 

oriented relative to the source, and often differ substantially from the direction of odor 

motion (Fig. 1a; green and magenta vectors). Since the odor is visible, we can quantify 

the odor signal encountered during navigation, as well as infer the projections across the 

antennae of the odor gradient and of the odor velocity (which encodes the direction of odor 

motion) (Fig. 1b and Extended Data Fig. 1), while simultaneously measuring fly behavior 

(Fig. 1b). Odor velocity was estimated by cross-correlating the odor concentration in the 

left and right antenna regions across subsequent frames (Methods), similar to methods that 

compute velocity using tracer particles in fluids.

Insects turn upwind when encountering odor signals6,9,10,15, which we verified for flies 

oriented slightly away from the upwind direction (blue and red curves in Fig. 1c). For flies 

already oriented upwind, there was no turning bias relative to the intensity or gradient of 

the odor (Fig. 1c–d). Strikingly, their turn bias did correlate significantly with odor velocity 
(Fig. 1e), suggesting that flies respond to the direction of odor motion in the absence of 

directional information from the wind.

Still, since odors are transported by the airflow, odor motion and wind motion are inherently 

correlated. To break this correlation, we turned to optogenetic stimulation of olfactory 

receptor neurons (ORNs) using the channelrhodopsin Chrimson20,21. We generated spatially 

complex, dynamic fictive odor stimuli by using a DMD projector to display light patterns22 

onto blind, freely-walking flies in the 27×17 cm2 arena used in Fig 1 (Fig. 2a). This 

setup enabled optogenetic stimulation with sufficient spatial (< 300 um) and temporal 
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(< 6 ms) precision to hit fly antennae independently. We verified with electrophysiology 

and behavioral controls that optogenetic stimulation of Orco-expressing ORNs acts as an 

attractive fictive odor21 (Methods, Extended Data Figs. 2a–c), and that flies walking either 

on the bottom or upside down on the top glass responded similarly to the signal (Extended 

Data Fig. 2d). Using this setup, we first presented a simple stimulus consisting of traveling 

fictive odors bars in the absence of wind. Flies oriented perpendicular to the bar motion 

receive differential stimulation across their antennae when the edges of each bar pass 

across them. If flies responded selectively to the direction of fictive odor motion, we would 

expect opposing behaviors for bars traveling rightward versus leftward. We thus presented 

5mm-wide bars traveling 15 mm/s either left or right, in 5s-long blocks followed by a 

5s-long block of no stimulus (Fig. 2b). Indeed, right-moving bars elicited a net displacement 

of fly position to the left, and vice versa (Fig. 2c). Further, flies oriented against the 

direction of motion during the 5s stimulus block, but exhibited no asymmetry during the 5s 

blank (Fig. 2d). Notably, both of these behaviors were absent in Orco>Chrimson flies with 

one antenna ablated (Extended Data Fig. 3a–b), but were preserved when Chrimson was 

expressed only in ORNs expressing the receptor Or42b (Extended Data Fig. 3c–d), which is 

known to drive olfactory attraction to vinegar23 and represents a small fraction of all ORNs. 

These experiments suggested that flies’ olfactory responses were direction selective, and that 

direction selectivity is enabled by bilateral sensing from the two antennae. The key indicator 

of direction selectivity was counterturning against bar motion – a reasonable response for 

locating an odor source emitting propagating odor signals.

Direction sensing at ON and OFF edges

Since insects and vertebrates both detect spatial gradients of odor concentration and use 

them to navigate18,24, we wondered whether gradient sensing could explain the directional 

biases we observed. We repeated the experiments above with wider (30–45 mm) bars, which 

allowed us to quantify responses to each edge individually — the ON edge, when the fictive 

odor first passes over the fly, and the OFF edge, when fictive odor leaves the fly (Fig. 

2e). Responses to these stimuli would clearly distinguish direction selectivity from gradient 

sensing, since gradient sensing would result in opposing behaviors at the ON and OFF edges 

while direction sensing responses would be the same (Fig. 2e). We calculated fly turning 

bias, defined as the sign of the cumulative change in orientation between 150 and 300 ms 

after the edge hit, as a function of the fly’s orientation relative to the moving edge. For 

both ON and OFF edges moving at 10–15 mm/s, these plots had strong positive peaks for 

fly’s oriented parallel to the edge (i.e. when the two antennae were stimulated differentially), 

indicating that flies are responding to the odor motion, not the spatial gradient (Fig. 2f). 

Meanwhile, the responses were flat for control flies (Fig. 2f and Extended Data Fig. 3e). 

Repeating this for various bar speeds, we found strong direction selectivity for bars moving 

at 10 and 15 mm/s, while for higher speeds (20–30 mm/s), the ON response was significant 

but reduced and the OFF response was abolished (Extended Data Fig. 3e). At slower speeds 

1–5 mm/s, the ON response was still present, but the OFF response was now slightly 

negative, though not statistically significant (Extended Data Fig. 3e). We attributed this to 

gradient sensing in the slow edges, which are nearly static odor environments: odor direction 

and gradients are parallel for ON edges but antiparallel for OFF edges (Fig. 2e), so the 
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behavioral responses to motion and gradients compound for the former but cancel for the 

latter. Finally, similar directional turning responses for both ON and OFF edges were present 

in Or42b>Chrimson flies (Extended Data Fig. 3f), indicating direction selectivity at the 

level of a single ORN type. These observations were robust to changes in the behavioral 

integration window (Extended Data Fig. 3g), consistent with previously reported reaction 

times for ON responses9,25.

Motion sensing sums with wind sensing

Insects bias their heading upwind in the presence of attractive odors6–8,10,12,15, but the 

role of odor motion in this upwind response is unknown. Our patterned optogenetic setup 

allowed us to investigate this by independently controlling the wind and odor motion, which 

is otherwise prohibitive in natural environments. In our earlier experiments, we quantified 

turning bias in response to odor motion, but without wind (Fig. 2). In the presence of 

both wind and odor motion, we reasoned that fly responses would reflect some sort of 

summation of the responses to the isolated stimuli. We therefore presented fictive odors 

in the presence of wind, but without any motion of the odor. To remove odor motion, we 

flowed laminar wind and flashed the entire arena with light for 2.5 seconds, followed by 2.5 

seconds of no stimulus (Fig. 3a). This stimulates both antennae simultaneously, removing 

bilateral information — an artificial stimulus that is difficult to deliver with natural odors. 

In this situation, flies bias their heading upwind (against the wind) at the onset of the flash 

(Fig. 3b), reminiscent of their tendency to turn “against” the odor motion in the absence of 

wind (Fig. 2f and reproduced in Fig. 3c). The similarity of turning responses to wind and 

odor motion separately is illustrated by fitting the turning bias versus orientation plots to 

a sinusoid (Fig. 3b–c; dashed lines). In both cases, the plots are well fit by Acosθ, where 

Awind = −0.40 and Aodor = −0.30.

These simple functional forms encouraged us to consider a simple hypothesis for how flies 

respond to fictive odor edges moving at a given angle relative to the wind. We hypothesized 

that the response to the combined signal is a sum of the bar motion and odor motion 

responses. This hypothesis predicts that when the odor motion direction and wind direction 

are aligned, the peak response should increase in magnitude and remain centered at 0° and 

180° (Fig. 3d; first row). If odor and wind motion oppose each other, these peaks should 

nearly cancel (Fig. 3d; middle row). Finally, in the interesting case of wind and odor velocity 

perpendicular to each other, the peaks should shift leftward to ~145° and ~325° (Fig. 

3d; bottom row). To test these predictions, we presented fictive odor bars either parallel, 

antiparallel, or perpendicular to 150 mm/s laminar wind. When the wind and odor were 

aligned, the turning bias at ON edges was nearly perfectly fit by the additive prediction (Fig. 

3e). The antiparallel motion of bars and odors was also fit well – extrema remained at 0° 

and 180°, though the cancellation overshot slightly. Notably, the response to perpendicularly 

oriented wind and odor reproduced the shift of the response curve peak from ~180° to 

145°, and nearly reproduced the shift of the minimum from ~360° to ~325°. These results 

suggest that odor direction selective responses integrate with directional information from 

the wind in a largely, but not entirely, additive fashion. Moreover, universally observed 

upwind turning responses are more than naive mechanosensory reactions triggered by the 

presence of odor – they can be enhanced and even cancelled by directional information 
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from the odor itself. Interestingly, responses to OFF edges in the presence of laminar wind 

were very weak, suggesting other nonlinear interactions between the loss of odor and wind 

(Extended Data Fig. 4).

Odor motion sensing is correlation-based

We next tested the extent to which our observations were consistent with elementary motion 

detection algorithms. We began by analyzing our data for moving bars in the absence of 

wind (Fig. 2). Odor motion creates a difference in latency ΔT between the stimulation 

of the two spatially separated antennae, the sign and magnitude of which determines the 

output of direction-selective models such as the classical Hassenstein-Reichardt correlator 

(HRC)16. In our assay, ΔT can be inferred from the velocity of the bars relative to the flies 

using simple geometric considerations (Extended Data Fig. 5a; Methods). This allows us 

to express turning bias as a function of ΔT, thereby directly testing the predictions of an 

HRC model. In a simple rightward-selective HRC with two antennal inputs (Fig. 4a), a 

signal from the left antenna is multiplied with the delayed signal from the right antenna, 

where the delay is implemented as an exponential filter e−t/τ. Subtracting this product from a 

mirror-symmetric computation gives the detector output r(t). We modeled the turning bias as 

the time integral of r(t), for which the HRC predicts a turning bias proportional to 1 − e−ΔT/τ 

for rightward moving edges. Thus, plotting the turning bias against ΔT would allow us to 

extract the filter time constant τ for this model, revealing the timescale of olfactory motion 

detection. Pooling the data from both ON and OFF edges at 10–15 mm/s in the absence of 

wind (i.e., data in Fig. 2f), we found that the prediction was fit well, with filter timescales in 

the range τ = 25 ± 12 ms (Fig. 4b). Though this estimate is approximate and limited by the 

temporal and spatial resolution of the projector, it is notable that the timescale is comparable 

to those of visual motion detection in Drosophila26 and humans27.

Elementary motion detection algorithms respond fundamentally to correlations in the signal 

over space and time. To better compare behavior to the predictions of the HRC, we moved 

beyond ON and OFF odor edges and turned to correlated noise stimuli, which have been 

used to characterize direction selective computations in fly vision26. A snapshot of a 

correlated noise stimuli is a pattern of 1-pixel wide bars, each of which is either light or dark 

(Fig. 4c). The pattern updates in time in such a way that it contains well-defined positive 

or negative correlations between adjacent pixels. Intuitively, a positive correlation in the +x 
direction means that light bar at a given x is likely – but not guaranteed -- to be proceeded 

in the subsequent frame by a light bar 1 pixel to its right; visually, this would appear to 

be a rightward moving pattern. To enhance the strength of the odor motion behavior, we 

simultaneously flowed laminar wind as in the experiments in Fig. 3. Thus, there were four 

types of correlated noise stimuli, corresponding to the possible combinations of correlation 

displacement (with or against the wind) and parity (negative or positive) (Fig. 4d), each of 

which is uniquely defined by its correlation function C(Δx,Δt) (Extended Data Fig. 5b).

In this experiment, turning responses to positively-correlated noise stimuli mimicked those 

to moving bars: upwind turning was suppressed when the correlation displacement opposed 

the wind direction (Fig. 4e; first plot). Importantly, spatial gradients in these stimuli quickly 

average to zero, so only a computation sensitive to spatiotemporal correlations — and not 

Kadakia et al. Page 5

Nature. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gradients — could account for behavioral suppression when the correlation displacement 

and wind were misaligned. Repeating for negative correlations, we found that upwind 

turning was suppressed when the correlation and wind were aligned (Fig. 4e; second plot). 

Notably, this response is also consistent with a correlation-based algorithm, which predicts 

a reversal in the perceived direction of motion when the correlation changes sign26. In 

fact, this “reverse phi” phenomenon is a common visual illusion – a feature of correlation-

based algorithms – that has been observed and investigated across several species26,28–30, 

including humans31. Subtracting the with-wind and against-wind responses for each polarity 

indicated clearly that the reverse phi prediction was satisfied (Fig. 4f).

We corroborated our results using gliders, another class of correlated stimuli32,33. Visually, 

a glider is a random pattern of light and dark bars moving in one direction (Extended Data 

Fig. 5c). Unlike correlated noise, the bars are correlated not only with a neighboring bar 

in the subsequent frame, but also with more distant bars at later times. However, unlike 

the weaker magnitude correlations for correlated noise, the correlations in glider stimuli 

are perfect (Extended Data Fig. 5d, see Methods), so we expected similar trends as before, 

but with larger effect sizes. For positively correlated gliders, we found similar trends as 

with correlated noise, but much larger separations between the with-wind and against-wind 

responses (Extended Data Fig. 5e). We were also able to explore a range of correlation times 

by adjusting the frame update times. For update times in the range of 17–30 ms, we find 

direction selective responses, while for shorter update times (11 ms), direction selectivity 

disappeared (Extended Data Fig. 5f). Interestingly, the maximum separation of with-wind 

and against-wind responses was with a frame update of 17–22 ms, consistent with the 

estimate of the HRC filter time constant using moving bars (Fig. 4b).

For flies to sense these correlations in our assay, their antennae must be optogenetically 

stimulated by distinct pixels. We satisfied this requirement by mounting the projector such 

that the x-pixel width (~290 μm) approximated the D. melanogaster antennal separation 

(Extended Data Fig. 5g). We predicted that effects would also reduce for bars wider than 

the antennal separation, since antennae were less likely to be stimulated independently. 

Indeed, when we repeated the experiments with the bar width doubled, we found no 

significant differences between with-wind and against-wind responses (Extended Data 

Fig. 5h). Together, these data suggest that Drosophila odor direction sensing employs a 

correlation-sensitive algorithm.

ORN timing enables motion sensing

Our results so far have supported a correlation-sensitive model of direction sensing, tuned 

to inter-antennal odor latencies as short as ~15 ms (Extended Data Fig. 5f). This raises the 

question of how temporal precision in the olfactory periphery enables the detection of such 

latencies. To address this, we turned to electrophysiological measurements of odor-elicited 

ORN responses, using these to predict HRC model outputs for naturalistic stimuli. We 

recorded responses of 14 ab3A ORNs from one antenna in 2 flies to 20 short (50 ms) puffs 

of ethyl acetate (Fig. 5a). Across all 280 presentations, we found a jitter of 5.1 ms in the 

timing of the first odor-elicited spike, significantly smaller than in prior studies34, but not 

insignificant compared to the 15 ms timescale of odor motion detection. To quantify how 
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a correlator could extract directional information from noisy ORN responses, we chose at 

random a pair of spike trains measured in two different ORNs, shifted them in time by 

−ΔT/2 and ΔT/2, respectively, and then passed this pair through the two arms of the HRC 

model (Fig. 5b). This procedure mimics how ORNs in each antenna would respond to a 

rightward traveling odor filament: i.e. the shifted “right” ORN would receive the same signal 

as the unshifted “left” ORN, but ΔT later. Odor speed and direction are set by scaling or 

flipping the sign of ΔT, respectively. We found that for |ΔT| above ~10 ms, HRC output 

was positive for rightward moving signals (ΔT > 0) and negative for leftward moving 

signals (−ΔT < 0) (Fig. 5b), indicating direction selectivity. Moreover, HRC responses were 

very similar across odor presentation trials (Fig. 5c), meaning that odor direction could be 

extracted reliably without averaging over multiple encounters. Finally, extending this to all 

19,600 possible pairings of 140 “left” and 140 “right” ORNs, we found that the simple HRC 

model could reliably resolve odor direction over a broad range of inter-antennal latencies 

11 < ΔT < 153 ms (Fig. 5d), corresponding to odor speeds as high as 25 mm/s. Altogether, 

this indicated that, at least at the level of single, noisy ORN pairs, sufficient information was 

present to encode odor direction. Moreover, the HRC timescale of τ = 15 ms does not set a 

hard lower bound on the resolvable latency ΔT. This is because the filters in the HRC model 

smear the signals in time, so that HRC outputs are non-zero over a range of ΔT, not just 

when ΔT = τ. Thus, the HRC is strongly direction-selective even at latencies far from τ.

Next, to see how some known downstream transformations might affect direction sensitivity, 

we added two processing steps upstream of the HRC computation: bilateral mixing of ORN 

signals with a 60/40 ratio17 and a 30 ms lowpass filter representing projection neuron 

(PN) responses34. Additionally, we jittered each ORN spike up to 30 ms34 to represent 

variability across the ORN population. The aggregate effect of these 3 transformations was 

to shift the resolvable response range to 21 < ΔT < 171 ms (Fig. 5e) – a remarkably small 

reduction in sensitivity. In fact, we show mathematically that temporal filtering should not 

degrade the resolution to a level naively suggested by the filtering timescales. For instance, 

an HRC receiving inputs that have been filtered over τfilt = 100 ms can still respond 

direction selectively to latencies much lower than τfilt (Methods and Extended Data Fig. 6). 

Intuitively, while the PN filter smears the two inputs, it acts on each input equally, thereby 

retaining the relative signal delay between them.

We next repeated the same calculations using the responses of ab2A ORNs to a naturalistic 

odor stimulus from our prior study35, which is composed of brief bursts of odor, or “whiffs,” 

interspersed with periods of clean air (Fig. 5f). In this signal, the whiffs concentrations and 

durations spanned an order of magnitude, typical of odor statistics in turbulent flows3. We 

estimated the HRC response to left- and right-traveling odors as above, by pairing different 

recorded ab2A ORNs and shifting them appropriately (Fig. 5g). Averaging over all “left” 

and ”right” pairs, we found that odor direction for latencies |ΔT| = ± 15 ms was resolvable in 

more than 90% of the individual whiff encounters (Fig. 5h). Altogether, these findings reveal 

that the temporal precision of ORN responses, together with putative circuit transformations 

in the Drosophila olfactory periphery, can robustly encode the direction of natural odor 

signals.
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Finally, we note that despite the robustness of the direction selective odor computations 

shown above, our estimates here remain a worst-case-scenario. We have simulated HRC 

responses using individual ORNs on each antenna, but Drosophila antenna contain 

populations of ORNs of each type, which are pooled in PN responses. This convergence 

increases detection accuracy by averaging over noise34,36, and a similar denoising upstream 

of direction sensing computations should enhance robustness beyond what we have 

demonstrated here.

Odor motion sensing in natural plumes

In principle, animals could use measurements of odor motion to help them navigate complex 

plumes, provided this information complements other directional cues such as gradients 

or wind. To quantify the distribution of odor signal directions in a naturalistic plume, we 

ran numerical simulations of an environment replicating the plume from Fig. 1. These 

simulations provide not only a more finely resolved concentration field, but also the airflow 

velocity field (Fig. 6a), which is experimentally inaccessible. We first compared, for a 

few fixed points in the plume, the odor velocity vodor and the airflow vwind at a single 

time. Both vodor and vwind had x-components comparable to the mean flow speed 150 

mm/s. However, vodor also had large crosswind components vy,odor pointing outward from 

the plume centerline, which were noticeably absent from vwind (Fig. 6b; left). Averaging 

over all detectable odor filaments in the 120s simulation revealed a similar trend: away 

from the plume centerline, the distribution of vodor spanned a tight angular range, pointing 

consistently outward in the crosswind direction (Fig. 6b; middle column). Meanwhile, 

vwind was distributed largely downwind, with much smaller outward angles (Fig. 6b; 

right column). To visualize the “flow” of odor motion, we calculated the time-average of 

〈vodor〉 at all locations in the plume. We compared this to the time-average of the wind 

vector conditional on the presence of odor, 〈vwind|odor〉. We used the latter rather than 

the unconditional wind velocity, 〈vwind〉, since for an ideal point source of odor within 

homogeneous turbulence, the latter does not encode the lateral location of the source. 

Throughout the plume, 〈vodor〉 flowed strongly outward from the plume center, while 

〈vwind|odor〉 was directed essentially downwind (Fig. 6c).

This analysis suggests that in naturalistic plumes emanating from a point source, the 

direction of odor motion is a strong indicator of the direction towards the centerline of 

the plume. This directional cue is not reflected in the local wind, nor in the local gradients, 

though we did find that odor gradients have a similar crosswind structure closer to the 

source, where the plume is less intermittent (Extended Data Fig. 7a). Of course, to be useful 

for navigation, odor motion must be resolvable on realistic timescales. By calculating the 

running average of the odor direction at a fixed location, we found that in most of the plume 

extent, only several hundred milliseconds were necessary to resolve the lateral components 

(Extended Data Fig. 7b–c). Since odor bursts occurred at ~1–5 Hz in this particular plume10, 

a navigator could estimate the direction of odor motion orthogonal to the mean flow after 

only a few odor hits.

To investigate how Drosophila use odor motion during navigation, we designed a fictive 

odor plume whose boundaries were subtended by a cone — as if emanating from a source 
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— and within which thin bars moved laterally outward from or inward toward the centerline, 

while laminar wind flowed along the cone axis (Fig. 6d). The bars moved at 15 mm/s 

and were spaced by 5, 10, or 15 mm (data is pooled), giving fictive odor hits with short 

durations and frequencies ~1–3 Hz, similar to the complex plume considered above (Fig. 

1a). We reasoned that inward moving bars, which are reversed from their natural flow, would 

degrade the ability of the fly to move towards the plume axis, and therefore to localize the 

odor “source,” i.e. the tip of the cone. We found that for both bar directions, flies stayed 

within the conical fictive odor region, but were significantly more likely to reach the upwind 

source region when the bars moved outward (56% versus 28% for outward versus inward 

bars, respectively, p < 0.01, one-tailed t-test) (Fig. 6e–f). Moreover, performance gains were 

attributed to increased lateral navigation toward the plume centerline (Fig. 6f and Extended 

Data Fig. 8a), as predicted. Notably, the fictive odor signals in these two paradigms at 

each location do not differ by frequency, duration, or spatial gradients — differences in 

performance (Fig. 6f) can be explained by odor direction sensing alone.

Next, we tried the more realistic case of projecting a video of a recorded complex smoke 

plume, playing the video not only normally, but also reversed in time (Fig. 6g). As in the 

previous conical bar stimulus, reverse playback reverses odor motion without perturbing 

the steady state distribution of spatial gradients or the frequency or duration of odor hits 

measured at each point. Remarkably, the likelihood to reach the odor source significantly 

degraded when the plume was played in reverse (32% versus 14%; p < 0.01, one-tailed 

t-test) (Fig. 6h), again driven by enhanced navigation toward the plume axis (Fig. 6i and 

Extended Data Fig. 8b). Together, these results indicate that the odor motion provides a 

directional cue complementary to odor gradients and wind motion, and strongly enhances 

navigation in complex odor plumes, even when other aspects of the odor signal remain 

unchanged.

Finally, with an eye toward practical applications, we used in silico experiments to explore 

the value of odor motion sensing for olfactory robots. Virtual navigators were modeled 

as in our previous study10: low-curvature walking bouts were interrupted with stochastic 

left/right turns at a fixed Poisson rate, and turns were more likely to be directed upwind as 

the frequency of odor hits increased (Fig. 6j). These virtual agents are not direction-sensing 

(DS- agents); meanwhile, direction sensing (DS+) agents obeyed the same strategy, but with 

turns biased against the vector sum of the odor motion direction and the wind direction (Fig. 

6j). We simulated both DS+ and DS- agents in the imaged complex plume (Fig. 6g), finding 

that DS+ agents were better localized within the plume extent than DS- agents (Fig. 6k) and 

significantly more likely to find the odor source (n=100 agents; 34% vs. 25%, p < 1e-4; 1-

tailed t-test) (Fig. 6l). As above, performance was aided by increased drift toward the plume 

centerline (Fig. 6l). These results were not a byproduct of the model’s behavioral repertoire: 

we found similar performance gains for direction-sensing virtual robots navigating a grid 

with a much simpler strategy (Extended Data Fig. 9). Together, these in silico experiments 

show that odor motion sensing can enhance the robustness of complex plume navigation 

in both simplistic and bioinspired navigational algorithms. The simplicity of the direction 

sensing mechanism, together with computational methods to detect fast odor transients using 

metal oxide sensors37,38, suggests that odor motion detection could be incorporated into 

olfactory robots in a variety of existing schemes39,40 (see Methods and Extended Data Fig. 
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10 for a discussion of the relationship between odor motion detection, the distance between 

the two sensors, and the statistics of the turbulent air flow).

Discussion

Olfactory navigation relies on integrating various sensory signals that contain information 

about the odor source. Which features exist, and how much information they carry, can 

vary considerably between plume structures41–43. Gradient sensing can provide reliable 

directional information when navigating laboratory-controlled plumes, such as static 

ribbons18, or very close to the source of natural plumes before odor patches have dispersed 

(Extended Data Fig. 7). Further away from the source, however, turbulent air motion 

stretches and fragments odor patches as they are carried downstream, producing odor signals 

that are patchy and intermittent1–3, and which span many spatial scales – the so-called 

inertial convective range – from macroscopic eddies to molecular diffusion44. In these 

regions, concentration gradients tend to orient randomly, and so have limited value. Even 

in turbulent boundary layers, where concentrations are more regular4, gradients could aid 

navigation, but would require amplifying the gradient to an extreme degree not consistent 

with data6.

In contrast, our work suggests an entirely new role for bilateral sensing: measuring the 

direction of odor motion by comparing concentrations in both space and time. This 

information stream is especially relevant within the inertial convective range of turbulent 

plumes. Parallel to the plume axis, odor motion is redundant with the average wind 

direction. But perpendicular to the plume axis odor packets spread via random continuous 

motions, with an effective diffusivity much larger than molecular diffusion19. What results is 

a strong flux of odor packets outward from the plume centerline, providing a directional 

cue orthogonal – and thus complementary – to the mean wind. We corroborated this 

with theoretical analysis of a simple turbulent plume model (Methods), finding that the 

outward flow of odor motion we observed in simulations (Fig. 6c) exists in turbulent 

plumes more generally (Extended Data Fig. 10a–b), Moreover, these lateral odor velocity 

components can be detected by computing temporal correlations between two nearby points 

(Extended Data Fig. 10c). Thus, odor motion sensing is not just relevant to walking fruit 

flies; this directional cue could in principle enhance natural plume navigation across the 

animal kingdom, across distinct olfactory anatomies, and in distinct locomotive regimes (see 

Supplementary Text).

Our setup allows us to test the predictions of the HRC model using artificial correlation-

type stimuli which would be prohibitive to produce with natural odors. In particular, we 

generated a reverse phi illusory percept for negative correlations, a signature of correlation-

based algorithms observed in visual motion detection in flies26,28 and other species16,29,30, 

including humans31. While the HRC model replicates several features of odor direction 

sensing, it is an incomplete description of the odor motion sensing algorithm, neglecting 

asymmetries between ON/OFF responses and higher-order correlations in odor scenes (see 

Supplementary Discussion).
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Where could direction selectivity occur in the olfactory circuit? Most ORNs project to both 

antennal lobes, but ipsilateral and contralateral signals differ in magnitude and timing17, 

which could be amplified further downstream to enact bilateral computations. One potential 

region of interest is the third-order olfactory center, the lateral horn (LH), which mediates 

innate odor responses and projects bilaterally23,45.

The lack of smooth concentration fields in naturalistic plumes has inspired a number 

of navigation studies focusing on how animals use the temporal features of the odor 

signal, such as the frequency or duration of encounters with odorized air packets. This 

reliance on timing is enabled by the remarkable degree of temporal precision in olfactory 

circuits35,46–50. Here, we show that odor timing can be combined with bilateral sensing to 

measure odor motion, a directional cue distinct from the only other reliable directional cue 

in turbulent plumes – the wind. Our findings reveal a valuable role for bilateral sensing in 

the complex, dynamic odor environments that animals navigate in the wild.

METHODS

Fly strains and handling

Flies were reared at 25°C and 50% humidity on a 12 hour/12 hour light-dark cycle in 

plastic vials containing 10 mL standard glucose-cornmeal medium (i.e. 81.8% water, 0.6% 

agar, 5.3% cornmeal, 3.8% yeast, 7.6% glucose, 0.5% propionic acid, 0.1% methylparaben, 

and 0.3% ethanol. Media was supplied by Archon Scientific, Durham, NC, USA). All flies 

used in behavioral experiments were female. Between 10 and 30 females were collected for 

starvation and placed in empty vials containing water-soaked cotton plugs at the bottom and 

top. All flies were 3–10 days old and 3 days starved when experiments were performed. 

Flies in optogenetic experiments were fed 1 mM all trans-Retinal (ATR) (MilliporeSigma, 

Burlington, MA, USA; previously Sigma Aldrich) dissolved in water. ATR was fed to flies 

1 day prior to recording, and all flies were housed in the dark from the time of ATR feeding 

until the time of the recording.

All flies used throughout the study included a GMR-hid transgene, which causes 

photoreceptors to die, making these flies blind. Optogenetic activation was achieved 

by expressing Chrimson (20X-UAS-CsChrimson) in Orco-expressing olfactory receptor 

neurons (Orco-GAL4) in almost all experiments51. The one exception was the single-

Or experiments (Extended Data Fig. 3c–d), which expressed Chrimson in only neurons 

expressing the olfactory receptor Or42b.

The genotypes used are listed in the following table:

1 w;gmr-hid;+ Gift from Mala Murthy

2 w;+;20XUAS-Chrimson Bloomington ID: 55136

3 w;+;Orco-Gal4 Gift from John Carlson

4 w;+;Or42b-Gal4 Gift from John Carlson

5 w;gmr-hid/+;20XUAS-Chrimson/Orco-Gal4 Figs. 2–6 Constructed from 1,2,3
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6 w;gmr-hid/+;20XUAS-Chrimson/Or42b-Gal4 Fig. 2 Constructed from 1,2,4

Behavioral assay and optogenetic stimulation

The fly walking arena is identical to the one used in a previous study10. All experiments 

were performed in a behavioral room held at 21–23°C and 50% humidity. The walking arena 

is 270×170×10mm (see Fig. 2a) and consists of top and bottom glass surfaces and acrylic 

sidewalls. The upwind end is an array of plastic coffee straws, which laminarize the airflow 

(when wind is turned on); the downwind end is a plastic mesh. For experiments with wind, 

dry air is passed through the straws at a flow rate giving a laminar flow at 150 mm/s within 

the arena. The only exception was the forward and reverse playback complex virtual plumes 

(Fig. 7g), for which the laminar flow speed was reduced to 100 mm/s to match the flow 

speed used to generate the recorded smoke plume (see Recorded Smoke Plume below). Flies 

are introduced by aspirating through a hole near the downwind plastic mesh. Flies were 

illuminated using 850 nm IR LED strips (Waveform Lighting) placed parallel to the acrylic 

sidewalls.

Experiments were recorded at 60 Hz with a FLIR (Wilsonville, OR, USA) Grasshopper USB 

3.0 camera with IR-pass filter. Optogenetic stimuli were delivered using a LightCrafter 4500 

digital light projector (Texas Instruments, Dallas, TX, USA) mounted 310 mm above the 

arena, illuminating an area larger than in the original method22. Only the red LED (central 

wavelength 627 nm) was used throughout this study. We used the native resolution of the 

projector (912 ×1140 pixels), which illuminated the entire walking arena with pixels of 

size 292 μm (along wind axis) x 146 μm (perpendicular to wind axis). The majority of 

our experiments used a 60 Hz stimulus update rate; the exceptions were the faster 20–30 

mm/s bar stimuli (Extended Data Fig. 3e; Extended Data Figs. 4e–f), the glider experiments 

(Extended Data Figs. 5e–f), and the complex virtual plume playback (Fig. 7g), for which we 

used a 180 Hz update of projected images. The average intensity of the red light within the 

walking arena was 4.25 μW/mm2. Though all data presented in this article used blind flies, 

initial exploratory experiments used flies that were not blind. To remove visual effects from 

the stimulating red light, we shone green light using an LED (Luxeon Rebel LED 530 nm) 

throughout the arena to flood the visual response. Though this was not necessary for blind 

flies, we retained the green light throughout the experiments presented here to compare to 

past data.

The projector and camera have distinct coordinate axes – camera and projector pixels are 

different sizes and their native coordinates systems are not the same handedness. To infer the 

virtual encountered stimuli for navigating flies, one must transform between a 2D camera 

coordinate xcam and a 2D stimulus coordinate xstim. We assume that the two are related by a 

combination of linear transformations and translations:

xcam = Axstim + B .

To estimate the matrix A and vector B, 3 mm diameter dots were projected at random 

locations xstim
i  in the arena while recording with the camera; camera coordinates xcam

i  were 
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determined in the imaged frame using the SimpleBlobDetector function in OpenCV. The 6 

elements of A and B were then determined by minimized the least squares difference:

C = ∑
i

xcam
i − Axstim

i − B 2

We verified manually that this procedure generated accurate transformations. We generated 

all stimuli using custom-written scripts in Python 3.7.4, and delivered these stimuli to the 

projector using the Python package PyschoPy, version 2020.2.4.post1.

Recorded smoke plume

The complex odor plume presented virtually with light (Fig. 6g) was derived from an 

imaged smoke plume in the same arena. The smoke plume was obtained using an identical 

protocol as in our previous work10, but with slightly modified airflow conditions. There, the 

laminar flow speed was 150 mm/s, while here it was reduced to 100 mm/s. The speed of the 

two lateral perturbing upwind airjets was also reduced from ~1500 mm/s to ~1000 mm/s. 

The airjets were stochastically switched at a Poisson rate of 10 s−1 as in the original study. 

To convert the smoke plume to the virtual optogenetic plume, the images in the video were 

scaled with an affine transformation and presented with 8-bit resolution.

Electrophysiology

Single sensillum recordings from Drosophila antennae were performed as described 

previously35,47,52. The recording electrode was inserted into a sensillum on the antenna 

of an immobilized fly and a reference electrode was placed in the eye. Electrical signals 

were amplified using an Ext-02F extracellular amplifier (NPI electronic instruments, Tamm, 

Germany). The ab2 sensillum was identified by i) its size and location on the antenna, and ii) 

test pulses of Ethyl 3-HyrdoxyButyrate, to which the B neuron is very sensitive. Spikes from 

the A and B neurons in this sensillum were identified and sorted as described previously35, 

using a spike-sorting software package written in MATLAB (Mathworks, Inc., Natick, MA, 

USA) (https://github.com/emonetlab/spikesort). For responses to real odor stimuli (Fig. 5), 

odors were delivered as in our previous work35,53. Briefly, an odorized stream was fed into 

a main airstream and delivered through a glass tube positioned within 10 mm of the fly 

antenna, while mass flow controllers (Aalborg instruments and Controls, Inc. (Orangeburg, 

NY, USA) and Alicat Scientific (Tuscon, AZ, USA)) were used to regulate airflows.

Experimental protocol

Experiments were carried out between 9 AM and 12 PM. This corresponds to between 0 

and 3 hours after lights-on in our incubators, in which lights were on from 9 AM to 9 PM. 

Between 10 and 30 flies were aspirated into the arena and allowed to acclimate for 2 minutes 

before experiments began. Before all experiments, optogenetic activation was verified by 

presenting static fictive odor ribbons (as in Extended Data Fig. 2c) with laminar wind for 

120 seconds, and ensuring that flies followed the ribbons upwind as a positive control. In 

our assay, flies could walk on the top glass surface or bottom glass surface, and since the 

spacing between the surfaces was appreciable (1 cm), flies could flip to the top surface 

during a trial without climbing the sidewalls. In our videos, we could not reliably distinguish 
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which surface the fly walked on, so we pooled flies for all analyses throughout. We verified 

that optogenetic activation of ORNs for flies on either surface was similar, by manually 

annotating 300 tracks of flies navigating fictive odor ribbons, and demonstrating that both 

similarly followed fictive odor ribbons upwind (Extended Data Fig. 2d). Unless otherwise 

noted, each experiment ran for 60–120 seconds, with 60 seconds in between experiments.

No statistical tests were used to determine sample size. More than 50 flies were used for 

each experimental condition. Since flies were reared in vials containing 10–15 individuals, 

this gave 5–10 vials per experimental condition, sufficient to mitigate outlier effects from 

any single vial. All experiments were replicated more than three times on the same flies, and 

the same conditions were replicated at least 10 times with different flies over several days. 

Investigators were not blind to fly genotype. Throughout, experiments were interleaved such 

that the directions of the moving stimuli were randomized. No more than 30 videos were 

recorded on a single set of flies.

Quantification of fly behavior and encountered fictive odor stimulus

Extraction of fly position, speed, and orientation from videos—All scripts were 

written in Python 3.7.4. Fly centroids were determined using SimpleBlobDetector in 

OpenCV, assuming a minimum area of 5 mm2. Given the centroids, fly identities were 

determined using custom tracking scripts. Briefly, centroids in subsequent frames were 

matched to the nearest centroid, and if the centroids could not be matched, they were marked 

as disappeared. Flies marked as disappeared for more than 30 frames (0.5 seconds) were 

then deregistered. Subsequent detected centroids were then marked as new fly tracks. Fly 

orientations θ were determined by first using the canny function in the Python module 

scikit-image to determine the points defining the fly edges around the centroid, then fitting 

these to an ellipse using custom-written Python scripts. Fly orientations are defined on the 

interval [0, 360°], but ellipse-fitting does not distinguish head (0°) from rear (180°). We 

properly resolved this using the fly velocity (below).

The above data defines the fly positions (x, y) and orientations θ. To remove measurement 

noise, we filtered each of these quantities with a Savitsky-Golay filter using a 4th-order 

polynomial and window size of 21 points (to avoid branch cuts in θ, it was first converted 

to an un-modded quantity). Velocities ẋ and ẏ and angular velocity θ̇ were defined by taking 

the analytical derivative of the fitted Savitsty-Golay polynomials for x, y, and θ. To resolve 

the two-fold symmetry in the fitted ellipses, and therefore distinguish the fly head from 

the rear, we used the fly velocity. For fly speeds greater than a given speed threshold, we 

matched the orientation to the fly velocity vector since flies predominantly walked forward. 

For other times, we matched the fly heading at the beginning and end of bouts when fly 

speed was below the speed threshold. The result was an estimate that may still have errors 

which occur as unnatural jumps in orientation. We repeated this process for various speed 

thresholds from 1 to 4 mm/s, and chose the orientation trace with the least number of jumps. 

We verified manually with several tracks that this procedure was highly reliable.

We noticed that during the experiments, particularly those with long fictive odor encounters 

such as the wide bars in Figs. 2 and 3, there was a slow, gradual bias toward one side of 

the arena (along the shorter axis of the arena). This only occurred for flies with optogenetic 
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constructs that were fed ATR, and we reasoned it might be due to a shadowing effect of 

the projector light from the fly body onto the antenna, or from one antenna onto the other, 

since the projector lens is nearer to the bottom of its projected image. This shadowing 

effect appears to create a fictive odor gradient across the arena. To account for this bias, we 

repeated all experiments that had an asymmetry in the perpendicular direction, such as bars 

perpendicular to the wind (Fig. 3d; 3rd row), in both directions. We then averaged the turning 

biases from these two directions, after flipping the orientations appropriately. This would 

retain the effects due to direction sensing but remove the bias, under the assumption that this 

bias was an additive effect.

Estimation of encountered fictive odor stimulus in antennae—Given these 

smoothed and corrected x, y, θ measurements, we then estimated the encountered fictive 

odor signal in the antenna region by defining a virtual antenna at a location 1.5 mm from 

its centroid along the ellipse major axis toward the fly head. To generate stable estimates – 

i.e. not relying on a single pixel value – we use the stimulus value averaged over a box of 

0.25 mm2 around this location. Stimulus values in the antennal region are not measured by 

imaging, since the images are IR-pass filtered. Rather, they are obtained from knowledge 

of the stimulus pattern and the stimulus-to-camera coordinate transformation defined above. 

In PsychoPy, stimulus values are defined as 8-bit integers, from 0 to 255, but in practice 

we only deliver stimuli as max intensity (255) or 0. Accordingly, we treat the signal in the 

virtual antenna as binary, equal to 1 when the average stimulus value in the 0.25 mm2 region 

is above 200, and 0 otherwise.

Quantification of behavior for moving bar stimuli—For all wide bar stimuli, only 

flies walking between 2 and 20 mm/s at the time of the edge hit are included. For fast 

moving bars (Fig. 2b–d and Extended Data Fig. 3), only tracks lasting longer than 10 

seconds and whose mean speed is between 3 and 10 mm/s are included. For the bar stimuli 

in Figs. 2–3, we identified ON and OFF edge hits as the times that the antennal signal 

switched from 0 to 1 or 1 to 0, respectively, where this binarization was calculated as 

described above. To calculated turning biases, we followed prior work10 and considered 

saccadic turning events, identified as points at which the absolute value of the angular 

velocity exceeded 100°/s, and ignored small jitters. Turn biases at a given time ti (e.g. at an 

ON or OFF edge hit (Fig. 2–3)), were defined as the sign of the change in fly orientation 

from ti + 150 ms to ti + 300 ms, provided the absolute value of angular velocity in that 

window exceeded 100°/s at some point in that window. We used this 150 ms latency after ti 
to account for uncertainties in ti due to uncertainties in exact position of the antenna, which 

we estimated as being upper bounded by 2 mm. For all plots, to remove tracks in which 

flies may have been turning before the hit, we ignored points for which the absolute angular 

velocity exceeded 100°/s between 300 ms and 150 ms before the hit. The dependence of the 

results on this window is shown in Extended Data Fig. 3g; though the effects are largest in 

this regime, they are not strongly sensitive to the choice of window following ti.

Quantification of behavior for correlated noise and glider stimuli—Turn biases 

for correlated noise and glider stimuli (Fig. 4) were calculated similarly to those for moving 

bars. Correlated noise and glider stimuli (Fig. 4) were presented in blocks of 4s stimulus 
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interleaved with 4s of no stimulus; thus the stimulus turned on at times 0, 8, 16 seconds, etc. 

For correlated noise stimuli, we considered orientation changes from ti to ti + 300 ms, where 

ti was time of the stimulus initiation (i.e. 0s, 8s, 16s, etc…); the 150 ms latency used for bar 

stimuli was not needed in this case since the signal was independent of fly behavior, so the 

hit time was known to the precision of the inverse frame rate (6 ms). For glider stimuli, we 

considered orientation changes from ti + 200 to ti + 500 ms stimuli as this gave the largest 

response. We also only included flies with speeds < 12 mm/s for glider responses, since 

long-range correlations can interfere with the intended correlation if fly walking speed is 

near the glider speed.

Plume simulations

Direct numerical simulations were generated using the CFX® hydrodynamic simulation 

software package of ANSYS 2019 (Ansys, Inc., Canonsburg, PA, USA). Parameters were 

chosen to emulate the flow and intermittent odor structure of the plume analyzed in 

Fig. 110. The mean flow speed was 150 mm/s, with an air viscosity of 1.5e-5 m2/s. An 

odorant with molecular diffusivity Dm = 7.3e-6 m2/s was injected mid-stream (vertically 

and horizontally). The odorant was modeled as a conservative, neutrally buoyant tracer. The 

dimensions of the computational model domain were 30×18×1 cm, approximately matching 

those of the walking arena10. The computational air inlet boundary was modeled as a 

uniform velocity condition, representing an idealized collimated flow. The outlet boundary 

condition was modeled as a zero-pressure gradient opening allowing for bidirectional flow 

across the boundary. Walls were modeled using hydraulically smooth, no-slip boundary 

conditions. To reproduce the stochastic airjets creating the complex flow and plume, 

alternating jet pulses of air were applied from two orifices on opposite sides of the flume. 

The time series of pulses were identical to the experiments10. The model domain was broken 

up into 4.7e6 tetrahedral elements where velocity and concentration were computed, with 

the largest element’s length at 5 mm with an inflation layer along the domain boundaries and 

a refined mesh around the inlet orifices.

The flow was simulated at a 2.5 ms time step using a k-ϵ eddy viscosity model54, which 

solves the Reynold-averaged Navier Stokes equations, where the momentum equation is 

defined as:

∂ρUi
∂t + ∂

∂xj
ρUiUj = − ∂p

∂xi
+ ∂

∂xi
μeff

∂Ui
∂xj

+ ∂Uj
∂xi

and the continuity equation as:

∂p
∂t + ∂

∂xj
ρUj = 0,

where ρ is the fluid density, p is pressure and μeff is the effective fluid viscosity. The 

turbulent eddy viscosity is treated analogously to viscosity in laminar flow such that μeff = 

μt + μ where μt is the turbulent viscosity and μ the fluid viscosity. The k-ϵ model assumes 

the local turbulent viscosity is related to the local turbulent kinetic energy (k) and the eddy 

dissipation rate (ε) as follows:
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μt ∝ ρk2

ε

The advection-diffusion equation for conservative tracers was used to model the transport of 

the odorant:

∂tCx + u ⋅ ∇C = Dm + ε ∇2Cx

where Cx is the tracer concentration, u is the velocity field, Dm is the molecular diffusivity 

and ε is the local eddy diffusivity solved from the turbulence model. For all further analysis, 

we used the concentration and velocity in a plane 1 mm above the bottom of the domain, in 

the approximate z-plane of the fly antennae.

Mathematical modeling and data analysis

Inter-antennal latency of edge hit ΔT—The inter-antennal latency ΔT as a function 

of fly walking speed |vfly| and bar speed |vbar| can be calculated with basic geometric 

considerations. Here, we assume that the fly speed along the bar direction is sufficiently 

slow such that the bar passes over the fly. Consider a coordinate system in the frame of the 

moving bar, where the bar direction is +y (i.e. the bar’s edge is in x). The fly velocity in this 

frame is

vr = − vfly sin ϕ, vfly cos ϕ − vbar

where ϕ is the angle of rotation from vbar to vfly in the experimenter frame. The inter-

antennal latency ΔT is then the projection of the antennal spacing L along vbar divided by the 

projection of vr along vbar. The former is L sin ϕ and the latter is the y-component of vr; the 

sign of L sin ϕ is treated as meaningful, so that a positive/negative value means the left/right 

antenna is hit first. Thus:

ΔT = Lsin ϕ
vbar − vfly cos ϕ

where the sign is given by the numerator since the denominator is always positive for bars 

passing over the fly.

This expression ignores the fly’s angular velocity while walking. Assuming that the fly is 

walking forward while also turning at a rate ω, then the total accumulation of orientation 

over the ΔT interval is ωΔT, which for typical values of the maximum rotation rate during 

normal turns (ω ~ 300°/s) and typical inter-antennal latencies without turning (ΔT~15 ms) is 

~5°. This would be if the fly were turning at a maximum angular velocity. More typically, 

rotation rates are approximately 20°/s 10, giving an accumulated angle during of less than 1°. 

If we incorporate this error as an uncertainty on ϕ, δϕ, then ΔT acquires an error of
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δΔT = δϕ[ Lcos ϕ
vbar − vfly cos ϕ + vfly Lsin2 ϕ

( vbar − vfly cos ϕ)2 ]

With the values assumed throughout, |δΔT| < 1 ms, so ω is safely ignored to the resolution 

of our experiments.

HRC output versus ΔT for traveling edges—Our prediction for the turning bias as a 

function of the latency ΔT at which an edge of odor hits the right antenna after hitting the 

left, is based on the output r(t) of a mirror-symmetrized Hassenstein-Reichardt correlator16. 

To calculate r(t), we model the correlator architecture as depicted in Fig. 4a. Specifically, the 

time-varying signals from the 2 sensors are sL(t) and sR(t). In one arm of the computation, 

sL(t) is linearly filtered with an exponential 1
τ e

− t
τ
, while sR(t) is transmitted unchanged; these 

are then multiplied. For a traveling ON edge moving left to right, we have sL(t) = H(t) and 

sR(t) = H(t − ΔT), where H(⋅) is the Heaviside function. Then the product of the filtered 

values is:

sLR t = H t − ΔT 1
τ∫−∞

t
e− t − t′

τ H t′ dt′

sLR t = H t − ΔT 1
τ∫0

t
e− t − t′

τ dt′

s12 t = H t − ΔT 1 − e− t
τ

The other arm is similar, except that s2(t) is filtered and s1(t) is transmitted unchanged. Then 

the product of the filtered inputs is:

sRL = H t 1
τ∫−∞

t
e− t − t′

τ H t′ − ΔT dt′

= H t − ΔT 1 − e− t − ΔT
τ

The correlator output is therefore:

r t = sLR t − sRL t = H t − ΔT e− t − ΔT
τ − e−t/τ

Assuming that flies sense odor motion using this computation, the output of the correlator, 

r(t), must be converted to a behavior; here, we model this behavior as the turning bias being 

proportional to ∫ r(t)dt:

Kadakia et al. Page 18

Nature. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Turning bias ∝ ∫
−T−

T+
r t dt = ∫

ΔT

T+
e− t − ΔT

τ − e−t/τ dt

∫
−∞

∞
r t dt ∝ 1 − e− ΔT

τ

provided that behavioral timescales T− and T+, over which the correlator response is 

integrated to produce the turning response, are large compared to both τ and ΔT. Long 

after the edge hit, t ≫ T−, the signals are both sL = sR = 1, giving an HRC output of 0, as 

expected for the anti-symmetric architecture.

To estimate the filtering constant τ, we minimize:

C A, τ = Turning bias ΔT − A 1 − e− ΔT
τ

2

over A, τ. The turning bias is plotted in increments of ΔT = 4 ms, where the value at a given 

ΔT includes values from ± 4 ms. Neighboring points therefore contain overlapping data; this 

has the effect of smoothing – but not biasing – the turning bias vs. ΔT curve.

Responses to rightward moving OFF edges are analogous. The signal switches from 1 to 0 at 

the OFF edge (set it to t = 0), so the signal on the left sensor is sL(t) = 1 − H(t) and for the 

right sensor is sR = 1 − H(t − ΔT). Then one arm of the HRC is:

sLR t = 1 − H t − ΔT 1
τ∫−∞

t
e− t − t′

τ 1 − H t′ dt′

sLR t = 1 − H t − ΔT 1
τ∫−∞

0
e− t − t′

τ dt′ t > 0

sLR t = e− t
τ , 0 < t < ΔT

and sLR(t) = 0 for t > ΔT and sLR(t) = 1 for t < 0. The other arm output is simply sRL = 1 

for t < 0 and sRL = 0 for t > 0, since the non-delayed arm drops to zero as soon as the edge 

passes it at t = 0. Thus the output is:

r t = sLR t − sRL t = e− t
τH(t)(1 − H t − ΔT )

Integrating this quantity over time gives the same turning bias as the ON edge.

Generation of correlated noise stimuli and C(Δx, Δt): Correlated noise stimuli were 

generated as previously described26. We used optogenetic bars that were parallel to the 

short axis (y) of the arena (e.g. perpendicular to the wind direction, which runs along x). 

Each bar has a width of one x-pixel – thus, we refer to an x-pixel as a “pixel,” since 
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correlations are defined just in the x-direction. The stimulus value (where −1 and 1 are 

for dark and light bars, respectively) of a bar at pixel location x and time t is given by 

c x, t = sgn η x, t + αη x + βΔx, t + Δt ), where each values of the random field η(x, t) is 

independently chosen from a standard normal distribution. Δx is the pixel spacing; Δt is the 

inter-frame interval. The constant β governs the direction of the correlations: +1 for stimuli 

correlated in the +x direction (“with-wind” in the main text) and −1 for stimuli correlated in 

the −x direction (“against-wind”). The constant α governs the polarity of the correlations; +1 

or −1 for positive or negative correlations, respectively.

The spatiotemporal correlations in pixel intensity can be computed straightforwardly, as 

previously described26. Assume that α = β = 1; the other cases are analogous. The 

correlation between two pixels separated by spacing x′ and timing t′ is denoted by the 

correlation function C x′, t′ = c x, t c x + x′, t + t′ . In general,

C x′, t′ = sgn η1 + η2 η3 + η4

where ηi is one sample of η. For most choices of t′, x′, all ηi are distinct, so the correlation 

reduces to 0 since the sums are independent. For x′ = t′ = 0, the correlation reduces to the 

variance of c(x, t), which is 1. However, for t′ = Δt and x′ = Δx, η2 = η3. Then,

C x′, t′ = sgn η1 + η2 η2 + η4

C x, t = sgn η1 − η2 η2 − η4

since the random variables are symmetric about 0. The sign depends only on the ordering 

of the ηi, which are 3 independent samples from a standard normal distribution. There are 6 

ways to uniquely order the ηi, only two of which give a positive sign (η1 > η2 > η4 and η1 

< η2 < η4); thus the expected value is 1/326. An analogous property holds for t′ = −Δt, x′ = 

−Δx. Finally, the α and β factors are incorporated straightforwardly as scale factors, giving:

C x′, t′ = δx′, 0δt′, 0 + α1
3(δx′, βΔxδt′, Δt + δx′, − βΔxδt′, − Δt)

where the δ denotes the Kronecker delta function. Note that the correlation can be calculated 

by averaging over all of spacetime, or just in space for a fixed set of times, or just in time for 

a fixed set of points. The latter is our interpretation for the HRC output from fixed antennae, 

assuming the correlation direction is perpendicular to the fly body.

Generation of glider stimuli: Here, the stimulus value of a bar at pixel location x and time 

t is given by c(x, t) = B(x − βtΔx/Δt), where B = 2X − 1 with X ~ Bernoulli(p = 0.5), Δx 
is the pixel spacing, and Δt is the inter-frame interval. The correlation between two pixels 

separated by spacing x′ and timing t′ is
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C(x′, t′) = ⟨[B x − βtΔx
Δt B x + x′ − βtΔx

Δt − βt′Δx
Δt ]⟩ .

Then, C(x′, t′) = 1 when x′

t′ = βΔx
Δt  – i.e., the correlation matrix has a diagonal or 

antidiagonal structure for β = 1 and β = −1, respectively. These stimuli are a class of glider 
stimuli with a two-point correlation structure32,33. Visually, these gliders are a frozen pattern 

of random light and dark bars moving statically at constant speed in the βx direction.

HRC output for correlated noise stimuli: Here we calculate the HRC output for correlated 

noise stimuli, which has been computed before for any pair of filters on the two arms of the 

HRC26,55. Assume that the antennae are held at approximately the spacing of the correlation 

shift Δx (see Generation of correlated noise stimuli and C(Δx, Δt) section), and that the 

correlation direction is +x (rightward over the fly body), so β = 1 from the last section. Then 

one arm of the HRC gives:

sLR t = sR(t)1
τ∫−∞

t
e− t − t′

τ sL(t′)dt′

Averaging over time gives:

⟨sLR t ⟩ = ⟨c x, t 1
τ∫−∞

t
e− t − t′

τ c x − Δx, t′ dt′〉

Since β = 1, then only the last term in the correlation equation applies:

⟨sLR t ⟩ = ⟨c x, t 1
τ∫−∞

0
et″/τc x − Δx, t + t″ dt″〉

⟨sLR t ⟩ = 1
τ∫−∞

0
et″/τα1

3δt″, − Δtdt″

⟨sLR t ⟩ = α 1
3τ e−Δt/τ, Δt > 0

This equation holds for Δt being positive. The other arm is analogous, for Δt < 0.

sRL t = sL(t)1
τ∫−∞

t
e− t − t′

τ sR(t′)dt′
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⟨sRL t ⟩ = ⟨c x, t 1
τ∫−∞

t
e− t − t′

τ c x + Δx, t′ dt′〉

⟨sRL t ⟩ = ⟨c x, t 1
τ∫−∞

0
e t″

τ c x + Δx, t + t″ dt″〉

⟨sRL t ⟩ = 1
τ∫−∞

0
e t″

τ α1
3δt″, Δt dt″

⟨sRL t ⟩ = α 1
3τ eΔt/τ, Δt < 0

Thus, the full correlator output is

∫
t

r t dt = sLR t − sRL t = α ⋅ sgn(Δt) 1
3τ e− Δt

τ

Note that the correlator output response switches sign if the correlation polarity α flips 

– this is the reverse phi response. There is a slight artificiality in this expression, in that 

the response is discontinuous at Δt = 0. We have assumed an exponential filter, which 

technically has an immediate response time, violating causality. In addition, the optimal 

response occurs for an inter-frame interval Δt that is arbitrarily small. As a more realistic 

filter, one can use t
τ2 e−t/τ, which has zero response at time zero and maximal response at t = 

τ. Then:

∫
t

r t dt = sLR t − sRL t = α ⋅ sgn(Δt) 1
3τ2 Δt e− Δt /τ

This filter is continuous at Δt = 0, and the maximum correlator output occurs when the filter 

timescale τ matches the interframe interval Δt. In either case, the salient point is that the 

response is antisymmetric in both the temporal shift Δt and the correlation polarity α, as 

expected.

HRC response for pre-filtered inputs: Here, we motivate how filtering of inputs affects 

the response curve of the HRC – i.e. HRC output as a function of stimulus latency ΔT. 

We assume delta-correlated stimuli (as in the Generation of correlated noise stimuli and 
C(Δx, Δt) section), for which the response functions are expressed in simple, interpretable 

forms. Thus, we set cross-correlation between the left antennal stimulus and right antennal 

stimulus at c t′ = sL t sR t − t′ = δ t′ − ΔT , where the average is taken over instantiations of 

the stimulus – which is equivalent in this case to taking an average over time. Defining as f1 
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and f2 the delay filters for the two arms (e.g. 1 fast and 1 slow filter) and in the absence of 

any other filters, the averaged HRC output from 1 side of the detector is:

sLR ΔT = ∫ dt′f1 t′ sL t − t′ ∫ dt″f2 t″ sR t − t″

= ∫ dt′dt″f1 t′ f2 t″ δ t′ − t″ − ΔT

= ∫ dt′f1 t′ f2 t′ − ΔT

= f1 ⊗ f2 ΔT .

In other words, the response is the convolution of the two filters. Further assuming that 

f2(t) is fast (i.e. a delta function response), this reduces to the slow filter evaluated at the 

inter-antennal latency:

sLR ΔT = f1 ΔT

Note that this and related derivations (and interpretations) have been given in prior 

studies26,55.

Now, assuming that the signals are each pre-filtered with a smoothing filter f3(t), we get:

sLR ΔT = ∫ dt′dt″f1 t′ − t″ f3 t″ sL t − t′ ∫ dt″′dt″″f2 t‴ − t″″ f3 t″″ sR t − t‴
t

= ∫ dt′dt″dt‴dt″″f1 t′ − t″ f3 t″ f2 t‴ − t″″ f3 t″″ δ t‴ − t′ − ΔT

= ∫ dt′dt″dt″″f1 t′ − t″ f3 t″ f2 t′ + ΔT − t″″ f3 t″″

= ∫ dt″dt″″f1 t′ − t″ f2 t′ + ΔT − t″″ f3 ⊗ f3 t″ − t″″

= ∫ dt″dt″″ f1 ⊗ f2 ΔT − t″″ + t″ f3 ⊗ f3 t″ − t″″
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= f1 ⊗ f2 ⊗ f3 ⊗ f3 ΔT

Again, if f2 is a delta function response, this gives:

sLR ΔT = f1 ⊗ f3 ⊗ f3 ΔT

The full HRC response is this quantity, anti-symmetrized:

HRC ΔT = sLR ΔT − sLR −ΔT = f1 ⊗ f3 ⊗ f3 ΔT − f1 ⊗ f3 ⊗ f3 − ΔT

Thus, the HRC response is essentially the slow filter convolved with the autocorrelation of 

the pre-filter. Indeed, the effect of the pre-filter, a linear operation, is to “smear out” the 

HRC response – though it acts twice, once for the right sensor and once for the left sensor.

What effect does pre-filtering have on the HRC response? Since the HRC is defined anti-

symmetrically in ΔT, it is direction selective by construction, so the pre-filtering will not 

affect direction selectivity. However, filtering can affect the signal-to-noise ratio, and thus 

the regime for which direction selectivity is resolvable given the noise. For concreteness, 

let us calculate the closed-form HRC response, assuming that the slow filter and pre-filter 

are each exponential filters with timescales τHRC and τsmear, respectively, and assuming that 

there is noise in the external signal. We are considering binary valued correlated signals, so 

we imbue the noise as a random variable that adds external variability to the timing of the 

signals. Since we are looking at antenna-to-antenna correlations, we add the noise to just one 

antenna for simplicity.

In the prior derivation, noise changes the integrated time t‴ to t‴ + X, where we take X ~ 

N(0,δt) as the noise. Then the noisy HRC response is:

HRC ΔT δT = sLR ΔT − X − sLR −ΔT + X = f1 ⊗ f3 ⊗ f3 ΔT − X − f1 ⊗ f3 ⊗ f3 − ΔT − X

In other words, the noise simply manifests as ΔT → ΔT − X in the HRC response. We thus 

just designate ΔTδT = ΔT + X as a normal random variable with mean ΔT and standard 

deviation δT.

Now, the autocorrelation of an exponential pre-filter is:

f3 ⊗ f3 t = 1
τsmear

2 te− t
τsmearH t

and thus the response of 1 arm of the noisy HRC gives:

sLR ΔTδt = 1
τHRCτsmear

2 − ΔTδt

λ* e−
ΔTδt

τsmear + 1
λ*2 e−

ΔTδt
τHRC − e−

ΔTδt
τsmear H ΔTδt , τHRC ≠ τsmear
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sLR ΔTδt = 1
2τHRC

3 ΔTδt
2e− ΔTδt /τHRCH ΔTδt , τHRC = τsmear .

where λ* = 1
τsmear

− 1
τ . Again, the full response is HRC ΔT δt = sLR ΔT δt − sLR −ΔT δt . We then 

define the minimum “resolvable” ΔT as:

ΔT resolvable δt = min ΔT s . t . HRC ΔTδt X > ⟨HRC ΔTδt
2⟩X − HRC ΔTδt X

2

In words, it is, for a given noise level δt, the minimum inter-antennal latency ΔT for which 

the mean of the response is larger than the standard deviation of the responses. In realistic 

scenarios, the negative responses for ΔTδt < 0 can mix with the positive responses for ΔTδt > 

0, confounding responses for ΔT near 0, and our interest here is the magnitude of this effect. 

We calculate ΔTresolvable(δt) numerically for the two-exponential response given the above 

expressions (Extended Data Fig. 6) for various values of τsmear. We find that the minimum 

resolvable ΔT is limited entirely the noise level δt, regardless of whether τsmear is much 

larger or much smaller than of τHRC. This indicates that the pre-filter certainly affects the 

values of the HRC output, but it does not affect the direction sensing capabilities of the 

HRC.

Calculated HRC responses from electrophysiological measurements: To estimate HRC 

outputs from a pair of recorded ORN spike trains, we first manually shifted one recording 

from the pair by −ΔT/2 and the other by ΔT/2, which mimics an odor edge traveling from 

left to right, hitting the two antennae sequentially at a latency of ΔT. The magnitude of ΔT 
is inversely proportional to the odor speed; assuming an interantennal distance of 300 μm, 

the corresponding odor speed is 300/ΔT mm/s. Leftward traveling odors are simulated by 

choosing ΔT < 0. We first produce ORN firing rates from these spike trains by convolving 

the binary spike trains with a Gaussian filter (σ = 15 ms). HRC outputs were generated from 

these firing rates using the procedure described in the above sections, choosing a τ = 15 ms 

exponential filter for the delay arm.

For the scenario in which we added multiple sources of noise (Fig. 5e), we first took the 

recorded spike trains and shifted each spike by τjitter, where τjitter was chosen uniformly 

from −30 to 30 ms. Next, these spikes were shifted by ±ΔT/2 as above, to assign “left” 

and “right” ORNs, and then filtered in time as above to get ORN firing rates rORN,L(t) and 

rORN,R(t). Left and right PNs receive input from both ORNs, but with differing weights17, 

which we mimicked by taking the input to the left PN rPN in, L t = 0.6rORN, L t + 0.4rORN, R t , 

and rPN in, R t = 0.6rORN, R t + 0.4rORN, L t . PNs average over many ORN inputs by filtering over 

30 ms34, which we mimicked by designating the PN response as rPN, L = fPN ⊗ rPN in, L, where 

fPN(t) is a 30 ms exponential filter. Finally, rPN,L and rPN,R were fed used as inputs the HRC 

described above.

Analysis of imaged plume: We re-analyzed behavioral data previously extracted from 

Drosophila navigating an imaged complex plume of smoke10 in the same walking assay 

used throughout this study. The signal in the virtual antenna was quantified as described 
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previously; briefly, the virtual antenna is defined as an ellipse perpendicular to the body axis 

with the long axis given by the width of the fly (1.72 ± 0.24 mm) and the small axis equal 

to one-fifth the minor axis of the fly (0.46 ± 0.24 mm). We re-analyzed the imaged fly and 

signal data to resolve the virtual antenna signal into 14 pixels along its long axis (averaged 

along its short axis). Thus, the signal is a vector sant t = s x1, t , s x2, t , …, s x14, t  defined at 

locations along the antenna’s long axis xant = [x1, …, x14] for a given time t.

The overall concentration in the antenna was calculated as the average signal over 

the center of the virtual antenna – at the locations [x5,x6,x7,x8]. The gradient ∇cant 

in the virtual antenna at a given t was calculated by regressing sant against xant and 

extracting the slope. The odor velocity in the virtual antenna was estimated by calculating 

correlations of the virtual antenna signal over space and time. For a given t, we calculated 

Δx = argmaxΔx s xi, t s xi + Δx, t + Δt xi, where Δx spanned integers from −7 to 7, and Δt is 

the interframe interval (11 ms), and s(⋅) were mean subtracted. This gives the signed number 

of pixels for which the correlation between two successive frames is maximized, up to the 

length of the antenna. The odor velocity was then defined as Δx ⋅ frame rate ⋅ resolution, where 

the imaging frame rate was 90 frames per second and the spatial resolution is 0.153 mm 

per pixel. We disregarded points for which Δx was ±7, since those may not represent local 

maxima but were instead limited by the size of the antenna. All three quantities – total 

concentration, gradient, and odor velocity – were smoothed in time using a Savitsky-Golay 

filter of order 2 and smoothing window of 25 timepoints ~ 270 μs.

To remove boundary effects from the arena extent, we only used for Fig. 1c–e points for 

which the fly was in the central region of the arena, 100 < x < 250 mm, |y − y0| < 40 mm, 

where y0 is the plume’s central axis, and only points for which fly speed was greater than 

0.1 mm/s. Angular velocity was calculated as the average orientation change over 200 ms.

Analysis of simulated plume: The simulation generated concentration fields c(xi, yi, t) and 

flow velocity fields vwind(xi, yi, t) defined on grid points (xi, yi) of a non-uniform mesh. We 

first generated values on a 0.5 mm square lattice, by triangulating the data and performing 

barycentric linear interpolation over each triangle (scipy.interpolate.griddata in Python, with 

method ‘linear’). Fields in Fig. 6 and Extended Data Fig. 7 were plotted every 1 cm, (i.e. 

every 20 pixels on the original 0.5 mm lattice). Wind speed vectors at each point on this 

1 cm lattice were generated by averaging vwind over the 20 × 20 values in a 1 cm2 box. 

The plotted vwind|odor field was generated by only considering wind vectors for which the 

odor concentration was above 1e-3. Odor gradients were generated by calculating local 

differences ∇cx and ∇cy in the x- and y- directions, respectively. Specifically, for ∇cx, we 

calculated (x+ − x−)/(x+ + x−), where x+ and x− were the averages in the right and left half 

of a 1 cm2 box centered at each lattice point, respectively. ∇cy was calculated analogously, 

using the top and bottom half of the same box. Odor velocities were calculated similarly 

to those in the imaged plume used in Fig. 1, by correlating the values in a given spatial 

region between two frames. Specifically, to get vx, odor at a given time t, we calculated 

argmaxΔx s xj, t s xj + Δx, t + Δt xj, where s(xj, t) was the odor concentration in a 1 cm2 box 

averaged over the y-direction for each xj pixel spaced by 0.5 mm. The shifts Δx ran from 

−20 to 20 pixels (±1 cm). This quantity was multiplied by the frame rate of 100 frames per 
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second and by the spatial resolution 0.5 mm per pixel to get vx, odor in mm/s. An analogous 

operation was done for vy, odor using the same 1 cm2 box. All odor gradient and odor 

velocity values for very low odor concentrations were set to Nan, as were any odor velocity 

values that produced a maximum shift |Δx| = 20. The resulting wind speed, gradient, and 

odor velocity were all smoothed in time using a Savitsky-Golay filter of order 1 and window 

length 11 (110 ms).

Analysis of fly navigation in complex virtual plumes: For the plume navigation 

experiments (Fig. 7), we considered tracks that began in the downwind 50 mm of the 

arena (x > 230 mm) and had an average walking speed of at least 0.5 mm/s. For the 

histograms (middle and right plots in Fig. 7f, 7i), we only plotted instances at which the fly’s 

instantaneous walking speed was greater than 5 mm/s. For the success ratios (lefthand plots 

in Fig. 7f, 7i), we considered tracks which lasted 30 seconds or longer, or which reached the 

upwind end of the arena (x < 50 mm) before then.

In silico virtual agent model and simulation: We use two different navigation algorithms 

for the agent-based simulations.

The bio-inspired algorithm (Fig. 7j-l) was modeled on our previous work10, which 

quantified the navigational behavior of walking Drosophila in spatiotemporally complex 

odor plumes. We ran the agents in the imaged complex plume used in the plume navigation 

experiments (Fig. 6g). We recapitulate the algorithm briefly here, but refer the reader to the 

original study for all details.

We generated two types of agents: DS- agents, which obeyed the original navigational model 

and could not sense odor direction, and DS+ agents, which combined the original model 

with odor direction sensing. Both DS+ and DS- agents navigated using the timing of odor 

“hits” – times at which c(t) exceeded a threshold, here chosen to be 3 (the digitized signal 

ranges from 0 to 255). At each frame, agents underwent stochastic transitions between 

walking, turning, and stopped states. Agents walked at a constant speed of 10 mm/s. 

During walking, their heading underwent rotational diffusion, with a standard deviation 

of 0.22° every frame (each frame is 1/60s). Transitions from a stopped to walking were 

inhomogeneous Poisson processes, in which the transition rate increased monotonically 

with the frequency of odor hits. Transitions from walking to a stopped state were also an 

inhomogeneous Poisson processes, where the rate dipped at each odor hit, before decaying 

back to a baseline – thus, flies keep walking when the frequency of odor hits is high. Turns 

only occurred while walking, and were Poisson events with a rate of 0.5 Hz. Each turn 

magnitude was a random sample from N(30°,8°).

The key navigational aspect of the bio-inspired algorithm was the turn direction. For DS- 

agents, the turn direction was a binary random variable, either upwind or downwind, where 

p(upwind) = min(1,0.5 + αw(t)), where α = 1 and w(t) is a running average of the frequency 

of odor hits. As in the original study, the running average is computed by convolving the 

binary vector of odor hit onsets (‘1’ at the onset of each odor hits; ‘0’ elsewhere) with an 

exponential filter of timescale 2s. Thus, for frequent odor hits, the turns are more likely to be 

directed upwind. For DS+ agents, the turn direction was a binary variable, either against or 
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toward vsum, where vsum is the vector sum of the odor motion direction and wind direction: 

p(against) = min(1,0.5 + αw(t)), where α = 1. Thus, as the frequency of the odor hits 

increases, the agent is more likely to direct its turns against the summed direction vsum.

To compute the odor hit times (for both DS- and DS+ agents) and odor direction (for only 

DS+ agents), the agents had two antennae separated by 1.5 mm, and each antennae received 

an odor signal, cL(t) and cR(t), respectively, that was the average signal value in a 0.5×0.5 

mm2 region. The total odor signal c(t) was cL t + cR t
2 . For DS+ agents, the odor motion 

direction was computed by taking the sign of codor t = cL t cR t + ΔT − cL t + ΔT cR t , where 

the delay ΔT was chosen as 1 time frame. For codor(t) > 0, odor direction vector pointed θ + 

90°, and for codor(t) < 0, odor direction vector pointed θ − 90°, where θ is the agent heading. 

In other words, the agent can resolve only the direction, left or right, of the odor motion. 

If the correlation magnitude is too low (|codor| < 5), then DS+ agents ignore codor and turn 

against the wind direction like DS- agents.

All 100 agents in the bio-inspired algorithm were initialized in the back 50 mm of the 

arena and uniformly in the lateral direction, and their headings were initialized randomly in 

the upwind 180 sector. Agents were simulated for 2500 frames, or 41.7 seconds. If agents 

reached the rectangular boundary of the arena, they were reflected ballistically from the 

wall.

In the simple algorithm (Extended Data Fig. 9), virtual agents with 2 spatially separated 

sensors navigated the simulated plume (Fig. 6a) using a simple algorithm. All agents were 

initialized at the back of the arena, facing upwind. At each frame (10 ms), agents turned 

either left or right 90° (except for upwind oriented DS- flies when within the odor signal 

– these flies maintained upwind), depending on the navigation strategy as described in 

the main text, and stepped forward 0.75 mm. The sensors were placed 0.5 mm to the 

left or right of the agent centroid. The measured odor signal concentration was defined as 

c = cL + cR
2 , where the concentration in each sensor was cL and cR, respectively. We set 

the detection threshold at c0 = 1e-3. The odor correlation between the two sensors was 

defined as codor t = cL t cR t + ΔT − cL t + ΔT cR t , where the delay timescale ΔT was chosen 

as 1 frame (1/100 s). From codor, the direction of odor motion vodor was defined +1 if 

abs codor t > 1e-8 and sgn codor t > 0, as −1 if abs codor t > 1e-8 and sgn codor t < 0, and as 

0 otherwise. In general, odor signals with a leftward component over the virtual agent in 

its body frame had vodor = 1 and, while those with a rightward component had vodor = −1. 

Simulations were carried out separately for agents that could sense (DS+) and could not 

sense (DS-) odor motion. Agents followed the strategy as described in the main text. For 

DS+ flies, whenever codor was below threshold (abs codor t >1e-8), but the odor was still 

detectable (c > c0), the decisions obeyed the DS- strategy. All agents were initialized in the 

back 50 mm of the arena and uniformly in the crosswind direction, and simulated for 2500 

timesteps, or 25 s.

Theoretical analysis of odor motion in turbulent odor plumes: Here we investigate the 

motion of odor signals perpendicular to the mean flow using a toy model of turbulent 
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plume similar in spirit to those used in19,56,57. Odor packets are released from a point 

source at a given rate. The concentration around the center of each packet is given by a 

local diffusive process that spreads the concentration via molecular diffusion of the odor. 

Meanwhile, the packets themselves are advected downwind by the mean flow, while being 

dispersed by the fluctuating velocity u19. We consider the simple case of an isolated packet 

and calculate its expected velocity crosswind to the flow, at different locations throughout 

the plume. For analytical simplicity, we assume stationary homogeneous and isotropic 

turbulence and model the turbulent velocity u as a telegraph process that switches between 

left motion and right motion at speed v, where the switching rates from left to right and 

vice versa are both λ = 1/T. Thus, 2T is equivalent to the Lagrangian integral time scale 

and the packet speed v to the r.m.s. of the turbulent velocity field. While the velocity u 
switches discontinuously between +v and −v, its time correlation function is the same as 

that of the Ornstein-Uhlenbeck (O-U) process often used to model homogeneous isotropic 

turbulence19,54:

u t u t′ ∝ e−
t − t′

2T

Our goal is an estimate of the average odor motion velocity at a given lateral distance from 

the plume, at a given time t, v y, t. Since packets are advected downwind at some speed U 

≫ v, we have t ≈ x/U, so that this is equivalent to finding the average lateral velocity at 

some x, y position in the plume54. Run times are distributed as 1
T e−t/T, so packets reaching a 

given y will have been traveling for some distance y, where y is distributed as p y = 1
Tve−y/Tv. 

If the packets were originally uniformly distributed, then the average velocity at y would 

be 0. However, an asymmetry arises due to the non-uniform packet distribution, which is 

dispersing laterally from a delta function at y = 0. For times t ≫ T, the distribution of 

packets is approximately the diffusion kernel with effective turbulent diffusivity DT = Tv2:

p y, t = 1
2πTv2t

e−y2/2Tv2t

Under these assumptions, the average velocity at the fixed point 〈v〉y,t is:

v y, t =
v∫−∞

y p y′, t − y′/v e− y − y′
vT dy′ − v∫y

∞p y′, t − y′/v e− y′ − y
vT dy′

∫−∞
∞ p y′, t − y′/v e−

y − y′
vT dy′

The first term in the numerator is for packets reaching y that have come from its left 

(these are traveling in the +y direction), while the second is for those reaching y that 

have come from the right, which are traveling in the −y direction. The denominator is a 

normalization factor given by the total number of packets reaching y at time t. This equation 

can be integrated numerically. To obtain an analytical approximation, we neglect the change 

in the packet distribution over the time of traveling one correlation time, approximating 

p y′, t − y′/v  by p(y′,t), since the packet distribution does not change appreciably over that 

time (the validity of this assumption was verified by simulations). Integrating:
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v y, t = v R+ − R−
R+ + R−

,

where

R+ = e
y

Tv 1 − erf vt + y
2Tv2t

R− = e− y
Tv 1 − erf vt − y

2Tv2t

for |y| < vt, and 0 otherwise. We are interested in i) whether the average lateral velocity 

of the packets is directed outward from the plume, which would be indicated by an 

asymmetrical dependence in y, and ii) how this asymmetry depends on the correlation time 

T. The profile of 〈v〉y,t is odd for all T (Extended Data Fig. 10a), indicating that for any T, 

the velocity of odor packets in the crosswind direction points away from the plume’s central 

axis. Moreover, for higher T, the velocity component points more strongly outward through 

a larger portion of the plume, indicating that correlations in the packet motion underlie this 

directional cue (Extended Data Fig. 10a).

We next investigate how the combination of packet diffusion and packet centroid motion 

together can influence a spacetime correlation of the odor concentration, as would be 

computed by time-resolved bilateral measurements. For simplicity, we do this computation 

in one dimension, considering diffusion of packets and dispersion of their centroids in 

the y direction only, along with ballistic transport in the x direction. We start with 

a single packet. Assuming yi(t) is the trajectory of the centroid of the packet and 

ϕ y, t yi t = 1
4πDpt

e− y − yi
2/4Dpt is the local concentration at a given location y and time t 

around the packet. We define the correlator as:

C Δy, Δt y, t, yi t = ϕ+ + ϕ− − − ϕ+ − ϕ− + ,

where

ϕ+ + = ϕ y + Δy/2, t + Δt/2 yi t

ϕ− − = ϕ y − Δy/2, t − Δt/2 yi t

ϕ+ − = ϕ y + Δy/2, t − Δt/2 yi t
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ϕ− + = ϕ y − Δy/2, t + Δt/2 yi t

Thus, the correlator C(Δy, Δt|y, t, yi(t)) is a time-antisymmetrized quantity, which at time 

t and position y computes the correlation of the odor concentration between two points in 

the direction perpendicular to the mean wind, separated by Δy at times separated by Δt, 
given a packet whose center is at (xi,yi) and which was released at t = 0. We stress that 

we do not imply that this correlator is being enacted by any circuitry, nor is it a unique 

definition. However, it has key features – namely comparisons across space and time, and 

time anti-symmetry – which we will show to be sufficient to detect the lateral odor velocity. 

Expanding this correlator gives

C Δy, Δt y, t, yi t = ΔyΔt ϕ∂t ∂yϕ − ∂yϕ∂tϕ

to lowest order. For the packet model, at appreciable times t ≫ T, this gives:

C Δy, Δt y, t, yi t = ΔyΔtt ẏi + y − yi

8πDp
2t3 e− y − yi

2/2Dpt

Now we take the average of the correlator over the packet distribution p(yi, t) to get the 

expectation at a fixed y, t:

C Δy, Δt y, t = ∫ dyiC Δy, Δt y, t, yi t p yi, t

where p yi, t = 1
2πTv2t

e−yi2/2Tv2t for t ≫ T, as above. We can approximate yi˙  by v yi, t – the 

average velocity for a packet at position yi as derived above. The expression for 〈C(Δy, 

Δt|y, t)〉 does not lend itself to a closed-form expression due to the complexity of v yi, t; we 

integrate it numerically.

In nature, the strength of the turbulence will vary in space and time, so it is informative 

to examine how the average correlator output 〈C(Δy, Δt|y, t)〉 depends on the Lagrangian 

integral time scale T and the r.m.s. of the turbulent velocity field v, which controls the packet 

speed in the direction perpendicular to mean wind direction. We find that for Dp ≪ DT = 

v2T, the correlator 〈C(Δy, Δt|y, t)〉 has a clear asymmetry about y = 0 as expected, and 

that the peaks are stronger with increasing correlation time T (Extended Data Fig. 10b). 

Moreover, 〈C(Δy, Δt|y, t)〉 increases on average with v, while decreasing with Dp (Extended 

Data Fig. 10c), indicating that the response essentially derives from correlated motion over 

the detector rather than molecular diffusion alone.

Statistical quantification: All error bars, when shown, represent standard error of the mean. 

Statistical tests used and significance levels (p value) for given comparisons are indicated in 

the main text. Throughout, *, **, ***, and **** refer to p-values of < 5e-2, <1e-2, <1e-3, 

and <1e-4. In some instances, **** may refer to p < 1e-6, if indicated in the text. For the 

plume navigation data, SEMs are taken over distinct fly trajectories.
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Extended Data

Extended Data Fig. 1. Verification of odor velocity calculation and distributions of signal-derived 
quantities in measured plume.
a, Mean odor velocity measured in the virtual antenna at all times for navigating flies in 

measured smoke plume, plotted as a function of fly orientation. The –cos(θ) trend reflects 

the fact that the main component of odor velocity is parallel to the mean wind direction 

90°, as expected – a consistency check on the odor velocity calculation. b-d, Histograms of 

signal-derived quantities measured in the fly virtual antenna; the x-axis limits in Fig. 1c–e 

are determined by the extent of these histograms.

Kadakia et al. Page 32

Nature. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2. Electrophysiological and behavioral verification of optogenetic activation 
of Drosophila ORNs.
a, Extracellular measurements of ab2A firing rates for various odor signals mimicking those 

we use throughout our study. Stimuli (red shades) are delivered using a Luxeon Rebel 

627 nm red LED (Lumileds Holding B.V., Amsterdam, Netherlands) at 10 uW/mm2. The 

frequency and duty cycle for the stimuli in the first plot are 1.5 Hz and 50% respectively, 

which mimics what a stationary fly in the 5 cm wide, 15 mm/s fast moving bars (Fig. 2b) 

would encounter. Longer stimuli approximate the experienced stimuli in the wide moving 
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bars (Fig. 2e–f). Last plot shows the experienced stimulus and corresponding firing rate for 

one representative measured fly navigating 15 mm/s moving wide bars. All recordings were 

taken from 5 ab2a ORNs in 2 different flies. b, Illustrative track of fly following stationary 

fictive odor ribbons upwind. Red bars: optogenetic stimulus location – bars are overlaid 

on the figure, but not actually imaged since the image is IR-pass filtered. c, Fictive odor 

signal for fly (red bars) can be simultaneously quantified with fly behavior (teal) by aligning 

camera and projector coordinate systems (Methods). Plotted are the encountered fictive odor 

signal and behaviors for the track shown in b. d, Verification that flies on both top and 

bottom glass surface of assay respond similarly to fictive odor signals (here, 3 odor ribbons 

in laminar wind; left). Flies were manually annotated as being on the top or bottom surface. 

In both cases (middle and right), flies followed the fictive odor ribbons upwind, similar to 

behavioral responses with real odors10.

Extended Data Fig. 3. Odor direction selectivity in single antenna and single Or flies and 
ON/OFF edge responses across speeds and for negative controls.
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a, Component of fly walking velocity along +x direction during the 5s stimulus (shaded 

grey) and blank periods (illustrated in Fig. 2b), in Orco>Chrimson flies that have one 

antenna ablated (compare to Fig. 2d). Shaded errors: SEM. Blue and orange denote 

rightward and leftward moving bars, respectively. Since it is difficult to distinguish flies 

walking on the top and bottom surface of the assay, right- and left-antenna ablated flies are 

pooled. n = 100, 89 tracks for rightward and leftward bar motion, respectively. Only flies 

oriented in the 90° sector perpendicular to the bar motion are included. b, Distribution of 

fly orientations during the 5s stimulus (top) and 5s blank periods (bottom), for rightward 

(blue) and leftward (orange) bar motion, Orco>Chrimson flies with one antenna ablated 

(compare Fig. 2d). Orientations are symmetrized over the x-axis. c-d, Same as a-b, for 

Or42b>Chrimson flies with both antennae intact. n = 37, 50 tracks for rightward and 

leftward bar motion, respectively. e, Turning bias for all instances that flies encounter the 

fictive odor ON (green) or OFF (purple) edge, for flies oriented within a 90° sector of the 

direction perpendicular to bar motion. Turning bias calculated as sign of fly orientation 

change from 150 ms to 300 ms after the edge hit. All flies are Orco>Chrimson and fed 

ATR (i.e. optogenetically active) except in the 7th plot, which are not fed ATR. Data are 

shown for bars that move at various speeds (left 6 plots), as well as for negative controls 

(7th and 8th plot). Error bars: SEM. P values calculated using the chi-squared test (****p 
< 1e4, ***p < 1e-3, **p < 1e-2, *p < 0.05). Specifically, p=9.60e-5 for n=1472 ON edge 

hits and p=0.23 for n=1661 OFF edge hits for 30 mm/s bars; p=3.49e-3 for n = 1167 ON 

edge hits and p=0.132 for n=1306 OFF edge hits for 20 mm/s; p=1.03e-6 for n = 548 ON 

edge hits and p=1.18e-3 for n=470 OFF edge hits for 15 mm/s; p<1e-6 for n = 1125 ON 

edge hits and p=1.78e-5 for n=1039 OFF edge hits for 10 mm/s; p<1e-6 for n = 1000 

ON edge hits and p=0.816 for N=987 OFF edge hits for 5 mm/s; p=0.012 for n = 1284 

ON edge hits and p=0.2106 for n=1633 edge hits for 1 mm/s; p=0.423 for n = 1387 ON 

edge hits and p=0.701 for n=1484 OFF edge hits for no ATR 10–15 mm/s; and p=0.0295 

for n = 988 ON edge hits and p=0.454 for n=1153 OFF edg hits for 1 antenna 10–15 

mm/s. Direction selectivity is satisfied if both ON and OFF edge responses have the same 

sign; gradient sensing would require opposite signs for the two edges. Data indicate that 

flies counterturn against the direction of fictive odor bars at both edges, within a range 

of bar speeds. Large ON responses for slow bar speeds are likely attributed to gradient 

sensing: since the direction of odor motion and gradients are the same for ON edges but 

opposite for OFF edges, this would give appreciable ON edge responses at slower speeds, 

but diminished OFF edge responses. f, Turning responses for Or42b > Chrimson flies, in 

which light activates only one ORN type, in response to bars moving at 10–15 mm/s. Error 

shades: SEM. Turning responses are consistent with direction selectivity (compare Fig. 2f). 

p=4.82e-3 for n = 706 ON edge hits and p=5.51e-3 for n=763 OFF edge hits. g, Dependence 

of results on choice of window over which turning bias is calculated. The x-axis shows 

the onset time of the window; the offset time was 150 ms later. The y-axis plots turning 

bias for flies oriented within a 90° sector of the direction perpendicular to bar motion (as 

in e). “Experimental” flies refer to Orco > Chrimson in response to bars moving at 10–15 

mm/s (same as in Fig. 2); “no-ATR” and “1 antenna” are the same flies not fed ATR or 

with only 1 antenna, respectively. The “null” condition is calculated using random chosen 

trajectories and calculating angle changes following fictitious moving bars at random angles 

not actually presented to the flies. Over window onsets of 0–200 ms, the no ATR, 1 antenna 
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and null responses are all within the same regime (< ~0.1), while the experimental responses 

are significantly higher. These results are consistent with previous findings. OFF response 

reaction times of ~500 ms have been observed9, but those were for flies counterturning 

back into static ribbons – the differing locomotive repertoire (flying vs. walking) and plume 

dynamics (static vs. dynamic) would account for this discrepancy. Reaction times of 400 

ms have been observed for walking flies, but this may reflect imprecision in odor delivery6; 

indeed, reaction times are as low as 100 ms for tethered flies whose ORNs are stimulated 

optogenetically17 and as low as 85ms when ORNs are stimulated with real odors 25.
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Extended Data Fig. 4. OFF edge responses with laminar and ON edge responses for fast 30 mm/s 
bars.
a, Turning bias versus fly orientation when bilateral optogenetic stimulus is turned off 

(compare first plot in Fig. 3B for flash onset). n = 1490 OFF flash hits. b-d, Fly turning bias 

for 15 mm/s bars moving parallel, antiparallel, and perpendicular to 150 mm/s laminar wind 

(compare Fig. 3d). Shaded errors: SEM. n = 1493, 1588, and 671 OFF edge encounters for 

bars parallel, antiparallel, and perpendicular to the wind, respectively. e, Fly turning bias vs. 

fly orientation at ON edge for faster 30 mm/s fictive odor bars without wind (analogous to 
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15 mm/s bar responses in second plot of Fig. 3b). Dotted line: fit of response to −0.16 cosθ. 

N = 1472 ON edge encounters. f, Additive model for ON edges of 30 mm/s bars; analogous 

to Fig. 3d. Solid shaded region: mean ± 1 SEM; dotted lines: additive model prediction. 

N = 323, 319, and 1013 ON edge encounters for odor bars with parallel, antiparallel, and 

perpendicular to the wind, respectively.

Extended Data Fig. 5. Supplementary figures and additional evidence that direction sensing is 
enacted using a correlation-based algorithm.
a, Schematic illustrating calculation of latency ΔT between antennae hits for moving edges. 

Correlation-based models for direction selectivity depend on the latency ΔT of the time 

the edge hits the two sensors – in this case, the fly’s two antennae. Measuring ΔT does 

not require resolving the image or stimulus at antennal resolution (~300 μm), rather ΔT 
can be inferred with knowledge of the fly’s orientation relative to the bar direction ϕ, 
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as well as the speeds of the fly and bar – all of which are known. See Methods for 

details of the calculation and an estimate of the uncertainty. b, Spatiotemporal correlation 

functions for correlated noise stimuli (Fig. 4c–f). Each type of correlated noise stimulus 

is characterized by the correlation function C(Δx,Δt) computed between all pairs of bars 

separated spatiotemporally by Δx pixels and Δt frames. Since our stimuli are generated 

by summing and binarizing Gaussian variables, nonzero correlations off of the origin have 

magnitude 1/326. For example, for positively correlated with-wind stimuli (top left plot), 

C(1,1) = C(−1,−1) = 1/3, and the remaining correlations are zero, while for negatively 

correlated with-wind stimuli (bottom left plot), C(1,1) = C(−1,−1) = −1/3. c, Snapshots of 

glider stimulus with correlations along +x axis, for 3 consecutive frames. In one instance of 

time, stimulus is a random pattern of light and dark 1-pixel-wide bars perpendicular to 150 

mm/s laminar wind. Each x-pixel is perfectly correlated with the pixel to its right in the next 

frame; thus the pattern in the next frame is the same as the pattern in the current frame, but 

shifted by one pixel. Visually, this would be perceived as a fixed pattern moving coherently 

to the right in discrete steps. d, Like correlated noise stimuli, gliders are defined by their 

correlation matrix C(Δx,Δt). Unlike correlated noise, the correlations i) have magnitude 1, 

and ii) exist for many spacetime points. That is, for rightward correlated gliders, a given 

pixel in a given frame is perfectly correlated with the pixel to its right one frame later, 

but also with the second pixel to its right 2 frames later, etc. Thus C(Δx,Δt) has values 

+1 along the diagonal. Similarly, C(Δx,Δt) has values 1 along the anti-diagonal. Since +x 
points downwind, we call gliders with correlations to the right “with-wind”, and gliders with 

correlations to the left “against-wind,” in analogy to the correlated noise stimuli (Fig. 4d). 

e, Turning bias versus fly orientation for with-wind (blue) and against-wind (red) gliders. 

Data using pattern update rates of 45 or 60 Hz are pooled. Shaded errors: SEM. Gliders 

are presented in 4s blocks, interleaved with 4s of no stimulus. Turning bias is defined as 

the sign of the change in orientation from 200 to 500 ms after the block onset. We only 

used flies with speeds < 12 mm/s for gliders, since long-range correlations can interfere 

with the intended correlation if fly walking speed is near the glider speed. n = 301, 247, 

for with-wind and against-wind, respectively. f, Turning bias averaged over all orientations 

for different glider speeds. Glider speed is calculated as (pixel width)⋅(pattern update rate) 

where the pixel width is 290 μm and the pattern rate is some multiple of the inverse frame 

rate, 1/(180 Hz). n = 141, 163, 138, 190 onset events for with-wind stimuli at glider speeds 

25, 16, 12, and 10 mm/s, respectively; n = 159, 119, 128, 137 onset events for against-wind 

stimuli at same glider speeds, respectively. g, For correlated stimuli to be sensed in our 

assay, the bar width (size of x-pixel, 290 μm), must be on the order of the fly antennal 

separation (~300 μm58). h, Glider stimuli experiments repeated for bars that were double the 

width, 580 μm. Differences now disappear for with and against-wind correlations, consistent 

with bilaterally-enabled direction sensing, since these bars are too wide to consistently 

stimulate antennae differentially. Shaded errors: SEM. n = 195, 169 for with-wind and 

against-wind, respectively.
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Extended Data Fig. 6. HRC response is robust to signal pre-filtering.
Minimum resolvable inter-antennal latency ΔT as a function of the noise level, for 

exponential pre-filters of varying timescale, τsmear = 1, 15, 50 ms, respectively, for the 3 

plots. Noise level is quantified as a random shift of ΔT, where each shift is chosen from a 

normal distribution with mean zero and standard deviation δt. The HRC’s delayed arm has 

an exponential filter of timescale τHRC = 15 ms. Dotted line: identity. A particular value of 

ΔT is deemed resolvable if the SD over HRC responses is greater than the mean over HRC 

responses (see Methods for details). The mean and SD are calculated over 100 samples (i.e. 

100 random shifts of ΔT) for a given noise level δt.

Extended Data Fig. 7. Odor velocity and concentration gradients provide complementary 
directional information in complex plumes.
a, Vector field of the negative gradient of odor concentration −∇c, averaged over the 

full simulation (compare to Fig. 6c in the main text). Gradients contain strong lateral 

components near the odor source. b, Time course of an estimate of the direction of odor 

motion θodor = tan−1 (vy ,odor, vx ,odor) at the center of the boxed regions in Fig. 6a, determined 

by averaging all detectable θ in the past t seconds. Error bars are found by repeating this 

for 16 different 10 s time windows throughout the simulation, and taking the average and 

standard deviation over these 16 samples – these correspond to the mean and standard error 

of the mean. Dots indicate the time needed to distinguish the direction of odor motion 

from 0° (downwind) with a 68% confidence level for the 3 regions. c, Heatmap of time 

taken to distinguish the direction of odor motion from 0° to within 68% confidence for 

fixed locations throughout plume. Black values include the possibility that the odor motion 

direction is not distinguishable from downwind no matter how long one samples.
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Extended Data Fig. 8. Odor motion sensing aids plume navigation by increasing lateral motion 
toward the plume centerline.
a, Average change in position parallel to wind, x (left), and away from the plume centerline, 

|y| (right), in outward (purple) and inward (green) moving bars plume (Fig. 6d), as a function 

of time. Note that x = 0, y = 0 is the fictive plume’s odor source location. The initial 

values at t = 0 of x (y) were subtracted, so the change Δx (Δy) is plotted – this is negative 

because flies progress toward to the centerline (decreasing y) and upwind (decreasing x). 

Only flies beginning in the rear 50 mm of the arena and which navigated for at least 30s 

were considered. Shades: SEM over distinct fly trajectories. Dotted lines: times t = 10, 20, 

30s. By t = 20s, flies in the outward bar plume have made more progress both in the upwind 

direction (p = 0.025; 1-tailed t-test) and toward the plume centerline (p = 0.032; 1-tailed 

t-test). b, same for fictive odor plume shown in Fig. 6g, played normally (purple) or in 

reverse (green). Here, flies make equal progress upwind by 30s (left plot), but significantly 

faster progress toward the plume centerline in the forward played plume than the reverse one 

(right plot) (p=0.035 at t = 10s, p=3.0e=3 at t = 20s, at p=1.6e-4 at t = 30s; 1-tailed t-test). 

Shades: SEM over distinct fly trajectories.
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Extended Data Fig. 9. Odor motion sensing enhances performance of virtual robots obeying a 
simple navigation strategy on a grid.
a, Model of 2-sensor virtual agents navigating the simulated odor plume (Fig. 6a). Agents 

are always oriented at 0°, 90°, 180° or 270°, and at each timestep turn 90° either left or 

right and move forward one step. Agents are either odor direction sensing (DS+) or not 

odor direction sensing (DS-). When odor concentration c exceeds some threshold c0, DS- 

agents turn upwind. DS+ agents, for c > c0, turn against the direction of odor motion when 

oriented upwind or downwind; crosswind agents always turn upwind. DS+ agents infer the 
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direction of odor signals using an HRC-like computation between their 2 sensors (Methods). 

b, Example trajectories of robots navigating plume in a, when they are initialized in the 

back 50 mm of the arena, for DS- (top) and DS+ (bottom) agents. c, Percentage of 100 

agents reaching the 50×50 mm red source region; more DS+ agents reach the source than 

DS- agents (38% vs. 19%; p < 1e-6; 1-tailed t-test) d, Lateral distance from plume axis |y| 

over time, for agents initialized near the plume edges (>60 mm from plume axis, indicated 

by the solid boxes in b; top plot) or near the plume axis (<60 mm from axis, indicated by 

the dashed boxes in b; bottom plot). Odor direction sensing enhances lateral drift toward the 

plume centerline, particularly for robots initialized at the plume edges.

Extended Data Fig. 10. Odor velocity in model of turbulent plumes points outward from plume 
centerline and is computed by local space-time correlators.
A packet model of turbulent plumes. Packets are released from a source and disperse in the 

lateral direction while being advected downwind (see Methods for model and calculation 

details). a, Packet velocity 〈v〉y,t in the plume model, as a function of y = y/ T , for two 

correlation times, T = 0.2 (purple) and T = 1 (green), at a fixed time t = 4. Here, v is 

set to 1. To directly compare velocity for plumes with different T, (and therefore different 

diffusivities) we plot the velocity versus the normalized length y. Specifically, since 〈y2〉 
= 2Tv2t for t ≫ T then at a given t, the packet distribution in terms of y is the same for 

plumes with distinct T. The distribution of packets for either T is a function of y is shown 

in grey. The velocity is an odd function of y, i.e. it points outward from the plume axis. In 

addition, the asymmetry is steeper for higher correlation times. b, The value of the correlator 

〈C(Δy,Δt|y,t)〉 as a function of lateral distance y, for various times t for T = 0.1 (left) and T = 

0.3 (right). Here, Dp = 0.005. Since the packets are advected downwind with a velocity U ≫ 
v, the time axis is proportional to the downwind distance. The packet distribution is shown 

on the bottom; the limits of the y-axis are chosen such that the plume extents are the same 

in both plots. c, The total y-integral of the absolute value of 〈C(Δy,Δt|y,t)〉 at a fixed t = 4, 

as a function of odor packet speed (y-axis) and molecular diffusivity (Dp), with T = 1, v = 

1. This integral indicates the degree of directional sensing on average. The integral is highest 

for greater packet speeds and lower molecular diffusivities (top left corner).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Drosophila turning behaviors are correlated with the direction of odor motion in a 
spatiotemporally complex odor plume.
a, Snapshot of walking flies navigating a spatiotemporally complex odor plume generated 

by stochastically perturbing an odor ribbon in laminar flow with lateral airjets, as described 

previously10. Odor gradients (magenta arrows) and odor velocity (green arrows) do not 

necessarily align and can point in random directions relative to the odor source. Blue oval: 

virtual fly antennae region used to estimate signal quantities during navigation. b, Example 

time traces of fly behaviors (orange) and signal-derived quantities (blue) for track shown 

in a. Odor velocity was computed by cross-correlating the signal in the virtual antenna 

over successive frames and determining the spatial shift with maximal correlation. Odor 

gradient was computed as the slope of the odor concentration along the major axis of 

the virtual antenna. c, Fly angular velocity as a function of odor concentration, for flies 

oriented in a 40° upwind sector (black), or in a 40° sector centered 40° clockwise (red) 

or counterclockwise (blue) from the upwind direction. Positive values: counterclockwise 

turn. Curve shades: SEM. Correlations are significant for flies in the off-axis sectors (slopes 

= 0.037 ± 0.005, n = 174 tracks and −0.039 ± 0.003, n = 312 tracks for clockwise and 

counterclockwise sectors, respectively. p < 1e-6 (two-tailed t-test) for both sectors), but not 

those oriented directly upwind (slope = 0.005 ± 0.003, p = 0.09, n = 285 tracks). d-e, Fly 

angular velocity versus odor gradient and odor velocity for flies oriented in a 40° sector 

upwind. Angular velocity is uncorrelated with odor gradient (mean slope = −0.005 ± 0.003, 

p = 0.072, two-tailed t-test, n = 284 tracks) but significantly correlated with odor velocity 

(mean slope = 0.040 ± 0.003, p < 1e-6, two-tailed t-test, n = 282 tracks) across the virtual 

antenna.
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Figure 2. Turning responses are consistent with direction sensing, not gradient sensing.
a, Schematic of optogenetic fly walking assay. Flies with Chrimson expressed in ORNs 

receive optical stimulation from a video projector mounted above the arena. b, Fictive 

odor bars moving at 15 mm/s are presented in 5s blocks, interleaved with a 5s blank 

period. c, Component of fly walking velocity along +x direction during the stimulus (shaded 

grey) and blank periods, for bars moving in +x (blue; n=178 tracks) or -x (orange, n=192 

tracks). Shaded error bars: SEM. Only flies facing in the 90° sector perpendicular to bar 

motion at odor onset (t = 0) are included; d, Distribution of fly orientations during stimulus 

(top) and blank periods (bottom); colors same as c. Orientations are symmetrized over 

the x-axis. e, Direction sensing can be differentiated from gradient sensing by measuring 

turning responses versus fly orientation at both edges of wide, moving fictive odor bars: 

the ON edge (when the fictive odor first passes onto the fly) and the OFF edge (when it 

leaves the fly). f, Fly turning bias versus orientation for ON (green) and OFF (purple) edges 

moving at 10–15 mm/s. Darker curves: flies fed ATR; lighter curves: not fed ATR. Turning 

bias is quantified as the sign of orientation change following edge onset, where (−1) +1 is 

(counter)clockwise. Each point covers ±45°; thus, distinct points contain overlapping data. 

Error bars: SEM. Turning bias for ATR-fed flies, when oriented perpendicular to the bar 

motion (θ = 0), are significantly different from zero for both ON and OFF edges (p < 1e-6 

for both edges, chi-squared test; n=1673, 1509 ON and OFF edge encounters, respectively). 

Turning biases are not statistically distinct from zero for non-ATR fed flies (p=0.09 and 

p=0.77 (chi-squared test) and n=1397 and 1484, for ON and OFF edges, respectively).
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Figure 3. Turning responses to odor and wind direction are summed.
a, Flashing the whole arena stimulates both antennae simultaneously, removing any 

directional odor cues. Laminar wind is introduced at 150 mm/s. b, Turning bias versus 

fly orientation, defined as in Fig. 2, for fictive bilateral odor flashes in the presence of 

wind (top; n = 1240 odor hits); error shades: SEM. Grey shaded boxed regions: values for 

which fly turns counter to the wind direction; all measured values lie in this range. Dotted 

line: fit to −0.4cos θ. c, Turning bias versus fly orientation for moving fictive odor bars 

without wind, at the ON edge (same data as the darker green curve in Fig. 2f, but without 

symmetrizing orientations). Grey shades: values for which flies turn counter to bar direction. 

Dashed line: fit to −0.3cos θ. d, By row: expected turning bias versus orientation (dashed 

curve) for bars moving parallel, antiparallel, or perpendicular to the wind, assuming that 

turning bias is the sum of the fitted cosines from b (black curve) and c (grey curve). In the 

2nd and 3rd row, the grey curve has a phase shift depending on the bar direction relative to 

the wind. e, Solid curves: mean of measured data. Bars move at 15 mm/s. Dashed curves: 

expected responses from d. Shaded regions: SEM. n = 1361, 1679, and 696 ON edge hits for 

bars parallel, antiparallel, and perpendicular to the wind, respectively. The additive model is 

also consistent with faster bar speeds, which have reduced responses (Extended Data Figs. 

4e–f).
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Figure 4. Odor motion sensing employs an algorithm sensitive to correlations.
a, Schematic of hypothesized HRC model in the olfactory circuit. b, Black dots: turning bias 

versus ΔT, using the moving bar data from Fig. 2f. Each datapoint spans ±4 ms. Middle 

(outer) red lines: fit of HRC model to the mean (± 1 SEM) of turning bias. n = 1475 

hits. c, Correlated noise stimuli consist of 1-pixel-wide fictive odor bars. In one frame (3 

frames shown), each bar is independently light or dark. Here, bars are positively correlated 

along +x, so a light bar at a given x in one frame is likely to be proceeded by a light 

bar one x-pixel to its right in the next frame. Visually, this appears as a rightward moving 

pattern. d, Illustration of patterns over time, for the 4 different types of correlated noise 

stimuli. Each pixel denotes the luminance of a bar at a given x-position, at a given time. 

The 4 stimulus types are defined by correlation displacement (along +x, i.e. with-wind, or 

along −x, i.e. against-wind) and correlation parity (+ or -). For example, for “with-wind” 

positively correlated stimuli, bars are correlated with their righthand neighbors in the 

subsequent frame – this produces red-red or black-black diagonal patterns throughout the 

x-t plot. e, Turning bias versus fly orientation for positively correlated (top) and negatively 

correlated (bottom) stimuli. Stimuli presented in 4s blocks; turning bias defined as sign of 

orientation change over 300 ms after stimulus onset. n = 337, 327 onset events for positively 

correlated with- and against-wind; n = 219, 227 for negatively correlated with- and against-

wind, respectively. Shaded errors: SEM. f, Difference between with-wind and against-wind 

responses from e, for positive (green) and negative (purple) correlations. Curves differed 

significantly for θ = 0 (p <1e-6, chi-squared test).
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Figure 5. The temporal precision of ORN responses is sufficient to encode odor directionality.
a, Spike rasters for ab3A ORNs responding to 50 ms puffs of ethyl acetate. Odors were 

presented 20 times each (rows) to different ORNs (colors) with 3s intervals. Top trace: odor 

concentration measured by PID. Histogram: distribution of timing of first spike after odor 

presentation. b, Left: HRC schematic. To calculate HRC responses to moving odor signals, 

ORN spike trains from a (taken from different ORNs in a single antenna) were designated 

as “left” or “right” antennal ORNs by adding appropriate delays. Right: HRC responses 

over time for various ΔT. c, Same as b, for the same pair of ORNs, over 10 different odor 

presentations and |ΔT| = 15 ms. d, Time-averaged HRC response versus ΔT. Black: mean 

over all pairings of “left” and “right” ORNs. Light curves: 10 representative pairings. Odor 

direction is deemed resolvable if the mean is outside 1 SD of zero. Since SD rather than 

SEM is used, this corresponds to resolving odor direction with one odor presentation. e, 

Same as d, but now including circuit transformations and noise. f, Representative ORN 

rasters to a few whiffs of a naturalistic odor signal (full trace in g). g, Odor signal (top) 

and calculated mean HRC response ⟨HRC⟩ (bottom) for odor latencies of ΔT = ±15 ms for 

a naturalistic odor signal. 4 “Left” and 4 “right” ORN spike trains were generated from 8 

single antenna recordings as described in b, and the mean is taken over the 16 left/right 

pairs. Colored dots: individual whiffs, defined by times at which the firing rate exceeded 

30 Hz. h, Sign of HRC response, averaged over 16 ORN pairs, for all whiffs in g. Shaded 

regions: SEM over all 16 ORN pairs.
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Figure 6. Odor direction sensing enhances naturalistic plume navigation.
a, Snapshot of simulation of plume from Fig. 1. Grey arrows: wind direction at snapshot 

instant. b, left column: Odor velocity (colors) and wind (grey) vectors at snapshot instant, 

at boxed locations in a. Middle and right column: Distributions of same over whole 

simulation. c, Top: Mean odor velocity field. Bottom: Mean wind field for detectable odor 

concentrations. d, Illustration of fictive odor “plume” in which 2 mm-wide bars move 

outward or inward from arena centerline at 15 mm/s. Laminar wind flows at 150 mm/s. 

e, Measured fly tracks for flies beginning in the downwind 50 mm end of the arena, for 

outward (left) or inward (right) bars. Black tracks: flies that reached a 50 mm box around 

the fictive plume source. f, Left: Flies in outward bar plume were more likely to reach the 

source: 56% (28/50 tracks) vs. 28% (12/43 tracks) (p=1.13e-3, one-tailed t-test). Middle and 

right: Distributions of flies’ lateral (y) position, in the downwind (left) or upwind (right) 

end of the arena, respectively. g, Projected complex plume, played either normally or in 

reverse. h-i Analog of e-f. Flies in normal playback were more likely to reach the source: 

32% (22/69 tracks) vs. 14% (13/91 tracks) (p=6.39e-3, one-tailed t-test). j, Simulated agent 

model based on Drosophila odor navigation10. Non-direction-selective (DS-) agents increase 

the upwind bias of stochastic left/right turns with odor hit frequency (top; green). Direction-

selective (DS+) agents turn against the vector sum of the wind and odor directions as 

hit frequency increases (bottom; purple). k, Tracks of DS+ (left) and DS- (right) agents 

navigating complex plume in g. l, Analogue of f and i. DS+ agents were more likely to reach 

source (34% vs. 25%, p = 9.98e-5; 1-tailed t-test).

Kadakia et al. Page 52

Nature. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Odor motion sensing without wind
	Direction sensing at ON and OFF edges
	Motion sensing sums with wind sensing
	Odor motion sensing is correlation-based
	ORN timing enables motion sensing
	Odor motion sensing in natural plumes
	Discussion
	METHODS
	Fly strains and handling

	Table T1
	Behavioral assay and optogenetic stimulation
	Recorded smoke plume
	Electrophysiology
	Experimental protocol
	Quantification of fly behavior and encountered fictive odor stimulus
	Extraction of fly position, speed, and orientation from videos
	Estimation of encountered fictive odor stimulus in antennae
	Quantification of behavior for moving bar stimuli
	Quantification of behavior for correlated noise and glider stimuli

	Plume simulations
	Mathematical modeling and data analysis
	Inter-antennal latency of edge hit ΔT
	HRC output versus ΔT for traveling edges
	Generation of correlated noise stimuli and C(Δx, Δt)
	Generation of glider stimuli
	HRC output for correlated noise stimuli
	HRC response for pre-filtered inputs
	Calculated HRC responses from electrophysiological measurements
	Analysis of imaged plume
	Analysis of simulated plume
	Analysis of fly navigation in complex virtual plumes
	In silico virtual agent model and simulation
	Theoretical analysis of odor motion in turbulent odor plumes
	Statistical quantification



	Extended Data
	Extended Data Fig. 1.
	Extended Data Fig. 2.
	Extended Data Fig. 3.
	Extended Data Fig. 4.
	Extended Data Fig. 5.
	Extended Data Fig. 6.
	Extended Data Fig. 7.
	Extended Data Fig. 8.
	Extended Data Fig. 9.
	Extended Data Fig. 10.
	References
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

