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Abstract 

Background:  Sequence verification is essential for plasmids used as critical reagents 
or therapeutic products. Typically, high-quality plasmid sequence is achieved through 
capillary-based Sanger sequencing, requiring customized sets of primers for each 
plasmid. This process can become expensive, particularly for applications where the 
validated sequence needs to be produced within a regulated and quality-controlled 
environment for downstream clinical research applications.

Results:  Here, we describe a cost-effective and accurate plasmid sequencing and 
consensus generation procedure using the Oxford Nanopore Technologies’ MinION 
device as an alternative to capillary-based plasmid sequencing options. This procedure 
can verify the identity of a pure population of plasmid, either confirming it matches the 
known and expected sequence, or identifying mutations present in the plasmid if any 
exist. We use a full MinION flow cell per plasmid, maximizing available data and allow-
ing for stringent quality filters. Pseudopairing reads for consensus base calling reduces 
read error rates from 5.3 to 0.53%, and our pileup consensus approach provides 
per-base counts and confidence scores, allowing for interpretation of the certainty of 
the resulting consensus sequences. For pure plasmid samples, we demonstrate 100% 
accuracy in the resulting consensus sequence, and the sensitivity to detect small muta-
tions such as insertions, deletions, and single nucleotide variants. In test cases where 
the sequenced pool of plasmids contains subclonal templates, detection sensitivity is 
similar to that of traditional capillary sequencing.

Conclusions:  Our pipeline can provide significant cost savings compared to outsourc-
ing clinical-grade sequencing of plasmids, making generation of high-quality plasmid 
sequence for clinical sequence verification more accessible. While other long-read-
based methods offer higher-throughput and less cost, our pipeline produces complete 
and accurate sequence verification for cases where absolute sequence accuracy is 
required.
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Background
Sequence verification is essential for plasmids destined for downstream clinical research 
applications. Plasmids used for gene delivery (i.e. for generating genetically modified 
Immune Effector Cells), mRNA synthesis, or those used directly as plasmid DNA vac-
cines, must have their sequence identity confirmed prior to use as critical reagents or 
therapeutic products [1, 2]. Commercial services for clinical grade sequencing are avail-
able, but may offer longer than desired turnaround times and higher cost than some 
budgets may allow. A simple, fast, and inexpensive in-house option for plasmid sequence 
verification would be of potential utility. Here, we evaluate the Oxford Nanopore Tech-
nologies’ (ONT) USB-powered MinION sequencing device for this purpose.

Conventionally, capillary-based Sanger sequencing approaches have been used for 
plasmid sequence verification [3]. While these approaches can be inexpensive to run 
(around $5–10 per 800 bp read), the cost associated with outsourcing Sanger sequencing 
to a company offering a quality controlled environment with validated standard operat-
ing procedures is orders of magnitudes higher. Similarly, while Sanger sequencing is not 
technologically difficult to perform, it is onerous to set up and maintain in-house. For 
these reasons, another approach is desired. Long read sequencing is an attractive alter-
native as the sequence of the entire plasmid can be contained in a single read. Unlike 
plasmid sequence verification using short-reads [4, 5], long-read data is amenable to 
verifying repetitive regions, checking for inversions, and identifying other large-scale 
structural errors. However, long-read data generally suffers from higher error rates than 
short-read data, making the detection of small errors, such as SNVs, more challenging 
[6–8]. Despite these challenges, approaches have been developed to use ONT long read 
data to successfully sequence plasmids in a number of research applications [9–13], how-
ever, these existing tools and workflows are not appropriate for clinical research applica-
tions as they do not provide information on the confidence of each base call, generally 
do not provide quality measures for the resulting consensus sequence, and can introduce 
biases due to assumptions made when resolving ambiguous base calls that are the result 
of systematic errors [14]. In general, a pipeline compatible with downstream clinical 
research applications would be well-defined, validated, documented and controlled, and 
have clearly specified acceptance criteria that ensures the resulting sequence informa-
tion is of at least the same quality that would be expected from the current gold standard 
of clinical grade Sanger sequence verification. Existing long read assemblers output a 
consensus sequence without any per-base quality metrics, and have difficulty processing 
the large numbers of reads required to gain confidence in the resulting sequence [15–
17]. Recently, methods have been described that use ONT long read data to validate syn-
thetic plasmid constructs [18, 19], focusing on the ability to multiplex plasmids into one 
sequencing run to reduce cost and increase throughput. While these methods have util-
ity and value, they do not meet the requirements for high-quality plasmid sequence veri-
fication, such as in a clinical research setting, where a complete and error-free consensus 
sequence with interpretable quality scores is needed, and where multiplexing offers a 
potential source of contamination and uncertainty.

Here, we describe a cost-effective (compared to quality-controlled whole plasmid 
Sanger sequencing) and accurate plasmid library preparation procedure and analysis 
pipeline that generates a high-quality consensus sequence of the plasmid from an ONT 
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MinION sequencing run, allowing for complete sequence verification of a plasmid prior 
to downstream applications. Utilizing the full capacity of the MinION flowcell, we obtain 
millions of raw reads for each plasmid which are then quality filtered to the subset of 
most accurate reads. We prioritize interpretability of the resulting sequence, providing 
confidence measures for each base of the consensus. We demonstrate that the resulting 
quality-filtered and processed consensus sequence achieves 100.00% accuracy for three 
exemplar plasmids, and that mutated and contaminating templates can be detected at 
a level comparable to that of Sanger sequencing. Importantly, our entire process can be 
established to run within an individual lab, giving the operator complete control over all 
steps of the sequencing process.

Results
Oxford Nanopore Technologies MinION library construction and sequencing of linearized 

plasmid

Our novel approach was developed and validated using three unique plasmids previ-
ously generated in-house: BCRxV.TF.1, BCRxV.GagPolRev.1 and BCRxV.VSVG.1 [20] 
(Additional file 1). The sequence identity of each plasmid had been previously confirmed 
by Sanger sequencing following the NIH Human Genome finishing standard (> Phred30, 
double read coverage of every base) [21]. Prior to creation of the MinION sequencing 
libraries, we ran a restriction enzyme fingerprinting assay to verify the purity and iden-
tity of the plasmids (Materials and Methods).

Sequencing libraries were constructed using the SQK-LSK110 Ligation Sequencing 
kit following the Genomic DNA by Ligation protocol provided by ONT. Plasmids were 
linearized prior to library construction with restriction enzymes that generate 5’ over-
hangs. This is essential to maintain full plasmid sequence during the library construction 
end-repair step. We loaded each plasmid library onto a separate R10.3 MinION flow cell, 
and ran each flow cell for the full 72 h run time. Each run generated an average of 3.86 
million reads.

Raw sequence base calling and read filtering

We performed base calling of the raw  fast5 data produced by the MinION using the 
GPU version of Guppy v5.0.11 on a GPU cluster (Materials and Methods). We used the 
‘--min_qscore’ argument to filter reads by their lowest observed base quality score. We 
set this value to 12, only retaining base called reads where all bases had a quality score 
of 12 or higher. For our three plasmids, an average of 40.8% of reads passed this quality 
filter (range 27.4–50.3%). While the majority of reads were the expected sequence length 
for each plasmid (Additional file  2: Figure S1), we noted that a small subset of reads 
were dramatically shorter or longer than expected. These reads were all derived from 
the plasmid template, and may have arisen from fragmented template, incomplete tran-
sit of template through the pore, or concatenation of template molecules during library 
construction. We surmised that these reads of abnormal length would not benefit the 
downstream analysis, and only used reads with length within 250 bases of the expected 
template length. We observed between 70 and 87% of quality-filtered reads meeting the 
length filtering criteria for use in subsequent analysis.
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Improving base calling accuracy by pseudopairing reads

Upon aligning these reads to the known reference sequence, we identified some cases 
where an incorrect base was consistently called predominantly in the forward or pre-
dominantly in the reverse read sets (Fig. 1). This strand-specific bias may be the result 
of the specific sequence context within the pore at that position of the template, and dif-
ferences in the ease that the base caller has in decoding the forward vs. reverse sequence 
motif [14, 22, 23]. Assessing the forward and reverse read sets independently, there was 
no way to determine which of the read sets contained the correct base call. When com-
bining the forward and reverse read sets, there was a roughly equal number of reads 
supporting each base, resulting in the appearance of a heterozygous base call at that 
position. Therefore, another approach was needed to resolve this strand-specific bias.

Paired base calling of matched forward and reverse strands of the same template mol-
ecule has shown great improvements in base calling accuracy [24]. This approach aligns 
the forward and reverse raw signals, and uses a consensus decoding algorithm to gen-
erate the base calls. This requires knowledge of which reads originated from the same 
template molecule. Generating such data requires special sequencing chemistry, such as 
ONT’s 2D or 1D2 kits, which were unavailable to us. Since we are sequencing a single 
plasmid, we know all reads should contain the same sequence. We hypothesized that 
we would be able to pseudopair forward and reverse reads to allow paired base calling 
of the raw fast5 data, generating a single consensus duplex base call for every pseudo-
pair of reads. We predicted that the consensus of the raw signal in these problematic 
strand-specific regions of the template would yield the correct base call. To generate 
these pseudopairs, we first aligned the Guppy base called reads to the expected reference 
as a way of annotating each read as coming from the sense or antisense strand of the 
template. Then, we paired sense and antisense reads, giving preference to pairs of reads 
with similar read lengths. These read pair lists were then used in conjunction with the 
raw  fast5 data as input into the Bonito base caller (https://​github.​com/​nanop​orete​ch/​
bonito; v0.4.0) to perform duplex base calling.

reverse

forward

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n 

of
 R

ea
ds

Fig. 1  Strand-specific errors in base calling. Sequence logos are shown for one stretch of sequence from 
forward (top) and reverse (bottom) reads. The height of each letter gives the fraction of reads at that position 
that supported that base. Position 6 (and position 3, to a lesser extent) shows a strand-specific error – the 
correct base is C, but in the reverse reads a T is the most-evidenced base. When forward and reverse reads are 
pooled, there appears to be two bases at this position

https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/bonito
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Overall, the Bonito duplex base called reads alleviated the strand-specific biases 
observed in the Guppy base called data. We noted, however, rare cases where miscall-
ing was still occurring. Assuming that these miscalls were the result of modified bases 
[25], we used Bonito’s model finetuning feature to fine-tune the R10.3 base calling model 
using a random sample of 100 reads from one of our plasmids. This fine-tuning resulted 
in the elimination of systematic errors in our sequence reads for all three plasmids. 
Overall, our duplex base called reads had an order of magnitude reduction in error rate 
compared to the non-paired data (0.53% compared to 5.3% from the Guppy base called 
data, as reported by Qualimap).

Generating a high quality plasmid consensus sequence

To obtain a consensus sequence for the plasmid from the high accuracy duplex base 
called reads, we implemented a “pileup” approach, taking the most-evidenced base at 
each position. To facilitate this, we generated a draft consensus by performing de novo 
assembly using a subset of the base called reads. We then aligned all reads to this assem-
bly, producing an alignment matrix of all reads positioned in the same reference frame. 
This two-step procedure was more tractable, computationally, than performing a mul-
tiple sequence alignment of hundreds of thousands of reads. We then stepped through 
each position of the alignment matrix and enumerated the number of reads supporting 
each base. We handled insertions by tracking bases that aligned between two adjacent 
bases of the assembly. We visualized this data to get an overview of the strength of the 
signal and noise in our data (Fig. 2).

Overall, we saw that the median signal:noise ratio across our three plasmids ranged 
from 3250 to 3770, while there were rare individual cases of it dropping to as low as 5.7. 
Generally, signal:noise ratios decreased at the extreme 5’ and 3’ ends of the template. 
Additionally, we observed drops in signal across homopolymer stretches (Fig.  3). This 
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Fig. 2  Overview of consensus read support across BCRxV.GagPolRev. Filled points denote the 
most-evidenced base at each position (x-axis) and hollow points denote the second-most-evidenced base. 
The y-axis shows the number of reads supporting each base. In general, nearly all reads support the top base, 
and there is good separation between signal (filled points) and noise (hollow points). For BCRxV.GagPolRev, 
the lowest signal to noise ratio is between the C and T at position 7554. We see a decrease in coverage at the 
extreme 5’ and 3’ ends of the plasmid
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is consistent with known difficulties in nanopore sequencing of homopolymer stretches 
[7], with reads underreporting the number of nucleotides in the homopolymer stretch. 
In one particularly long homopolymer from BCRxV.VSVG, only 17.3% of the reads sup-
ported the full 17 bases. Using our data, an existing tool [18] was only able to report 15 
of these 17 bases (data not shown).

To generate a high quality consensus sequence from this data, we specified criteria 
that each base, and the overall consensus, must pass. We took the top-evidenced base at 
each position as the consensus base. The number of reads supporting this base must be 
at least 5 × as high as the next most observed base at that position, and must be at least 
10% of the total number of aligned reads. Finally, the per-base confidence was calculated 
as the percent of reads at each position that support the consensus base, and the median 
per-base confidence across the entire plasmid must be greater than 99.9%.

We observed rare cases where alignment artefacts near error-prone homopolymer 
regions resulted in two different consensus sequences depending on whether the de 
novo assembly reflected the sense or antisense strand (Additional file 2: Figure S2). In 
order to be confident that our resulting consensus sequence was accurate, we performed 
two alignment and consensus generation passes – once as described with alignment 
to the assembly, and once with alignment to the reverse compliment of the assembly 
(Materials and Methods). This yielded two consensus sequences, and if these sequences 
differ, this suggests that a variant template may be present (see next Sect. “ Detecting 
variant plasmids”).

Detecting variant plasmids

Once we have obtained the high-quality consensus sequences (seeded from the 
sense and antisense versions of the assembly), we can determine if these sequences 
match the expected plasmid sequence. For our main goal of sequence verification, we 
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Fig. 3  Decreased read support across homopolymer stretches. Points denote the most-evidenced base at 
each position across this region of BCRxV.VSVG with a 17mer homopolymer. Due to difficulty base calling 
the exact number of bases in homopolymer regions, many reads report fewer than 17 bases. This results in 
an apparent coverage drop off across the homopolymer. The horizontal dashed grey line at 10% of the max 
coverage represents the minimum base coverage required to add a base to the consensus. Note that for this 
visualization, indels were right-aligned to show coverage dropping from left to right
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simply compared the forward and reverse strand consensus sequences with the expected 
sequence (the “known” sequence of the plasmid based on cloning or synthesis designs) 
by sequence alignment and checked for any discrepancies. If any discrepancies were 
found in either consensus, we reported that the sequenced plasmid contains that vari-
ant. In the case where any position of the consensus did not meet our criteria, an “N” 
base is added to the consensus. The base signal strengths and confidence scores for these 
positions should be manually inspected, as they may be the result of a decreased signal 
to noise ratio in a difficult to sequence area, or could be the result of a variant in the 
plasmid.

As a secondary goal, we can also detect the presence of subclonal templates in the 
population of plasmid molecules used in library construction. It is rare that such a case 
would arise, but could exist if a mutation occurred early within the bacterial culture’s 
growth phase, or the bacterial culture was seeded from two bacteria in close proximity. 
Based on the thresholds we have set for consensus sequence generation, we expected a 
theoretical lower limit of detection for subclonal variant templates to be 20% for single 
nucleotide variants (SNVs) and insertions (a variant template present at a frequency of 
less than 20% would be indistinguishable from noise). For deletions, since we allowed 
coverage of a single base to drop to as low as 10% of all aligned reads (to detect all 
bases within homopolymers), we expected that the sensitivity to detect subclonal dele-
tions would be low, requiring greater than 90% of the templates to contain the dele-
tion. We tested these expectations, experimentally, by designing a mutant version of 
BCRxV.VSVG containing three SNVs, three insertions, and three deletions (Additional 
file 1). This variant plasmid was sequenced as described for the other plasmids, and the 
raw  fast5 reads were mixed with raw wildtype BCRxV.VSVG reads in silico at varying 
frequencies, allowing random pseudopairing of wildtype and mutant reads to occur 
as they would have if the templates were mixed, physically, prior to sequencing. The 
analysis was run for each dataset, which demonstrated that the sensitivity for detect-
ing subclonal variant templates was consistent with our predictions. Two of the three 
insertions were detected when their template frequency was approximately 20%, with 
the other (which resulted in a lengthening of the 17mer homopolymer, and so would be 
predicted to be harder to detect) was detected at 40% frequency (Fig. 4). The three SNVs 
were detected with template frequencies ranging from 25 to 30%. The deletions were 
not detectable until the variant template was at a frequency of 95%. At lower variant 
template frequencies, deletions were indistinguishable from the drop in signal observed 
within homopolymer regions, and are not able to be reliably detected.

Contaminating, unrelated plasmids are another type of variant template that we 
may wish to detect in our sample. These are plasmids whose presence should be 
detected by fingerprinting assays performed prior to sequencing; however it is pos-
sible, though exceedingly unlikely, that an unrelated plasmid would have the same 
fingerprint and length as the expected plasmid. As reads from such a plasmid would 
not be expected to align well to the expected reference, we can count the fraction of 
reads which are successfully pseudopaired, since this step only uses reads which have 
a single continuous alignment to the expected reference that is within 250 bp of the 
reference length. In our three sequencing runs, 92.3–97.2% of quality- and length-fil-
tered reads were successfully pseudopaired. In a simulation where we ran our pipeline 
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using a subset of 10,000 quality- and length-filtered reads, but used a length-matched 
incorrect reference, 0% of the reads were successfully pseudopaired. Hence, this met-
ric can be checked to ensure there is no significant contamination of an unrelated 
plasmid, with values less than 90% being evidence of plasmid contamination.

Cost analysis

We have described a sample preparation and analysis pipeline that has comparable per-
formance to outsourcing Sanger sequencing to a commercial provider offering services 
acceptable by regulatory bodies. While we have comparable performance, our method 
results in significant cost savings to the user. At the present time, consumables cost for 
our method includes the ONT library preparation kit (~ $160 CAD per sample), the 
ONT MinION flowcell (~ $1,200 CAD per sample), and electricity to run the GPU-pow-
ered basecalling (eight RTX 3090 GPUs [at 450 Watts of power each] × five days = 432 
kWh, as an upper bound assuming 100% usage), which at ~ $0.10/kWh in British Colum-
bia, Canada, totals ~ $50 CAD. Adding other miscellaneous consumable costs associ-
ated with sample preparation, our method totals ~ $1,500 CAD per plasmid. Note that 
there will be additional costs (maintenance, administration, labor), but as these costs can 
vary greatly by institution, we have not included them here. Based on quotes we have 
obtained from commercial Sanger sequencing providers, sequencing a ~ 10 kb plasmid 
to meet regulatory standards would cost ~ $15,000 CAD per plasmid, or 10 × the cost 
of our method. One reason the cost for clinical grade sequencing is so high is because 
primer sets used for primer walking are specific for each plasmid template and must be 
pre-validated. Even if a user needed to purchase the MinION device (~ $1,200 CAD) and 
a GPU compute server (~ $35,000 CAD), our method is potentially cheaper than out-
sourcing after only three sequence verification runs (~ $40,700 CAD vs. ~ $45,000 CAD 
when outsourcing).
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Fig. 4  Subclonal variant template detection sensitivity. For three different mutation classes (SNV, insertion, 
deletion), the minimum percent abundance of variant reads (x-axis) that allowed detection of the mutation 
in the in silico generated mixed datasets is plotted. SNVs and insertions are detectable when around 30% of 
reads are from the variant template, while deletions were not detectable until 95% of the reads were from the 
variant template
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Discussion
We have described a pipeline that generates a high-quality consensus sequence of lin-
earized plasmid using ONT MinION sequencing, leveraging substantial sequencing 
depth and stringent quality filters to overcome the relatively high error rates associated 
with nanopore sequencing. The purpose of this method is to verify the identity of a pure 
sample of plasmid with known sequence. For pure samples of linearized plasmid, our 
pipeline produces the true sequence with a median per-base confidence of over 99.9%.

Our pipeline improves typical read error rates by an order of magnitude by performing 
paired base calling on pseudopaired reads, leveraging the fact that we are sequencing a 
single plasmid. True duplexing would only improve this result, whether from a techno-
logical advance to generate paired data natively at the time of sequencing, or barcoding 
of every template molecule with a unique molecular identifier (UMI) prior to sequenc-
ing. This would ensure that paired reads came from the same template molecule, and 
would increase the sensitivity for detection of subclonal variant templates.

This pipeline is first and foremost a sequence verification method. In this embodiment, 
the user must know the expected sequence of the plasmid. Due to this, the approach is 
not entirely unbiased. Additionally, we report a single consensus sequence of all plasmid 
templates present in the sample rather than separate consensus sequences for each plas-
mid, if there should be more than one. Future developments could extend this frame-
work to be run completely independently of the expected reference sequence, allowing 
for multiple consensus sequences to be output if multiple templates are detected.

With our current pipeline, subclonal insertion and SNV variants are detectable when 
they are at roughly 25% frequency. Due to the necessarily low coverage threshold needed 
for homopolyer stretches (at least 10%), our sensitivity to detect subclonal deletions is 
low. It is conceivable that one could set a more stringent coverage threshold (80%) glob-
ally while having a relaxed threshold (10%) specifically within homopolymer regions. 
This would increase the sensitivity of non-homopolymer deletions to be comparable 
with insertions and SNVs, however, deletions within homopolymers would still require 
greater than 90% frequency to be detected. For the current implementation, we acknowl-
edge this limitation in detecting deletions.

Homopolymers themselves present challenges for accurate base calling. Initially, we 
tested R9.4.1 flowcells, but found the performance within homopolymer regions to be 
insufficient. R10 generation flowcells are known to improve accuracy within homopoly-
mers, increasing the number of nucleotides that are read within the pore at once [26]. 
There is certainly an upper limit to the length of a hompolymer that can be accurately 
sequenced using our approach, though we have not yet identified it. Within our test 
plasmids, we have demonstrated successful sequence determination for homopolymers 
up to and including an 18mer.

To our knowledge, our pipeline is the first to use long read sequence data to sequence 
verify plasmids at a level consistent with quality controlled and regulated environments. 
We summarize our method in the context of other related methods in Table 1. Currin 
et al. [14] describe a highly multiplexed method with a unique approach to dealing with 
strand-specific sequencing errors, analyzing forward and reverse reads separately in a 
statistical framework to identify the correct base. However, their method is reference-
based, and defaults to the reference base in regions with unreliable sequencing data. 
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Recent work by Emiliani et al. [18] describe a tool called Circuit-Seq which is also mul-
tiplexed, and utilizes a standard barcode-splitting, assembly, and polishing workflow. 
Circuit-Seq only outputs a consensus sequence without any per-base quality metrics, 
and has an initial error correction step which has the potential to introduce biases or 
decrease sensitivity. A pre-print by Mumm et al. [19] describes OnRamp, which is also 
primarily an assembly and polishing procedure. OnRamp produces consensus sequences 
with a quality score based on the number of variants contained in the consensus, but 
no per-base quality measures. Our method is distinct from these methods in that we 
pseudo-pair reads prior to basecalling to yield higher quality base calls, and instead of 
polishing an assembly, we align reads to a draft assembly and use the read alignment to, 
position by position, infer the consensus base and enforce quality filters. Rather than 
simply outputting a fasta file with the consensus sequence, we can interrogate any posi-
tion to determine how confident the consensus base is, or if there is evidence of sub-
clonal variants present, making this more comparable to traditional Sanger sequencing 
workflows. This is crucial for any downstream clinical research applications of these 
plasmids, as sequence verification is required by regulatory bodies.

We have described a pipeline to sequence verify plasmids at a level appropriate for 
clinical research applications with a 90% reduction in cost. This pipeline uses a full flow-
cell per plasmid, eliminating any possibility of cross contamination between plasmids 
either barcoded and pooled, or plasmids run sequentially on the same flowcell. If this 
pipeline were to be used in a more relaxed setting, MinION flowcells could be reused 

Table 1  Comparison of plasmid sequence verification methods

Our Pipeline Currin et al. 
[14]

Circuit-Seq [18] OnRamp [19] Sanger 
(Regulated 
Environment)

Plasmids per run 1 576 96  ≥ 30 1

Library Prep Restriction 
Digest and 
Adapter Ligation

Tn5 barcoded Tn5 barcoded Tn5 or Restric-
tion Digest 
and Adapter 
Ligation

Primer Design

Flowcell MinION R10.3 MinION R9.4.1 Flongle R9.4.1 Flongle R9.4.1 –

Raw reads per 
plasmid

 ~ 3,860,000  ≥ 46  ~ 1000  ~ 934 2 × 

Basecalling Bonito Duplex Guppy Guppy Guppy Phred [27, 28]

Reference-
guided

No Yes No Yes No

Consensus 
Generation

Assembly, Align-
ment and Pileup

Alignment and 
Pileup

Error correc-
tion, Assembly, 
Medaka Polish-
ing

Medaka con-
sensus

Phrap, Consed [29]

Output .fasta file + posi-
tion-based 
nucleotide 
frequencies

.vcf file .fasta file .bam file .fastq file

Quality Metrics Per-base 
signal:noise, 
coverage

Summary 
statistics for 
alignment

– Quality score 
of consensus 
based on num-
ber of variants

Per-base PHRED 
scores

Cost (~ 10 kb) $1,500 $3 $1.50 $15 $15,000

Time 7 days 3 days 1 day 2 days 25 days
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by running a sample for less time, washing, and then reloading the flowcell with a new 
sample. This would allow multiple plasmids to be run on the same flowcell, reducing 
overall cost. Alternatively, barcoding independent plasmids prior to sample loading 
would allow multiple plasmids to be run at the same time, also reducing costs, as has 
been done for the related methods described above [14, 18, 19]. While we have bench-
marked this procedure on R10.3 flowcells, we fully expect that future developments to 
this platform (R10.4 and beyond) will only improve the accuracy. Before running this 
analysis on R10.4+ data, it is likely that the base calling model fine-tuning would need to 
be repeated for the appropriate flowcell-matched base calling model. Alternatively, since 
the fine-tuning of the base calling model was likely required due to base modifications 
such as methylation, ensuring the plasmid is free from modified bases prior to library 
construction may obviate the need to fine-tune the model. It is also important to note 
that the feasibility of our plasmid sequencing approach is ultimately reliant on the avail-
ability of compatible flowcells from ONT. At the time of writing, ONT is rapidly iterat-
ing on their R10 generation flowcells, and thus availability is unpredictable. With each 
change to flowcell or related chemistry, this sequencing and analysis procedure must 
be re-validated to ensure the performance is not decreased from previous versions. It is 
our understanding that the R10 generation will become the stable product line once it is 
finalized. We have made all code in the pipeline available (Additional file 3 and https://​
github.​com/​scott​dbrown/​minion-​plasm​id-​conse​nsus) so that users may adapt and 
update the pipeline and models to use the currently available flowcells. This also allows 
users to make any modifications to the code to run on the specific compute architecture 
available to them.

Conclusions
The major benefit of our pipeline over assembly and polishing approaches is that the 
output of our pipeline includes, in addition to a consensus sequence, the underlying 
per-base data for each position of the consensus. This is somewhat analogous to tradi-
tional Sanger sequencing approaches used for clinical sequence verification, and allows 
for manual inspection and interpretation of the quality of the resulting consensus. This 
allows the confidence, per base, to be assessed, strengthening the ability to use this pipe-
line as a replacement for Sanger sequencing of plasmids for clinical research use.

Our pipeline can provide significant cost savings compared to outsourcing clinical-
grade Sanger sequencing of plasmids, with estimated costs an order of magnitude lower 
for a single plasmid. For labs with access to a MinION sequencer and compute infra-
structure, this approach could make generation of high-quality plasmid sequence for 
clinical sequence verification more accessible.

Materials and methods
Restriction enzyme fingerprinting assay

The purity of each plasmid sample to be sequenced was confirmed by restriction enzyme 
fingerprinting prior to library construction. A pair of restriction enzymes was chosen 
to generate a unique banding pattern for each construct. Reactions were set up with 
2.5 µg plasmid, 180 total units of restriction enzyme (New England Biolabs), plus 1 unit 
of Topoisomerase I (New England Biolabs, M0301S) to promote complete digestion. 

https://github.com/scottdbrown/minion-plasmid-consensus
https://github.com/scottdbrown/minion-plasmid-consensus
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Digestions were run according to the manufacturer’s instructions. The resulting banding 
patterns were visualized on 0.8% E-gels (Thermofisher, G501808). A representative gel is 
shown in Additional file 2: Figure S3.

Sequence library construction

Plasmids were grown in NEB® Stable Competent E. coli (New England Biolabs), which 
are dam+/dcm+. Plasmids were prepped using PureLink™ Expi Endotoxin-Free Giga 
Plasmid Purification Kit (Thermofisher, A31233). Six-hundred fmol of each plasmid was 
linearized with a restriction enzyme (New England Biolabs; BCRxV.TF: AscI, BCRxV.
VSVG: BamHI, BCRxV.GagPolRev: BamHI) chosen to generate a single cut site with 
5’ overhangs. Each reaction was supplemented with 1 unit of Topoisomerase I (New 
England Biolabs, M0301S). Complete digestion was confirmed by running 200  ng of 
undigested plasmid alongside 200 ng of digested sample on 1.2% E-gel (Thermofisher, 
G21801). Samples were purified using Qiaquick PCR Cleanup kit (Qiagen, 19,086) fol-
lowing the manufacturer’s instructions, and eluting with 50 µL pre-warmed (50 °C) EB 
(Qiagen, 19,086).

Libraries were prepared using the ONT SQK-LSK110 kit following the Genomic DNA 
by Ligation protocol (GDE_9108_v110_revC_10Nov2020). Samples were quantified 
with Qubit dsDNA BR kit (Q32850). 300 fmol of linearized plasmid was repaired using 
NEBNext FFPE DNA Repair Mix (NEB, M6630S) and NEBNext Ultra II End Repair/
dA Tailing Module (NEB, E7546S). Samples were purified with a 1 × volume of Ampure 
XP beads (Beckman, A63880), and eluted with 61 µL pre-warmed (50  °C) Qiagen EB. 
Adapter ligation was performed with NEB Quick Ligase (E6056S), ONT Ligation Buffer 
(LNB) and ONT adapter mix (AMX-F). Samples were purified with 0.5 × Ampure XP 
beads, and washed with ONT Long Fragment Buffer, and eluted with 15 µL ONT Elu-
tion Buffer (included in SQK-LSK110 kit).

Sequencing using ONT MinION

MinION R10.3 (FLO-MIN111) flowcells were prepared and run according to ONT 
instructions: 50 fmol of prepared library was loaded per flowcell, and the run time was 
set to 72 h. The MinION USB device was connected to a computer running Windows 
10, with an Intel Core i7-9700 8 core CPU, 32 GB RAM, and a 1 TB SSD data drive. On-
device base calling was disabled, instead performing base calling in a later step on our 
higher-powered computational resources.

Base calling raw sequence data with Guppy

We assembled all steps of our pipeline into a Snakemake v5.7.4 workflow (Additional 
file 2: Figure S4). We performed initial base calling of the raw fast5 data using the GPU 
version of Guppy v5.0.11. We ran base calling on a GPU cluster comprised of eight 
NVIDIA GeForce RTX 3090 GPUs, 256 GB RAM, and two Intel Xeon Silver 4212 12 
core CPUs. Each  fast5 file generated by MinKNOW was submitted to the cluster in 
its own job, requesting 12 GB RAM and 1 GPU. We used the “dna_r10.3_450bps_hac.
cfg” config file and “template_r10.3_450bps_hac.jsn” model file packaged with Guppy, 
and set “--min-qscore” to 12. Base calling took roughly 1 min per fast5 file. We used a 
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custom Python script to filter the resulting base called reads to those that had length 
within 250 bp of the expected sequence length.

Pseudopairing reads

In order to pseudopair forward and reverse reads, we performed an initial alignment of 
the base called reads to the expected reference sequence. We used minimap2 v2.17, with 
the “-x map-ont” and “--cs" options, generating a paf file. We then used a custom Python 
script to parse this paf file, generating a list of forward and reverse read names which 
contain only a single alignment to the reference, and for which the number of aligned 
bases is no shorter than the reference length minus 500 bases. We sort these two lists 
by read length, and step through each simultaneously, outputting pseudopaired forward 
and reverse read names to a file.

Fine‑tuning the bonito base calling model

We performed Bonito base calling model fine-tuning as described in the Bonito manual. 
We fine-tuned the “dna_r10.3” model included with Bonito v0.4.0 using 100 reads of our 
BCRxV.VSVG plasmid, requesting 64 GB of RAM and using a batch size of 32, 1 epoch, 
and a learning rate of 5e-4. We used this fine-tuned model for all Bonito duplex runs. 
We have made the fine-tuned model available at https://​doi.​org/​10.​5281/​zenodo.​66260​
41.

Paired base calling with bonito

We used a modified version of Bonito v0.4.0 to perform the duplex base calling of the 
read pairs, making some minor adjustments to the Bonito code to prevent the process 
from using too much memory on our system (https://​github.​com/​scott​dbrown/​bonito/​
relea​ses/​tag/​v0.4.​0a). We submitted the Bonito duplex base calling jobs to our GPU clus-
ter, requesting 40 GB of RAM and 6 CPUs per job. We set “--max-cpus” to 4, and used 
our own fine-tuned base calling model. On average, Bonito duplex base calling jobs of 
around 750 read pairs took 20 minutes to complete.

De novo assembly to generate a reference

We combined all duplex base called reads into a single  fasta file. We subsampled 500 
reads from this file to use for de novo assembly using Canu v2.0 [16]. We set the “-cor-
rected” and “-nanopore” options, set the “genomeSize” to the length of our expected ref-
erence, and used 16 threads. We extracted the first sequence in the resulting “unitigs.
fasta” file to use as the reference sequence for subsequent read alignment and consensus 
sequence determination.

Consensus sequence generation

To generate a consensus sequence for our sequence data, we align the duplex base called 
data to the de novo assembled reference sequence. Because of the logic of our consen-
sus sequence building, and due to the standard practice of left-aligning gaps in indels, 
we perform two separate consensus sequence determination steps using both the de 
novo assembly as provided, as well as the reverse compliment. This is to ensure that any 

https://doi.org/10.5281/zenodo.6626041
https://doi.org/10.5281/zenodo.6626041
https://github.com/scottdbrown/bonito/releases/tag/v0.4.0a
https://github.com/scottdbrown/bonito/releases/tag/v0.4.0a
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variant near a homopolymer stretch does not have the variant support diluted due to 
alignment artefacts (Additional file 2: Figure S2).

We align the duplex base called reads to the de novo assemblies, separately, using min-
imap2 v2.17, with the “-x map-ont” and “--cs" options, generating a  paf file. We then 
use a custom Python script to parse the alignments. We build an array with positions 
for 5’ of the reference sequence, every base of the reference sequence, every position 
in between bases of the reference sequence, and 3’ of the reference sequence. We step 
through every read alignment and update a dictionary at each position recording the 
number of reads supporting each observed base at each position (with multiple bases 
represented as an array of dictionaries). We then build the consensus sequence by step-
ping through every position of the array and adding the most evidenced base if it meets 
our criteria: (1) the top base being at least 5 × more abundant than the second top base, 
and (2) the coverage of the top base being at least 10% of the max coverage. If only the 
first criterion is not met, an N base is added to the consensus, signifying insufficient read 
support to accurately call a base at this position. If the second criterion is not met, no 
base is added to the consensus.

Variant plasmid design

To test the detection of subclonal variant templates, we designed a 1040 bp variant insert 
for our BCRxV.VSVG plasmid with the following nine mutations: 1886delT, T2010A, 
2205insA, 2379delT, 2448insA, G2517C, 2685insA, 2770delG, and C2840T (positions 
given relative to resulting sequence after cloning in to BCRxV.VSVG and after lineari-
zation with BamHI). We had this fragment synthesized by Azenta Life Sciences, and 
cloned it into our wildtype BCRxV.VSVG plasmid using SfuI and BalI restriction sites.

Subclonal variant simulation

We sequenced our variant BCRxV.VSVG plasmid as described for the other plasmids. 
To simulate sequence datasets with BCRxV.VSVG variant plasmids at varying levels of 
abundance, we first performed Guppy base calling on all wildtype and variant data to 
obtain the read names that passed quality filtering. We then created raw fast5 read sets 
of 10,000 total reads in silico, ranging from 0 to 100% variant reads in 5% increments. 
We then processed these read sets as described, allowing random pseudopairing of 
wildtype and variant reads to occur, and interrogated the resulting consensus sequences 
to determine at what variant read frequency each mutation was detected.

Quality reports

To obtain quality metrics of our duplex base called reads, we used Qualimap v2.2.2 to 
provide a summary report on these reads aligned to the expected reference sequence. 
We used minimap2 v2.17 with the “-ax map-ont --cs" options to generate a sam file, used 
samtools v1.7 to convert the sam file to a bam file and to index this bam file, then ran 
Qualimap bamqc with 32 threads and 16 GB of memory. From this report, we obtain the 
number of aligned reads, average coverage, mean error rates of the reads, and view the 
plots to ensure there are no issues with the data.
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