DOI: 10.1002/ueg2.12365

ORIGINAL ARTICLE

ueg journal WILEY

Postoperative adjuvant transarterial chemoembolisation improves survival of hepatocellular carcinoma patients with microvascular invasion: A multicenter retrospective cohort

Laihui Luo ¹ Renfeng Shan ¹ Lifeng Cui ^{2,3} Zhao Wu ⁴ Junlin Qian ⁵
Shuju Tu ¹ WenJian Zhang ⁴ Yuanpeng Xiong ¹ Wei Lin ⁵ Hongtao Tang ⁵
Yang Zhang ¹ Jisheng Zhu ¹ Zeyu Huang ⁴ Zhigang Li ⁴ Shengping Mao ⁴
Hui Li ⁶ Zemin Hu ⁵ Peng Peng ⁵ Kun He ⁵ Yong Li ¹ \bigcirc Liping Liu ² \bigcirc
Wei Shen ⁴ 💿 Yongzhu He ^{1,5} 💿

¹Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, The First Affiliated Hospital of Nanchang University (The First Clinical Medical College of Nanchang University), Nanchang City, Jiangxi Province, China

²Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen City, Guangdong Province, China

³Maoming People's Hospital, Maoming, China

⁴Department of General Surgery, the Second Affiliated Hospital of Nanchang University (The Second Clinical Medical College of Nanchang University), Nanchang City, Jiangxi Province, China

⁵Department of Hepatobiliary Surgery, Zhongshan People's Hospital (Zhongshan Hospital Affiliated to Sun Yat-sen University), Zhongshan City, Guangdong Province, China

⁶School of Public Health, Nanchang University, Nanchang, China

Correspondence

Yong Li, Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, The First Affiliated Hospital of Nanchang University (The First Clinical Medical College of Nanchang University), No. 17, Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330006, China. Email: dryongli@163.com

Yongzhu He, Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, The First Affiliated Hospital of Nanchang University (The First Clinical Medical College of Nanchang University), No. 17, Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330006, China; Department of Hepatobiliary Surgery, Zhongshan People's Hospital (Zhongshan Hospital Affiliated to Sun Yat-sen University), No. 2, Sunwen East Road, Shiqi District, Zhongshan City, Guangdong Province, 528400, China.

Email: yongzhuhe@email.ncu.edu.cn

Liping Liu, Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen City, Guangdong Province, 518020, China.

Email: liuliping@mail.sustech.edu.cn

Wei Shen, Department of General Surgery, the Second Affiliated Hospital of Nanchang University (The Second Clinical Medical College of Nanchang University), No.1, Minde Road, Donghu District, Nanchang City, Jiangxi Province, 330006, China. Email: shenweiniu@163.com

Laihui Luo, Renfeng Shan, Lifeng Cui and Zhao Wu contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. United European Gastroenterology Journal published by Wiley Periodicals LLC on behalf of United European Gastroenterology.

Funding information

Zhongshan Science and Technology Plan Project of Guangdong Province, Grant/Award Number: 2021B1040; Natural Science Foundation of Jiangxi Provincial, Grant/Award Number: 20171BAB205064; National Natural Science Foundation of China, Grant/Award Number: 81860432; Key research and development projects of Jiangxi Provincial Department of Science and Technology, Grant/Award Number: 20202BBGL73092

Abstract

Background: We aimed to investigate the efficacy of postoperative adjuvant transarterial chemoembolisation (PA-TACE) in patients with hepatocellular carcinoma (HCC) complicated by microvascular invasion (MVI).

Methods: A retrospective analysis of 1505 patients with HCC who underwent hepatectomy at four medical centers, including 782 patients who received PA-TACE and 723 patients who did not receive adjuvant PA-TACE, has been conducted. Propensity score matching (PSM) (1:1) was performed on the data to minimise selection bias, which resulted in a balanced clinical profile between groups.

Results: After PSM, 620 patients who received PA-TACE and 620 patients who did not receive PA-TACE were included. Disease-free survival (DFS, 1-, 2-, and 3-year: 88%-68%-61% vs. 70%-58%-51%, p < 0.001 and overall survival (OS, 1-, 2-, and 3year: 96%-89%-82% vs. 89%-77%-67%, p < 0.001) were significantly higher in patients who received PA-TACE than in those who did not. Patients with MVI who received PA-TACE had significantly higher DFS (1-, 2-, and 3-year: 68%-57%-48% vs. 46%-31%-27%, p < 0.001) and OS (1-, 2-, and 3-year: 96%-84%-77% vs. 79%-58%-40%, p < 0.001) than those who did not receive PA-TACE. Among the six different liver cancer stages, MVI-negative patients did not have significant survival outcomes from PA-TACE (p > 0.05), whereas MVI-positive patients achieved higher DFS and OS from it (p < 0.05). Liver dysfunction, fever, and nausea/vomiting were the most common adverse events in patients receiving PA-TACE. There was no significant difference in grade 3 or 4 adverse events between the groups (p > 0.05). Conclusions: Postoperative adjuvant transarterial chemoembolisation has a good safety profile and may be a potentially beneficial treatment modality for survival outcomes in patients with HCC, especially those with concomitant MVI.

KEYWORDS

adjuvant, HCC, hepatectomy, hepatocellular carcinoma, microvascular invasion, propensity score, survival, TACE, transarterial chemoembolisation

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world and ranks third among the causes of death from malignancy with approximately 900,000 new cases and 830,000 deaths each year.^{1,2} With the development of medical technology, the current treatment methods for liver cancer include hepatectomy, radiofrequency ablation, transarterial chemoembolisation(TACE), and immune targeted therapy, etc.¹⁻³ As we all know, liver transplantation is far superior to hepatectomy in the treatment of liver cancer, but it is often limited to the shortage of organs, difficult medical technology and harsh medical conditions.¹⁻⁴ However, although radiofrequency ablation is compared to hepatectomy in the treatment of liver cancer, it is often limited to the size and number of tumours in patients.¹⁻⁴ It can be seen that hepatectomy is still the preferred treatment for HCC, which can provide longer survival time for the patients compared with other palliative treatments.²⁻⁴ Unfortunately, the majority of patients

Key summary

Established knowledge on this subject

 Postoperative adjuvant transarterial chemoembolisation (TACE) significantly improves the survival benefit of patients with hepatocellular carcinoma (HCC), especially those with microvascular invasion (MVI).

Significant new findings of this study

- Postoperative adjuvant TACE improves survival outcomes for patients with different HCC stages;
- Postoperative adjuvant TACE improves survival outcomes in patients with MVI but not in patients without MVI.
- The adverse effects associated with postoperative adjuvant TACE are mild and manageable, and the procedure is well tolerated.

with HCC in China have reached the intermediate and advanced stages at the time of initial diagnosis, which makes the median survival rate only about 2 years.^{3–5} Even though a carefully selected minority of patients in this category can undergo surgical resection, the efficacy of which may exceed that of non-surgical treatment, the desired survival outcome is still not achieved.^{4–6} Postoperative adjuvant therapy may be a good option for high-risk patients who are susceptible to tumour recurrence.

The proposed mechanism of postoperative adjuvant transarterial chemoembolisation (PA-TACE) is the elimination of intrahepatic micro-metastases, residual small foci, or dissociated cancer cells due to an extrusion at the time of surgery. $^{7-9}$ However, the role of TACE in tumour recurrence remains somewhat controversial with some investigators suggesting that it may only be beneficial for specific subgroups of patients and has no impact on survival outcomes beyond 1 year.⁸⁻¹⁷ A meta-analysis showed that certain subgroups of patients with HCC benefited most from PA-TACE, especially those with concomitant microvascular invasion (MVI).⁹ In contrast, there appeared to be no benefit of PA-TACE when assessing only tumour size (\geq 5 cm) alone.⁹ Microvascular invasion represents a marker of tumours with aggressive biological behavior, which has long been confirmed to be related to intrahepatic tumour micrometastasis and has been regarded as one of the important high-risk factors for early postoperative recurrence of HCC.^{18–20} It is well known that MVI can be detected in postoperative pathological specimens even in patients with early HCC.^{20,21} Thus, the value of PA-TACE for the prognosis of patients with early stage HCC accompanied by MVI deserves further investigation. The lack of standardised chemotherapy regimens and intra-arterial treatment techniques are the main limitations of PA-TACE. Also, the consistency and representation of patients enrolled in different studies are not optimal. This heterogeneity in patient selection may have contributed to a selection bias. In addition, not all randomised controlled trials (RCTs) are high-quality studies, and many non-RCTs are primarily retrospective. Therefore, some studies may have inherent selection bias, leading to differences in their views.^{8-17,21} This study evaluates the prognostic effect of PA-TACE in patients with HCC with or without MVI through multicenter large-scale data, which is expected to provide rational treatment decisions for clinical work. To obtain more reliable results, propensity score matching analysis (PSM) was used to minimise the effect of patient selection bias.

METHODS

Patients

A retrospective analysis of 1505 patients with HCC from four medical centers in China between January 2018 and September 2021 was performed. Patients eligible for this study were screened according to the following inclusion Criteria: (1) All patients received surgical treatment and were confirmed as a negative margin by pathological results; (2) postoperative pathology confirmed only HCC; (3) none of the patients received any preoperative chemoradiotherapy, immunotargeted therapy, interventional therapy, and other anti-tumour treatments; (4) no history of other malignant tumours; (5) all patients received complete followups. Exclusion criteria include (1) missing clinical data or incomplete follow-up data; (2) patients with extrahepatic metastases were found on preoperative imaging; (3) no multiple organ failure, such as heart, lung, or kidney; and (4) patients who died in the perioperative period. Data for this study were provided by the First Affiliated Hospital of Nanchang University (FAHNU), The Second Affiliated Hospital of Nanchang University (SAHNU), Shenzhen People's Hospital (SPH), and Zhongshan People's Hospital (ZPH). Meanwhile, the study was conducted based on the Declaration of Helsinki (revised in 2013), approved by the ethics committees of the above four clinical centers, and informed consent was obtained from each patient for the data used in the study. A flow chart of patients enrolled in this study is shown in Figure S1.

Evaluation of microvascular invasion and selection of postoperative adjuvant transarterial chemoembolisation

Two senior pathologists interpreted and confirmed the pathological diagnosis of surgically resected specimens by hematoxylin-eosin staining and immunohistochemistry to determine the presence of MVI. Microvascular invasion is defined as the microscopic presence of tumour cells in the portal vein, hepatic vein, or large encapsulated vessels of liver tissue near the edge of the tumour.²⁰⁻²² Inclusion criteria of PA-TACE include⁸⁻¹⁷ (1) Liver function Child-Pugh grade A or B, and Eastern collaborative oncology group (ECOG) functional status score 0-2; (2) no serious coagulation dysfunction; (3) no serious infection that cannot be effectively controlled; (4) no history of iodine contrast agent allergy; and (5) no multiple organ failure such as heart, lung, and kidney. Exclusion criteria include⁸⁻¹⁷ (1) severe liver dysfunction with Child – Pugh C grade, including severe jaundice, hepatic encephalopathy, intractable ascites, or hepatorenal syndrome; (2) ECOG score>2 with cachexia or multiple organ failure; (3) renal dysfunction, blood creatinine >176.8 µmol/L or creatinine clearance <30 mL/min: (4) peripheral white blood cells $<3.0 \times 10^{9}$ /L, platelet $<50 \times 10^{9}$ /L, and cannot be corrected. All patients who met these criteria were recommended to receive PA-TACE about 4 weeks after hepatectomy. However, patients decide whether to follow the recommendation based on their medical adherence, financial status, or other social factors. Before receiving PA-TACE, patients will be routinely tested for liver function, tumour markers, computed tomography (CT), and/or magnetic resonance imaging (MRI) to determine whether the tumour has recurred or metastasized. During the operation of PA-TACE, we placed the hepatic arterial catheter through the femoral artery into the proper hepatic artery using the Seldinger technique and injected a mixture of

appropriate chemotherapeutic (Fluorouracil, epirubicin, and platinum) and embolic agents (lipiodol and gelatin sponge) through the catheter into the residual liver based on a comprehensive assessment of the patient's body surface area, physical fitness, and residual liver volume.⁸⁻¹⁷

Follow-up

All patients were followed up either outpatient or inpatient. Patients were followed up every 1-2 months for 6 months after discharge and every 3-6 months thereafter. During the follow-up period, routine examinations, such as liver function test, alphafetoprotein (AFP) analysis, CT, and MRI, were performed for each patient. Tumour recurrence was defined as new tumour nodules confirmed by enhanced CT and enhanced MRI. Patients who relapsed were subsequently treated with liver transplantation, rehepatectomy, local ablation, TACE, chemoradiotherapy, and immunotargeted therapy. Among them, liver transplantation, rehepatectomy, and local ablation are categorised as curative treatment, while TACE, chemoradiotherapy, and immunotargeted therapy are categorised as palliative treatment. Disease-free survival (DFS) and Overall survival (OS) were used as study endpoints. Disease-free survival was defined as the time from hepatectomy to the diagnosis of tumour recurrence, while OS was defined as the time from hepatectomy to death or the last follow-up. All patients were followed up until 1 April 2022.

Statistical methods

To reduce the selection bias and confounding factors between groups, propensity score matching (PSM) analysis was used to eliminate inter-group imbalances. A 1:1 nearest neighbor matching algorithm was applied with a caliper width of 0.01. Continuous data that fit a normal distribution were detected by an independent samples t-test, which was expressed as mean \pm standard deviation (SD). Continuous data with non-normal distribution were detected by the Mann-Whitney U test, which was expressed as the median (quartile distance, IQR). The chi-square test was used to detect classified data, which were expressed as numbers (n) and proportions (%). Univariate and multivariate analyses were performed by the Cox proportional risk model before and after PSM to determine the independent prognostic factors of DFS and OS. In the univariate analysis, variables with P < 0.05 were used for multivariate analysis. Kaplan-meier survival analysis was used to assess DFS and OS for independent prognostic factors screened after PSM, and the difference between curves was estimated by the logarithmic rank test. SPSS 26.0 statistical software (IBM Corp, Armonk, NY, USA) and R software (Version 4.2.1 http://www.rproject.org) were used for statistical analysis of all data. All p values were obtained by the two-tailed test, and P < 0.05 was considered statistically significant.

RESULTS

Patient and clinical characteristics

1240 patients (620 cases without PA-TACE and 620 cases with PA-TACE) were screened out of 1505 patients (723 cases without PA-TACE, 782 cases with PA-TACE) after PSM. Table 1 shows the clinical characteristics of patients with HCC who received PA-TACE or not. Age, AFP, alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (Alb), platelet-to-lymphocyte ratio (PLR), maximum tumour diameter, anatomical liver resection, MVI, and differentiation were significantly different between groups before PSM (All p < 0.05). After propensity matching analysis, there were no significant differences in clinical characteristics between the groups (all p > 0.05).

Adverse events and follow-up antitumour therapy

Liver dysfunction, fever, and nausea/vomiting were the most common adverse events in patients receiving PA-TACE (Table 2). There was no significant difference in grade 3 or 4 adverse events between groups (all p > 0.05). Both groups received follow-up antitumour therapy after tumour recurrence, including liver transplantation, rehepatectomy, local ablation, TACE, chemoradiotherapy, and immunotargeted therapy. Patients with tumour recurrence in the PA-TACE group received more curative treatment, while patients with tumour recurrence in the Non-PA-TACE group received more palliative treatment (Table 3, before PSM, p < 0.001; after PSM, p < 0.001).

Risk factors for Disease-free survival and Overall survival

During the follow-up period, there were 556 tumour recurrences and 271 deaths after hepatectomy in all patients with HCC before PSM (after PSM: 445 tumour recurrences and 227 deaths). Independent risk factors for DFS and OS were assessed by univariate and multivariate analyses after PSM as shown in Figure 1. MVI [DFS: Hazard ratio (HR), 2.080, p < 0.001; OS: HR, 1.951, p < 0.001)] and Non-PA-TACE (DFS: HR, 0.570, p < 0.001; OS: HR, 0.449, p < 0.001) were found to be independent risk factors affecting DFS and OS after hepatectomy in patients with HCC. Patients who received PA-TACE had significantly higher DFS (1-, 2-, and 3-year: 88%-68%-61% vs. 70%-58%-51%, p < 0.001) and OS (1-, 2-, and 3-year: 96%-89%-82% vs. 89%-77%-67%, p < 0.001) than those who did not receive PA-TACE. Results similar to the above were seen before PSM (Figure S2).

Subgroup analysis of Disease-free survival and Overall survival

DFS and OS were assessed for different subgroups of the population after PSM. MVI-negative patients did not achieve significant survival

÷	
Ĕ	
P	
ш	
Q	
÷	
Ř	
Ē	
<u>o</u>	
at	
olis	
ą	
еu	
ũ	
Je	
Ċ	
-ial	
ter	
ar	
SUE	
ţ	
Ħ	
٧a	
ji	
ac	
Š	
ati	
Per	
ğ	
ost	
Δ.	
ŝnt	
Š	
ler	
Ĕ	
_	
0	
vho	
) who	
CC) who	
(HCC) who	
ia (HCC) who	
oma (HCC) who	
cinoma (HCC) who	
arcinoma (HCC) who	
r carcinoma (HCC) who	
ılar carcinoma (HCC) who	
ellular carcinoma (HCC) who	
scellular carcinoma (HCC) who	
atocellular carcinoma (HCC) who	
epatocellular carcinoma (HCC) who	
Hepatocellular carcinoma (HCC) who	
ith Hepatocellular carcinoma (HCC) who	
with Hepatocellular carcinoma (HCC) who	
its with Hepatocellular carcinoma (HCC) who	
ients with Hepatocellular carcinoma (HCC) who	
vatients with Hepatocellular carcinoma (HCC) who	
of patients with Hepatocellular carcinoma (HCC) who	
s of patients with Hepatocellular carcinoma (HCC) who	
tics of patients with Hepatocellular carcinoma (HCC) who	
ristics of patients with Hepatocellular carcinoma (HCC) who	
teristics of patients with Hepatocellular carcinoma (HCC) who	
racteristics of patients with Hepatocellular carcinoma (HCC) who	
haracteristics of patients with Hepatocellular carcinoma (HCC) who	
I characteristics of patients with Hepatocellular carcinoma (HCC) who	
ical characteristics of patients with Hepatocellular carcinoma (HCC) who	
linical characteristics of patients with Hepatocellular carcinoma (HCC) who	
Clinical characteristics of patients with Hepatocellular carcinoma (HCC) who	
Clinical characteristics of patients with Hepatocellular carcinoma (HCC) who	
1 Clinical characteristics of patients with Hepatocellular carcinoma (HCC) who	
LE 1 Clinical characteristics of patients with Hepatocellular carcinoma (HCC) who	
\BLE 1 Clinical characteristics of patients with Hepatocellular carcinoma (HCC) who	
TABLE 1 Clinical characteristics of patients with Hepatocellular carcinoma (HCC) who	

		Before PSM				After PSM			
			PA-TACE				PA-TACE		
Clinical character	ristics	Total $(n = 1505)$	No (n = 723)	Yes (n = 782)	4	Total (<i>n</i> = 1240)	No (n = 620)	Yes (n = 620)	Ъ
Age (years)		56.00 (47.00, 64.00)	57.00 (48.00, 66.00)	55.00 (47.00, 63.00)	0.004	56.00 (47.00, 64.00)	56.00 (47.00, 65.00)	56.00 (48.00, 64.00)	0.987
AFP (ng/mL)		53.45 (6.30, 894.70)	39.07 (5.05, 604.10)	77.200 (7.68, 1000.00)	0.005	47.80 (6.00, 795.05)	43.00 (5.45, 871.85)	65.57 (6.68, 750.88)	0.552
ALT (U/L)		30.84 (22.00, 46.00)	29.00 (21.00, 44.00)	32.86 (23.00, 48.00)	0.004	30.00 (21.42, 45.00)	29.00 (21.18, 44.96)	31.00 (21.60, 45.00)	0.281
AST (U/L)		35.00 (27.00, 50.50)	33.87 (26.00, 47.34)	37.00 (28.00, 52.97)	0.002	34.48 (26.24, 49.00)	33.96 (26.00, 47.04)	35.41 (26.73, 51.04)	0.149
ggt (U/L)		54.00 (30.28, 104.60)	54.55 (30.24, 105.35)	52.59 (30.53, 104.00)	0.834	50.72 (30.00, 99.00)	53.00 (30.00, 101.25)	48.36 (29.95, 97.50)	0.523
ALP (U/L)		96.20 (76.00, 123.29)	94.00 (73.00, 123.00)	98.13 (77.29, 124.80)	0.083	96.07 (76.00, 123.00)	94.25 (75.00, 122.84)	98.00 (77.11, 123.00)	0.295
Alb (g/L)		41.08 (37.98, 43.80)	40.50 (37.60, 43.40)	41.59 (38.59, 44.39)	<0.001	41.00 (37.80, 43.80)	40.70 (37.80, 43.52)	41.38 (37.92, 44.28)	0.058
TB (mol/L)		14.60 (10.80, 19.78)	14.20 (10.40, 19.80)	14.80 (11.19, 19.68)	0.128	14.60 (10.74, 19.73)	13.99 (10.20, 19.73)	14.90 (11.20, 19.74)	0.062
WBC (10 ⁹ /L)		5.30 (4.28, 6.55)	5.25 (4.23, 6.66)	5.34 (4.33, 6.50)	0.914	5.26 (4.23, 6.48)	5.24 (4.20, 6.63)	5.29 (4.26, 6.37)	0.764
CR (µmol/L)		72.70 (62.40, 82.79)	72.70 (62.35, 82.75)	72.86 (62.45, 82.86)	0.704	73.00 (62.39, 82.90)	73.00 (63.34, 82.50)	72.70 (61.98, 83.14)	0.957
PT (s)		11.90 (11.30, 12.60)	11.90 (11.30, 12.60)	11.90 (11.30, 12.60)	0.968	11.90 (11.30, 12.60)	11.90 (11.30, 12.50)	11.90 (11.30, 12.70)	0.179
NLR		2.21 (1.61, 3.23)	2.21 (1.60, 3.17)	2.22 (1.62, 3.28)	0.293	2.20 (1.60, 3.18)	2.20 (1.60, 3.08)	2.19 (1.61, 3.22)	0.684
LMR		3.41 (2.56, 4.76)	3.44 (2.55, 4.89)	3.40 (2.59, 4.72)	0.933	3.41 (2.56, 4.80)	3.44 (2.53, 4.90)	3.40 (2.57, 4.75)	0.891
PLR		110.38 (82.28, 153.52)	104.72 (78.28, 149.79)	113.51 (86.96, 158.14)	0.001	108.92 (82.16, 151.91)	107.13 (79.00, 151.82)	110.46 (85.06, 151.91)	0.166
Operation time (mins)	220.00 (165.00, 280.00)	215.00 (160.00, 273.75)	220.00 (176.25, 280.00)	0.058	220.00 (168.75, 280.00)	220.00 (163.75, 271.25)	220.00 (170.00, 280.00)	0.518
Maximum tumou (mm)	ır diameter	44.00 (27.00, 71.00)	40.00 (25.00, 67.00)	49.00 (29.25, 76.00)	<0.001	43.00 (27.00, 71.00)	43.00 (27.00, 70.00)	43.00 (27.75, 72.00)	0.548
Gender (n(%))	Male	1274 (84.65)	611 (84.51)	663 (84.78)	0.940	1051 (84.76)	529 (85.32)	522 (84.19)	0.636
	Female	231 (15.35)	112 (15.49)	119 (15.22)		189 (15.24)	91 (14.68)	98 (15.81)	
HBV (n(%))	Negative	199 (13.22)	107 (14.80)	92 (11.76)	0.097	161 (12.98)	82 (13.23)	79 (12.74)	0.866
	Positive	1306 (86.78)	616 (85.20)	690 (88.24)		1079 (87.02)	538 (86.77)	541 (87.26)	
Child-Pugh	٩	1434 (95.28)	683 (94.47)	751 (96.04)	0.190	1181 (95.24)	585 (94.35)	596 (96.13)	0.182
classification (n(%))	в	71 (4.72)	40 (5.53)	31 (3.96)		59 (4.76)	35 (5.65)	24 (3.87)	
Liver cirrhosis (n	No	374 (24.85)	179 (24.76)	195 (24.94)	0.984	304 (24.52)	153 (24.68)	151 (24.35)	0.948
((%)	Yes	1131 (75.15)	544 (75.24)	587 (75.06)		936 (75.48)	467 (75.32)	469 (75.65)	

		Before PSM				After PSM			
			PA-TACE				PA-TACE		
Clinical character	istics	Total (<i>n</i> = 1505)	No (n = 723)	Yes (n = 782)	٩	Total (<i>n</i> = 1240)	No (<i>n</i> = 620)	Yes $(n = 620)$	٩
Number of	Single	1315 (87.38)	638 (88.24)	677 (86.57)	0.370	1095 (88.31)	547 (88.23)	548 (88.39)	1.000
tumours (n (%))	Multiple	190 (12.62)	85 (11.76)	105 (13.43)		145 (11.69)	73 (11.77)	72 (11.61)	
Tumour location	Left	474 (31.50)	234 (32.37)	240 (30.69)	0.759	385 (31.05)	197 (31.77)	188 (30.32)	0.838
(u(%))	Right	955 (63.46)	454 (62.79)	501 (64.07)		802 (64.68)	396 (63.87)	406 (65.48)	
	Double	76 (5.05)	35 (4.84)	41 (5.24)		53 (4.27)	27 (4.35)	26 (4.19)	
Tumour margin	Non-smooth	383 (25.45)	188 (26.00)	195 (24.94)	0.678	297 (23.95)	149 (24.03)	148 (23.87)	1.000
(lu(%))	Smooth	1122 (74.55)	535 (74.00)	587 (75.06)		943 (76.05)	471 (75.97)	472 (76.13)	
Vascular	Negative	1372 (91.16)	663 (91.70)	709 (90.66)	0.537	1134 (91.45)	562 (90.65)	572 (92.26)	0.361
invasion (imaging) (n (%))	Positive	133 (8.84)	60 (8.30)	73 (9.34)		106 (8.55)	58 (9.35)	48 (7.74)	
Anatomical liver	٩	462 (30.70)	250 (34.58)	212 (27.11)	0.002	370 (29.84)	200 (32.26)	170 (27.42)	0.072
resection (n (%))	Yes	1043 (69.30)	473 (65.42)	570 (72.89)		870 (70.16)	420 (67.74)	450 (72.58)	
Laparoscopic	٩	911 (60.53)	435 (60.17)	476 (60.87)	0.821	761 (61.37)	388 (62.58)	373 (60.16)	0.414
surgery (n (%))	Yes	594 (39.47)	288 (39.83)	306 (39.13)		479 (38.63)	232 (37.42)	247 (39.84)	
MVI (n(%))	Negative	842 (55.95)	453 (62.66)	389 (49.74)	<0.001	725 (58.47)	371 (59.84)	354 (57.10)	0.357
	Positive	663 (44.05)	270 (37.34)	393 (50.26)		515 (41.53)	249 (40.16)	266 (42.90)	
Satellite nodules	Negative	1277 (84.85)	616 (85.20)	661 (84.53)	0.770	1053 (84.92)	520 (83.87)	533 (85.97)	0.341
(l%))	Positive	228 (15.15)	107 (14.80)	121 (15.47)		187 (15.08)	100 (16.13)	87 (14.03)	
Differentiation (n(%))	High- medium	1243 (82.59)	616 (85.20)	627 (80.18)	0.013	1040 (83.87)	522 (84.19)	518 (83.55)	0.817
	Low	262 (17.41)	107 (14.80)	155 (19.82)		200 (16.13)	98 (15.81)	102 (16.45)	
<i>Note:</i> Bold values i Abbreviations: AFF Hepatitis B virus; [†]	indicate the corr 2, Alpha-fetopro HCC, Hepatocell	parison of clinical char tein; Alb, Albumin; ALP Iular carcinoma; LMR, L	acteristics of patients w , Alkaline phosphatase; -ymphocyte-to-monocyte	ho received PA-TACE and ALT, Alanine aminotransfe e ratio; MVI, Microvasculà	d those who did erase; AST, Asp ar invasion; NLF	I not receive PA-TAC artate aminotransfei R, Neutrophil-to-lymi	CE before PSM and after I ase; CR, Creatinine; GGT, bhocyte ratio; PA-TACE, P	PSM. , Gamma-glutamyltransfer: Postoperative adjuvant traı	ase; HBV, nsarterial
chemoembolisatior	ı; PLR, Platelet-ι	to-lymphocyte ratio; PS	SM, Propensity score ma	atching; PT, Prothrombin t	ime; TB, Total k	oilirubin; WBC, Whit	e blood cell.		

LUO ET AL.

TABLE 1 (Continued)

TABLE 2	Comparison of adverse event	s occurring in patients	with Hepatocellular	carcinoma (F	HCC) who receiv	ed Postoperative
adjuvant tran	sarterial chemoembolisation (PA-TACE) or not.				

	Before F	SM					After PS	SM				
	Non-PA (n = 732	-TACE 2)	PA-TAC (n = 782	E 2)			Non-PA (n = 620	-TACE))	PA-TAC (n = 620	E))		
Adverse events	Grade 1-2	Grade 3-4	Grade 1-2	Grade 3-4	Р	P *	Grade 1-2	Grade 3-4	Grade 1-2	Grade 3-4	Р	P *
Liver dysfunction	102	31	273	34	< 0.001	0.954	84	22	251	25	< 0.001	0.656
Neutropenia	68	23	119	29	0.001	0.576	54	17	99	22	< 0.001	0.416
Thrombocytopenia	57	16	78	21	0.118	0.554	46	11	61	13	0.116	0.680
Anemia	52	9	54	13	0.928	0.500	39	7	45	8	0.463	0.759
Pain	79	11	121	14	0.007	0.683	67	6	104	9	0.001	0.436
Fever	60	6	176	11	< 0.001	0.290	57	4	153	6	< 0.001	0.525
Nausea/vomiting	83	14	135	17	0.002	0.746	75	12	123	12	< 0.001	1.000
Fatigue	78	7	81	6	0.701	0.674	75	3	77	4	0.799	0.705

Note: P: Comparison of adverse event grades 1-4. P*: Comparison of adverse event grades 3-4.

Abbreviations: HCC, Hepatocellular carcinoma; PA-TACE, Postoperative adjuvant transarterial chemoembolisation; PSM, Propensity score matching.

TABLE 3 Comparison of follow-up antitumour therapy after tumour recurrence in patients with Hepatocellular carcinoma (HCC) who received Postoperative adjuvant transarterial chemoembolisation (PA-TACE) or not.

	Before PSM			After PSM		
Anti-tumour therapy	Non-PA-TACE (n = 282)	PA-TACE (n = 274)	Р	Non-PA-TACE (n = 252)	PA-TACE (n = 193)	Р
Curative treatment	129	177	< 0.001	111	139	< 0.001
Liver transplantation	4	12	0.037	4	11	0.017
Rehepatectomy	10	18	0.103	9	16	0.032
Local ablation	115	147	0.002	98	112	< 0.001
Palliative care	153	97	< 0.001	141	54	< 0.001
TACE	89	42	< 0.001	84	19	< 0.001
Chemoradiotherapy	15	8	0.155	14	5	0.125
Immunotargeted therapy	49	47	0.954	43	30	0.668

Abbreviations: HCC, Hepatocellular carcinoma; PA-TACE, Postoperative adjuvant transarterial chemoembolisation; PSM, Propensity score matching; TACE, Transarterial chemoembolisation.

outcomes from PA-TACE (Figure 2a, DFS, p = 0.324; Figure 2b, OS, p = 0.213), whereas MVI-positive patients achieved higher DFS (Figure 2c, 1-, 2-, and 3-year: 68%-57%-48% vs. 46%-31%-27%, p < 0.001) and OS (Figure 2d, 1-, 2-, and 3-year: 96%-84%-77% vs. 79%-58%-40%, p < 0.001) from it. Among the six different liver cancer stages, MVI-negative patients did not have significant survival outcomes from PA-TACE (all p > 0.05), while MVI-positive patients achieved higher DFS [Figure 3: Within Milan criteria, p < 0.001; Beyond Milan criteria, p < 0.001; Barcelona Clinic Liver Cancer (BCLC) stage O-A, p < 0.001; BCLC stage B-C, p = 0.001; China liver cancer (CNLC) stage I, p < 0.001; CNLC stage II-IIIa, p = 0.001; American Joint

Committee on Cancer (AJCC) Tumour Node Metastasis (TNM) (8th) stage I, p < 0.001; AJCC TNM (8th) stage II-III, p < 0.001; Japan Integrated Staging (JIS) score 0–1, p < 0.001; JIS score 2–3, p < 0.001; Hong Kong Liver Cancer (HKLC) stage I, p < 0.001; HKLC stage II-III, p < 0.001] and OS (Figure 4: Within Milan criteria, p < 0.001; Beyond Milan criteria, p < 0.001; BCLC stage O-A, p < 0.001; BCLC stage B-C, p < 0.001; CNLC stage I, p < 0.001; CNLC stage I, p < 0.001; CNLC stage I, p < 0.001; AJCC TNM (8th) stage II-III, p < 0.001; JIS score 0–1, p < 0.001; JIS score 2–3, p < 0.001; HKLC stage I, p < 0.001; JIS score 0–1, p < 0.001; JIS score 2–3, p < 0.001; HKLC stage I, p < 0.001; HKLC stage I, p < 0.001; HKLC stage I, p < 0.001; HKLC stage II-III, p < 0.001; HKLC stage II-III stage II-III, p < 0.001; HKLC stage II-III stage

Characteristics [After PSM (DFS)]	Univariable HR (95%CI)	Univariable P Value	Multivariable HR (95%CI)	Multivariable P Value	
Age	0.990 (0.982,0.998)	0.017	0.993 (0.984, 1.001)	0.074	4
AFP	1.000 (1.000,1.000)	< 0.001	1.000 (1.000, 1.000)	0.104	
ALT	1.002 (1.001,1.004)	0.007	1.000 (0.996, 1.003)	0.852	• • • • • • • • • • • • • • • • • • •
AST	1.004 (1.003, 1.005)	< 0.001	1.001 (0.998, 1.005)	0.446	
GGT	1.001 (1.001,1.002)	<0.001	1.001 (1.000, 1.002)	0.012	∓
ALP	1.002 (1.001,1.003)	0.001	0.999 (0.997, 1.000)	0.134	•
Alb	0.960 (0.942,0.979)	< 0.001	0.990 (0.970, 1.011)	0.344	•
TB	1.005 (1.000, 1.010)	0.065			T
WBC	1.003 (0.983, 1.023)	0.778			•
CR	0.998 (0.994, 1.002)	0.290			• • • • • • • • • • • • • • • • • • •
PT	1.069 (1.001, 1.140)	0.046	1.036 (0.953, 1.125)	0.408	
NER	1 042 (0 988 1 051)	0.276			P
IMR	1 011 (1 002 1 021)	0.017	1.010/1.002 1.018)	0.019	±
PLR	1 001 (1 000 1 002)	0.057		01020	
Operation time	1.001 (1.000 1.002)	0.136			•
Maximum tumor diameter	1.012 (1.010,1.002)	<0.001	1.007/1.004.1.010)	<0.001	
Conder	1.013 (1.010,1.013)	-0.001	1.007 (1.004, 1.010)	-0.001	T C C C C C C C C C C C C C C C C C C C
Mala					
Formale	0.016 (0.703.1.104)	0.517			
remate	0.916 (0.703,1.194)	0.517			
nov					
Negative	1 000 (0 010 1 150)	0.550			
positive Child-Pugh classification	1.090 (0.816,1.456)	0.558			
Α					
B	1.552 (1.059,2.276)	0.024	1.115 (0.715, 1.739)	0.632	
Liver cirrhosis					
No					
Yes	1.312 (1.046,1.646)	0.019	1.139 (0.889, 1.444)	0.281	
Number of tumors					
Single					
Multiple	2.300 (1.806,2.928)	< 0.001	1.663 (1.280, 2.160)	< 0.001	
Vascular invasion (imaging)					
Negative					
Positive	3.545 (2.745,4.563)	< 0.001	1.383 (1.036, 1.848)	0.028	
Tumor location					
Left					
Right	0.952 (0.778.1.165)	0.633			
Double	1.252 (0.799, 1.962)	0.328			
Tumor margin	,				
Non-smooth					
Smooth	0 704 (0 572 0 867)	0.001	0.936 (0.748 1.171)	0.561	
Anatomical liver resection	0.104(0.512,0.001)	0.001	0.550 (0.140, 1.111)	0.501	
Niatornical liver resection					
No .	1 107 (0 002 1 402)	0.100			
res	1.167 (0.963,1.463)	0.108			
Laparoscopic surgery					
NO			/		
Yes	0.650 (0.531,0.797)	<0.001	0.895 (0.723, 1.108)	0.310	
MVI					
Negative					
Positive	3.064 (2.529,3.711)	<0.001	2.080 (1.677, 2.578)	<0.001	
Satellite nodules					
Negative					
Positive	2.908 (2.342,3.609)	< 0.001	1.856 (1.4702.2343)	< 0.001	
Differentiation					
High-medium					
Low	2.683 (2.172,3.314)	< 0.001	1.913 (1.535, 2.384)	< 0.001	
PA-TACE			,		
No					
Yes	0.685 (0.568,0.826)	< 0.001	0.570 (0.470, 0.691)	< 0.001	
					05 1 15 2 25 3 35 4 45
				0	
					<better worse=""></better>
				Γ	Inivariable Multivariable
					· Onronable · Protorable

(b)

Characteristics [After PSM (OS)]	Univariable HR (95%CI)	Univariable P Value	Multivariable HR (95%CI)	Multivariable P Value		
Age	1.005 (0.994, 1.017)	0.344			•	
AFP	1.000 (1.000, 1.000)	0.003	1.000(1.000,1.000)	0.060		
ALT	1.002 (1.000, 1.005)	0.044	0.997(0.992,1.002)	0.291		
ASI	1.004 (1.002, 1.006)	<0.001	1.004 (0.998, 1.009)	0.180		
ALD	1.002 (1.001, 1.003)	<0.001	1.000(0.999,1.002)	0.452		
Alb	0.945 (0.921 0.970)	<0.001	0.993(0.968.1.018)	0.151	1	
TB	1 010 (1 005 1 015)	<0.001	1.005(0.997.1.013)	0.211	3	
WBC	1.005 (0.975, 1.035)	0.764			H I I I I I I I I I I I I I I I I I I I	
CR	0.997 (0.990, 1.004)	0.385			1	
PT	1.117 (1.030, 1.210)	0.007	1.034 (0.933, 1.146)	0.529	H H	
NLR	1.029 (0.995, 1.063)	0.092	1 011/1 002 1 020	0.017	1	
DID	1.003 (1.005, 1.025)	0.005	0.000/0.007.1.001	0.017		
Operation time	1.002 (1.000, 1.003)	0.012	1.000/0.999 1.002)	0.808		
Maximum tumor diameter	1.014 (1.010, 1.017)	< 0.001	1.007(1.003, 1.012)	0.002		
Gender	. , ,				1	
Male						
Female	1.025 (0.718, 1.463)	0.983				
HBV						
negative	0.969 /0.501 1.275	0.471			⊢	
Child-Pugh classification	0.000 (0.001, 1.270)	0.471				
A						
В	2.926 (1.944, 4.404)	< 0.001	2.027 (1.213, 3.388)	0.007		
Liver cirrhosis						
No	1 700 (1 01 4 0 405)	0.000		0.040		
res Number of tumors	1.709 (1.214, 2.405)	0.002	1.144(1.001,2.074)	0.049		
Single						
Multiple	2.284 (1.642, 3.177)	< 0.001	1.528(1.069.2.184)	0.020		· · · · · · · · · · · · · · · · · · ·
Vascular invasion (imaging)						
Negative						
Positive	3.401 (2.445, 4.732)	< 0.001	1.376(0.936,2.021)	0.104	H	
Tumor location						
Pight	0.914 /0.699 1.212)	0.531			⊢	
Double	1.235 (0.671, 2.275)	0.498				
Tumor margin						
Non-smooth						
Smooth	0.659 (0.496, 0.877)	0.004	0.818(0.600,1.115)	0.204		-
Anatomical liver resection						
Yes	1 216 (0 908 1 628)	0.190			H	
Laparoscopic surgery	11210 (01000) 11020)	01200				
No						
Yes	0.520 (0.382, 0.7.7)	< 0.001	0.782 (0.565, 1.084)	0.140		-
MVI						
Negative	3 209 /2 441 4 216)	<0.001	1 951/1 /22 2 656)	<0.001		
Satellite nodules	5.200 (2.441, 4.210)	~0.001	1.551(1.452,2.030)	~0.001		
Negative						
Pošitive	2.968 (2.220, 3.968)	< 0.001	1.858(1.347,2.562)	< 0.001		
Differentiation						
High-medium	2 205 /1 525 2 075	-0.001	1 550(1 100 0 104)	0.005		
PATACE	2.206 (1.636, 2.975)	<0.001	1.559(1.138,2.134)	0.006		· · · · · · · · · · · · · · · · · · ·
No						
Yes	0.477 (0.363, 0.627)	< 0.001	0.400(0.301,0.532)	< 0.001		
Follow-up treatment after recurre	ence				1.1.1	
Palliative care						
Curative treatment	0.554 (0.372, 0.703)	<0.001	0.449(0.347,0.662)	<0.001		
					o o.s i	1 1.5 2 2.5 3 3.5 4 4.5
					<be< td=""><td>etter Worse></td></be<>	etter Worse>
					• University in a	Multi-scients
					 Univariable 	mutivariable

FIGURE 1 Forest plots of univariate and multivariate analysis of Cox regression models for DFS (a) and OS (b) in patients with HCC after PSM. Curves of DFS (c) and OS (d) for all patients with or without MVI after PSM. Curves of DFS (e) and OS (f) for all patients with or without PA-TACE after PSM. AFP, Alpha-fetoprotein; Alb, Albumin; ALP, Alkaline phosphatase; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; CI, Confidence interval; CR, Creatinine; DFS, Disease-free survival; GGT, Gamma-glutamyltransferase; HBV, Hepatitis B virus; HCC, Hepatocellular carcinoma; HR, Hazard ratio; LMR, Lymphocyte-to-monocyte ratio; MVI, Microvascular invasion; NLR, Neutrophil-to-lymphocyte ratio; OS, Overall survival; PA-TACE, Postoperative adjuvant transarterial chemoembolisation; PLR, Platelet-to-lymphocyte ratio; PSM, Propensity score matching; PT, Prothrombin time; TB, Total bilirubin; WBC, White blood cell.

FIGURE 1 (Continued)

DISCUSSION

Microvascular invasion generally reflects the high invasive and metastatic capacity of the tumour, and its presence significantly worsens the surgical outcome of HCC.^{18–22} Even in small HCCs (<3 cm), the incidence of MVI remained higher than 20%.^{23,24} Internationally, scholars have emphasised that MVI is an important basis for assessing the risk of recurrence of HCC and selecting treatment options, and it should be used as an indicator for routine pathological examination.^{18– 24} In the present study, approximately 44% of patients with HCC harboured MVI, which was an independent risk factor for DFS and OS. In this study, MVI-positive patients who received PA-TACE had significantly higher survival rates. Many studies have shown that PA-TACE can significantly prolong survival in MVI-positive patients but not in MVI-negative patients.^{11–17} A meta-analysis showed that PA- TACE not only failed to improve outcomes in MVI-negative patients but may potentially promote postoperative recurrences in certain patients.²⁵ This suggests that PA-TACE is not a necessary treatment option for MVI-negative patients. In addition, analysis of six different liver cancer stages revealed no significant survival benefit from PA-TACE in MVI-negative patients, whereas MVI-positive patients had higher survival outcomes from it. It is worth noting that the above results were the same in patients with early and intermediate liver cancer stages. Thus, it is evident that the detection of MVI may help to guide the selection of PA-TACE.

Some scholars have found through prospective studies that the postoperative tumour recurrence is mostly seen within 6 months after surgery, especially the highest risk of recurrence in the third to fourth months after surgery.²⁶ All patients in this study were followed up every 1–2 months for the first 6 months after surgery to

FIGURE 2 Subgroup curves of DFS (a, c) and OS (b, d) in patients with negative and positive MVI who received PA-TACE after PSM. DFS, Disease-free survival; MVI, Microvascular invasion; OS, Overall survival; PA-TACE, Postoperative adjuvant transarterial chemoembolisation; PSM, Propensity score matching.

ensure the earlier detection of tumour recurrence and to enable patients with tumour recurrence to receive timely follow-up antitumour therapy. Interestingly, we analysed the important reasons for the significantly longer OS in the PA-TACE group by the different subsequent antitumour regimens for patients with tumour recurrence. After the diagnosis of tumour recurrence, significantly more patients in the PA-TACE group received curative treatment (liver transplantation, rehepatectomy, or local ablation) than in the Non-PA-TACE group, which may have led to longer OS in the PA-TACE group. This may reflect the fact that the tumour recurrence in patients in the PA-TACE group was usually localised and manageable. In contrast, more patients with tumour recurrence in the Non-PA-TACE group received relatively palliative treatment, which may be associated with more extensive tumour recurrence and unfavorable factors, such as large vessel cancer thrombosis and extrahepatic metastases.

Postoperative adjuvant transarterial chemoembolisation can accelerate the deterioration of liver function, suppress host immunity to tumour progression, and affect hepatocyte regeneration.^{27,28}

These may adversely affect the long-term survival of patients after radical resection of HCC. In our study, patients had relatively mild adverse reactions to PA-TACE with abnormal liver dysfunction, fever, and nausea/vomiting as the most common adverse events. Most adverse events were minor and manageable, and no toxicity-related deaths occurred. In particular, there was no increase in grade 3–4 adverse events in the PA-TACE group compared with the non-PA-TACE group. In addition, other studies have found that postoperative adjuvant TACE is accompanied by mild adverse effects, and most recover quickly and well after symptomatic management.^{29,30} No patients have been identified with serious adverse events or toxicity-related deaths in PA-TACE, but its safety still needs to be investigated in more prospective large clinical experiences.

Although the data in this study were screened by strict inclusion and exclusion criteria, there were still inevitable limitations: (1) As a retrospective study, even though we minimised patient selection bias through PSM, it was difficult to completely avoid retrospective bias and confounders between groups; (2) due to the lack of formal clinical guidelines for PA-TACE, it is difficult to have the

							PR-TACE	NO+PA-TACE						
Characteristics	Number (%)	Event			1-year DFS (PA-TACE)	1-year DFS (Non-PA-TACE)			2-year DFS (PA-TACE)	2-year DFS (Non-PA-TACE)		3-year DFS (PA-TACE	3-year DFS (Non-PA-TACE)	•
All patients	1240	445		.*	80% (77%, 83%)	70% (87%, 74%)			68% (64%, 72%)	58% (54%, 63%)		61% (57%, 66%)	51% (47%, 57%) <0.	1.001
MINT														
Necetian	725 /58 AT)				895, (855, 925)	ATT. (875. 875.)		-	77% (77% 87%)	16% (72%, 81%)		115 alles 7751	47% (84% 34%) D	-
Pasitive	515 (41.53)	2/2	25		68% (62%, 74%)	40% (42%, 53%)			57% (50%, 64%)	31% (25%, 39%)		48% (40%, 58%)	27% (21%, 35%) 40.	.001
Within Milan ontenia	670	160		_	60% (87%, 93%)	83% (79%, 87%)			78% (73%, 84%)	73% (67%, 78%)		72% (87%, 80%)	05% (59%, 72%) D	
MV														
					DAY OVER OTHER	ALC: 480. 491.		-	AND (200) (200)	A40.0704.0001				
in the second	401 (00.21)				and (an all an all	914 (944, 944)			and (real and)	and (real, and)			ran jarn, sang ta	
Positive	213 (31.79)	83			62% (76%, 90%)	01% (\$2%, 72%)			67% (57%, 78%)	43% (33%, 56%)		63% (52%, 70%)	39% (29%, 52%) ×0.	.001
Beyond Milan otheria	670	285			68% (63%, 74%)	60% (52%, 42%)		•	60% (50%, 83%)	41% (36%, 48%)	200 0 -01	47% (40%, 59%)	35% (29%, 43%) <0	.001
MINT														
Negative	258 (47.02)	95		-	80% (74%, 87%)	70% (71%, 80%)			64% (55%, 74%)	42% (53% 72%)	-	595 (505, 705)	525 (425, 645) 0	409
												-		
Postere	332 (52.98)	185	-		56% (40%, 65%)	36% (29%, 46%)	-		48% (41%, 58%)	23% (17%, 33%)		38% (27%, 47%)	275 (14%, 38%) <0.	.001
BCLC stage 0.A	1045	321		.*	65% (82%, 88%)	77% (73%, 80%)			73% (69%, 77%)	(65% (60%, 69%)		6655 (8155, 7255)	57% (52%, 62%) 01	001
MVI														
Negative	653 (62.43)	137			82% (89%, 95%)	89% (82%, 82%)		1.00	00% (75%, 05%)	75% (74%, 54%)		75% (89%, 01%)	975 (875, 78%) D.	(170
				-				-				-		
Positive	303 (57.67)	184	,	•	75% (60%, 81%)	54% (47%, 82%)			625 (555, 755)	38% (31%, 47%)		63% (49%, 63%)	33% (25%, 42%) <0.	,001
BCLC stage B-C	194	124		-	5175 (4275, 6375)	37% (29%, 49%)			42% (22%, 54%)	24% (16%, 36%)		33% (22%, 48%)	22% (14%, 34%) 01	005
MINT														
Nearing	72 (37.11)	38			66% (52%, 63%)	00% (51%, 64%)			48% (33%, 73%)	47% (32%, 71%)		40% (24%, 67%)	42% (20%, 48%) 01	921
Positive	122 (62.89)	88			415 (20%, 57%)	2256 (1356, 3856)	-		30% (25%, 53%)	12% (9.1%, 28%)		27% (10%, 47%)	12% (5.1%, 26%) 01	001
CNLC stope I	1047	323		.*	84% (81%, 88%)	77% (73%, 80%)			73% (68%, 77%)	65% (62% 62%)		6655 (815), 715)	57% (52%, 42%) 01	001
MVI														
Negativa	654 (62.46)	139			97% (88%, 94%)	89% (85%, 82%)			80% (75%, 85%)	75% (74%, 84%)		74% (66%, 61%)	09% (63%, 76%) D2	237
Deating	201/07.60	104			745.000.0101	545 (276 BMS)			2000 (4550 - 500).	100.010.0701			700 (700 - 470) - 47	1001
Postave	9999 (011094)	104		• •	145 (BOX, 013)	08% (87%, 86%)			629 (1975, 1976)	and form with		60% (MON. 60%)	3299 (2299, 9296) 90.	
CNLC stage II-Bla	190	122		•	53% (44%, 65%)	37% (28%, 48%)			43% (33%, 55%)	24% (10%, 30%)		34% (24%, 49%)	22% (14%, 34%) 0)	000
MVI														
Nepative.	71 (38.79)	34			68% (54%, 85%)	05% (51%, 84%)		••	53% (27%, 74%)	47% (32%, 71%)		45% (28%, 71%)	42% (28%, 68%) 0.	.704
Declar	122 803 211				4300 (2110) (2000)	2000 (1990 - 560L)	_		100 (Left, 100c)	100.15 10. 000.1		Test (150) Auto)	170.05.15 (201.)	
											•			
AJOC TNM (BP) steps I	1023	316			84% (81%, 88%)	77% (73%, 80%)			73% (60%, 77%)	65% (00%, 70%)		66% (61%, 71%)	57% (52%, 63%) 01	002
MINT														
Negative	639 (82.46)	136			91% (88%, 94%)	89% (89%, 82%)			80% (75%, 85%)	78% (74%, 84%)		74% (68%, 81%)	70% (64%, 77%) 0:	287
Pushiee	384 (37.54)	101			74% (68%, 80%)	54% (47%, 42%)			01% (54%, 09%)	39% (31%, 48%)		53% (44%, 62%)	32% (28%, 43%) <0	0.001
				•										
AJCC TNM (8h) stage II-	61 217	129	-	•	57% (48%, 68%)	41% (32%, 52%)			46% (37%, 58%)	28% (22%, 40%)		38% (27%, 52%)	24% (16%, 38%) 0.1	003
MP/1														
Negative	88 (29.63)	38			71% (59%, 87%)	68% (55%, 64%)		-	54% (39%, 75%)	55% (41%, 74%)		48% (31%, 72%)	46% (31%, 68%) 0.1	882
Pasitive	121 (60.37)	95	-		47% (30%, 62%)	23% (59%, 37%)		-	40% (29%, 59%)	11% (4.4%, 25%)	-	30% (18%, 51%)	11% (4.8%, 25%) <0.	0.001
JIS score 0-1	1015	309		-	88% (82%, 88%)	77% (73%, 81%)		-	73% (89%, 77%)	65% (61%, 70%)		6655 (81%, 72%)	58% (53%, 64%) 0.1	003
MINT														
Negativo	653 (64.33)	141			01% (87%, 94%)	80% (85%, 82%)		-	79% (74%; 84%)	79% (74%, 84%)		73% (87%, 80%)	70% (64%, 77%) 0.	365
Positive	362 (35.67)	166		-	75% (69%, 62%)	55% (47%, 43%)			60% (55%, 71%)	39% (31%, 48%)	-	55% (40%, 65%)	35% (28%, 45%) 40.	1.001
JIS score 2-3	225	136			5655 (47%, 67%)	39% (31%, 50%)			40% (38%, 57%)	28% (18%, 38%)		38% (27%, 52%)	20% (12%, 32%) 0.1	001
MIVE														
Negativo	72 (32.00)	32			72% (58%, 88%)	67% (\$3%, 85%)			56% (41%, 28%)	51% (36%, 24%)		5855 (40%, 78%)	41% (25%, 66%) 01	564
Positive	153 (68.00)	104	-		48% (37%, 62%)	20% (17%, 39%)			40% (30%, 55%)	13% (5.9%, 28%)		27% (10%, 48%)	6.4% (1.5%, 31%) 40.	1.001
HKLC steps I	652	158		-	89% (86%, 93%)	83% (79%, 87%)			78% (73%, 83%)	73% (67%, 78%)		73% (86%, 79%)	65% (58%, 72%) 0.1	017
MIN														
Negative	445-(58.40)	75		1	94% (91%, 97%)	825 (895, 995)			84% (79%, 99%)	85% (80%, 90%)		78% (71%, 86%)	76% (68%, 83%) 0.	415
Positive	205 (31.60)	83			81% (74%, 89%)	00% (52%, 73%)			65% (55%, 78%)	42% (32%, 55%)	-	6115 (50%, 75%)	38% (27%, 51%) +0.	1.001
HIQLC stage 8-88	566	287			69% (64%, 75%)	57% (51%, 63%)			57% (51%, 64%)	43% (37%, 49%)		48% (42%, 69%)	39% (39%, 44%) <0.	.001
MINT														
Negative	279 (47.45)	98		-	81% (74%, 88%)	70% (71%, 85%)		2- 0 -1	64% (56%, 74%)	62% (54%, 72%)	-	58% (50%, 71%)	535 (435, 645) 0.	453
Positive	339 (52.55)	180		•	5855 (50%, 67%)	38% (31%, 48%)			50% (42%, 50%)	25% (18%, 34%)		38% (25%, 49%)	22% (15%, 31%) = +0.	1.001
														_

FIGURE 3 Subgroup forest plots of DFS at 1, 2, and 3 years in patients with or without MVI who received PA-TACE in different liver cancer stages after PSM. AJCC, American Joint Committee on Cancer; BCLC, Barcelona Clinic Liver Cancer; CNLC, China liver cancer; DFS, Disease-free survival; HKLC, Hong Kong Liver Cancer; JIS, Japan Integrated Staging; MVI, Microvascular invasion; PA-TACE, Postoperative adjuvant transarterial chemoembolization; PSM, Propensity score matching; TNM, Tumor Node Metastasis.

						PA TACE	Nee-PATAGE							
Characteristics	Number (%)	Event		1-year OS (PA-TACE)	1-year OS (Non-PA-TACE)		3	2-year OS (PA-TACE)	2-year OS (Non-PA-TACE)			3-year OS (PA-TACE)	3-year OS (Non-PA-TACE)) P
Alipatients	1240	227		96% (95%, 98%)	89% (87%, 92%)		*	89% (66%, 92%)	77% (73%, 81%)			82% (77%, 86%)	67% (82%, 72%)	42.001
MVI														
Nearba	725 (58.47)	60		90% (M/%, 98%)	975 (975, 975)			825 (805, 985)	825 (825, 825)			85% (80%, 91%)	035 (785, 085)	0.213
			:				100 H							
Postore	615 (41.53)	147	H	96% (54%, 96%)	79% (74%, 84%)		•••	84% (79%, 88%)	50% (52%, 69%)			77% (70%, 84%)	40% (33%, 50%)	<0.001
Within Mian criteria	670	21	:	93% (56%, 59%)	95% (92%, 97%)			95% (82%, 90%)	07% (83%, 92%)			85% (85%, 94%)	70% (73%, 05%)	0.000
MVI														
Negative	457 (68.21)	26		97% (95%, 99%)	97% (95%, 99%)			95% (92%, 98%)	92% (89%, 99%)			89% (84%, 95%)	67% (82%, 93%)	0.400
			:											
Pagent	100000		H - H	and port, sonay	10 A (14 A, 16 A)		H -	10 m (10 m, 10 m)	104 (004)	-	•	tern (rink, seni)	Sea (riss, rist)	
Boyand Milan oriteria	570	196		95% (82%, 89%)	82% (78%, 87%)			82% (77%, 87%)	64% (58%, 71%)			73% (66%, 80%)	63% (49%, 61%)	-0.001
MM														
Negative	298 (47.02)	44	•	95% (82%, 99%)	94% (99%, 99%)		+++	89% (83%, 95%)	82% (75%, 90%)			76% (66%, 86%)	76% (83%, 86%)	0.300
Positivo	302 (52.96)	112	-	94% (90%, 98%)	725 (825, 825)		-	705 (50%, 54%)	40% (39%, 59%)		-	675 (585, 785)	315 (235, 425)	+0.001
							-							
BCLC stage 0-A	1046	195		97% (85%, 88%)	80% (80%, 85%)			91% (89%, 94%)	83% (79%, 89%)			84% (80%, 89%)	7356 (5856, 7856)	40.001
MM														
Negative	653 (62.43)	62	:	97% (95%, 99%)	97% (99%, 99%)			94% (91%, 97%)	915, (875, 955)			87% (81%, 92%)	86% (81%, 91%)	0.403
Positive	393 (37.57)	80		97% (65%, 69%)	84% (78%, 89%)		-	875 (825, 925)	00% (59%, 75%)		-	01% (74%, 00%)	47% (30%, 50%)	-0.001
										H				
BCLC slage B-C	194	22		93% (88%, 99%)	71% (82%, 81%)			75% (99%, 96%)	46% (38%, 59%)			66% (54%, 80%)	38% (26%, 60%)	<0.001
MVI														
Negative	72 (37.11)	18		94% (87%, 100%)	81% (63%, 96%)			82% (89%, 96%)	04% (48%, 85%)			74% (58%, 99%)	58% (42%, 82%)	0.103
Positive	122 (62.66)	54		82% (86%, 100%)	66% (55%, 79%)			70% (\$7%, 85%)	36% (24%, 53%)		•	58% (44%, 80%)	22% (12%, 41%)	-0.001
						•••								
CNLC stripe (1047	196	-	97% (95%, 98%)	93% (93%, 95%)		-	91% (88%, 94%)	83% (79%, 86%)			84% (80%, 89%)	73% (58%, 78%)	+0.001
MVI														
Negativa	654 (82.45)	63	:	97% (95%, 99%)	97% (98%, 99%)			94% (91%, 97%)	91% (87%, 99%)			00% (01%, 92%)	80% (81%, 91%)	0.475
Positivo	303 (37.54)	83		97% (95%, 99%)	84% (78%, 89%)			87% (81%, 92%)	00% (59%, 75%)			81% (74%, 89%)	47% (39%, 59%)	-0.001
											-			
CNLC stops II-IIIa	193	71	· *	93% (55%, 99%)	71% (82%, 81%)		-	78% (99%, 88%)	45% (35%, 59%)		, 	6555 (54%, 81%)	3655 (26%, 50%)	-0.001
MVI														
Negative	71 (26.78)	17		94% (87%, 100%)	01% (59%, 96%)			65% (74%, 98%)	64% (48%, 85%)	-		77% (61%, 98%)	5815 (42%, 02%)	0.058
Positive	122 (83.21)	54		82% (86%, 100%)	00% (55%, 79%)			72% (90%, 87%)	36% (24%, 53%)		•	5755 (41%, 79%)	2256 (12%, 41%)	-2.001
						· •								
AJCC TNM (8th) stage I	1023	153	1	97% (85%, 98%)	92% (99%, 95%)			91% (00%, 94%)	83% (79%, 87%)		Her .	84% (79%, 88%)	73% (59%, 79%)	-0.001
MM														
Negative	639 (82.48)	61	:	97% (95%, 99%)	97% (95%, 99%)			93% (93%, 97%)	91% (89%, 95%)			86% (81%, 92%)	85% (80%, 91%)	0.423
Positivo	384 (37.54)	92		97% (94%, 99%)	84% (78%, 89%)			89% (81%, 92%)	67% (69%, 78%)	H	_ ++	81% (73%, 88%)	47% (38%, 59%)	+0.001
AJCC TNM (8th) stage II	48 217	74		94% (89%, 99%)	74% (86%, 83%)	-	-	80% (72%, 89%)	49% (39%, 41%)		-	66% (58%, 63%)	415 (215, 545)	-0.001
MVI														
Negative	85 (39.63)	19		06% (88%, 100%)	89% (75%, 87%)			87% (76%, 98%)	09% (59%, 87%)		- -	80% (99%, 99%)	00% (51%, 84%)	0.180
Positive	131 (60.37)	45		93% (96%, 108%)	67% (57%, 80%)			75% (54%, 89%)	35% (23%, 52%)		• •	61% (45%, 82%)	21% (11%, 40%)	+0.001
						<u></u>	•							
JIS score 0-1	1015	101		975 (855, 885)	83% (89%, 95%)		Her	91% (39%, 94%)	83% (79%, 87%)		H	84% (80%, 88%)	73% (68%, 78%)	<0.001
MVI														
Negative	653 (64.33)	63	:	97% (95%, 99%)	97% (95%, 99%)		-	94% (91%, 97%)	91% (37%, 95%)		-	86% (81%, 92%)	85% (81%, 91%)	0.431
Positive	362 (35.67)	68	*	97% (96%, 100%)	84% (78%, 99%)		H 0 -1	86% (81%, 92%)	67% (59%, 79%)		-	81% (73%, 68%)	47% (37%, 59%)	+0.001
											.			
C-L Prope L-L	225			9376 (88%, 88%)	10% (98%, 82%)	-	-	79% (r1%, 88%)	4/76 (28%, 69%)		4	66% (3 ¹⁵ , 62%)	38% (x8%, 52%)	wg (001
MVI														
Negative	72 (32.00)	17		94% (86%, 106%)	05% (73%, 90%)		- -	84% (72%, 98%)	00% (51%, 00%)	÷		76% (59%, 98%)	61% (45%, 83%)	0.154
Positive	163 (68.00)	59	•••	92% (89%, 99%)	68% (99%, 80%)		-	76% (85%, 88%)	37% (28%, 54%)			65% (51%, 82%)	24% (14%, 43%)	<0.001
100 C storr 1	P.5	42	•	995 (gen new)	975 gaw awa.		. •	000 1237 AMV.	80% (Brin Ann)		10	State and a second	BARL (74W ANNY)	0.000
Are merged 1	edit.	-	•	499 (KAN) 1993)	ana (a13), 9236)		• •••	een (een, Wik)	on a (ny)/ (03))		+++	an ia 10,007 (0,007)	over (+43), 003()	0.000
MVI			-				_							
Negative	446 (08.40)	30		96% (96%, 100%)	97% (99%, 99%)		-	90% (82%, 99%)	9375 (89%, 97%)			90% (04%, 99%)	09% (84%, 90%)	0.535
Positivo	206 (31.60)	32	-	98% (96%, 100%)	91% (84%, 97%)		• • •	95% (90%, 99%)	78% (99%, 89%)	-	- *	03% (87%, 09%)	63% (39%, 72%)	-0.001
180.0 may 1.11		545	•	905 1934	80% (7mm and)		H e H	82% (77% *****	APL (187 1961			72% (07% ****)	505 (Jan 1997)	
and any other			H e H	(M. A. W. S.	- 4 (108, 409)		+++	(** a , ** (b)	(mm, rsh)	-	•		in (no. 11, 607b)	10000
MVI														
Negative	279 (47.45)	50	-	95% (91%, 99%)	82% (89%, 99%)			895 (825, 545)	82% (75%, 89%)			79% (70%, 69%)	73% (94%, 83%)	0.249
Positive	309 (52.55)	115	•••	94% (\$1%, \$8%)	72% (85%, 87%)	H		76% (69%, 84%)	47% (29%, 57%)	⊢ •−1		66% (56%, 77%)	33% (24%, 44%)	+0.001
		20 40	60 60 100	2		20 40	60 60 100			0 20 40	60 B0 10	0		

FIGURE 4 Subgroup forest plots of OS at 1, 2, and 3 years in patients with or without MVI who received PA-TACE in different liver cancer stages after PSM. AJCC, American Joint Committee on Cancer; BCLC, Barcelona Clinic Liver Cancer; CNLC, China liver cancer; HKLC, Hong Kong Liver Cancer; JIS, Japan Integrated Staging; MVI, Microvascular invasion; OS, Overall survival; PA-TACE, Postoperative adjuvant transarterial chemoembolisation; PSM, Propensity score matching; TNM, Tumour Node Metastasis.

same drug type, drug dose, and operation cycle for TACE in different medical centers. It is hoped that larger, multi-center, prospective trials will be conducted in the future to verify the findings of this study.

CONCLUSIONS

Among the six different conventional liver cancer stages in this study, PA-TACE showed a survival benefit not only for patients in the early stages but also for those in the intermediate stages. However, it had limited efficacy in patients with HCC without MVI. Overall, PA-TACE has a good safety profile and may be a potentially beneficial treatment modality for survival outcomes in patients with HCC, especially those with concomitant MVI.

AUTHOR CONTRIBUTIONS

Laihui Luo, Renfeng Shan, Lifeng Cui, and Zhao Wu: Concepts, designs, data collection, analysis, manuscript preparation, and editing. Junlin Qian, Shuju Tu, WenJian Zhang, Yuanpeng Xiong, Wei Lin, and Hongtao Tang: Data collection, analysis, manuscript preparation, and editing. Yang Zhang, Jisheng Zhu, Yong Li, Zeyu Huang, Zhigang Li, Shengping Mao, Hui Li, Zemin Hu, Peng Peng, and Kun He: Analysis, manuscript preparation, and editing. Yong Li, Yongzhu He, Liping Liu, and Wei Shen: Guarantee the integrity of the entire study and manuscript review. All authors have read and approved the final version to be submitted.

ACKNOWLEDGEMENTS

This work was funded by Zhongshan Science and Technology Plan Project of Guangdong Province (Project Number: 2021B1040), Key research and development projects of Jiangxi Provincial Department of Science and Technology (Project Number: 20202BBGL73092), Natural Science Foundation of Jiangxi Provincial (Project Number: 20171BAB205064), and National Natural Science Foundation of China (Project Number: 81860432) that play no role in the collection, analysis, interpretation of results, or writing of the manuscripts.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no competing interests.

DATA AVAILABILITY STATEMENT

The datasets generated and analysed during the current study are not publicly available due to privacy and ethical concerns, but are available from the corresponding author on reasonable request.

ETHICS STATEMENT

The study was approved by the ethics committees of the First Affiliated Hospital of Nanchang University, the Second Affiliated Hospital of Nanchang University, Shenzhen People's Hospital and Zhongshan People's Hospital, and followed the guidelines of the Declaration of Helsinki (Ethics number: 2022-CDYFYYLK-08-015).

CONSENT FOR PUBLICATION

Written informed consent was obtained from patients or their immediate family.

GUARANTORS

Yongzhu He, MD, PhD Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, The First Affiliated Hospital of Nanchang University(The First Clinical Medical College of Nanchang University), No. 17 Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, China 330006, Tel: +86 0791-88694131; Department of Hepatobiliary Surgery, Zhongshan People's Hospital (Zhongshan Hospital Affiliated to Sun Yat-sen University), No. 2, Sunwen East Road, Shiqi District, Zhongshan City, Guangdong Province, China 528400, Tel:+86 0760-89880551, E-mail: yongzhuhe@email.ncu.edu.cn.

ORCID

Yong Li D https://orcid.org/0000-0002-9007-5705 Liping Liu D https://orcid.org/0000-0001-7017-301X Wei Shen D https://orcid.org/0000-0003-1576-6159 Yongzhu He D https://orcid.org/0000-0002-3894-3069

REFERENCES

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J clinicians. 2021;71(3):209–49. https://doi.org/10.3322/ caac.21660
- Erratum. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J clinicians. 2020;70(4):313.
- 3. Kloeckner R, Galle PR, Bruix J. Local and regional therapies for hepatocellular carcinoma. Baltimore: Hepatology; 2021. p. 137–49.
- Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen P, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int. 2015;35(9): 2155–66. https://doi.org/10.1111/liv.12818
- Xie DY, Ren ZG, Zhou J, Fan J, Gao Q. 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: updates and insights. Hepatobiliary Surg Nutr. 2020;9(4):452–63. https://doi. org/10.21037/hbsn-20-480
- Prince D, Liu K, Xu W, Chen M, Sun JY, Lu XJ, et al. Management of patients with intermediate stage hepatocellular carcinoma. Ther Adv Med Oncol. 2020;12:1758835920970840. https://doi.org/10.1177/ 1758835920970840
- Reig M, Cabibbo G. Antiviral therapy in the palliative setting of HCC (BCLC-B and -C). J Hepatol. 2021;74(5):1225–33. https://doi.org/10. 1016/j.jhep.2021.01.046
- Zhang YF, Shang H, Zeng XL, Ji H, Li YM, Lu HW. Postoperative adjuvant chemo (embolization) therapy for hepatocellular carcinoma with portal vein tumor thrombosis. OncoTargets Ther. 2018;11: 5407–17. https://doi.org/10.2147/ott.s171612
- Liang L, Li C, Diao YK, Jia HD, Xing H, Pawlik TM, et al. Survival benefits from adjuvant transarterial chemoembolization in patients undergoing liver resection for hepatocellular carcinoma: a systematic review and meta-analysis. Ther Adv Gastroenterol. 2020;13: 1756284820977693.
- 10. Liu F, Guo X, Dong W, Zhang W, Wei S, Zhang S, et al. Postoperative adjuvant TACE-associated nomogram for predicting the prognosis of

resectable Hepatocellular Carcinoma with portal vein Tumor Thrombus after Liver Resection. Int J Biol Sci. 2020;16(16):3210–20. https://doi.org/10.7150/ijbs.46896

- 11. Wang H, Du PC, Wu MC, Cong WM. Postoperative adjuvant transarterial chemoembolization for multinodular hepatocellular carcinoma within the Barcelona Clinic Liver Cancer early stage and microvascular invasion. Hepatobiliary Surg Nutr. 2018;7(6):418–28. https://doi.org/10.21037/hbsn.2018.09.05
- Wang K, Xiang YJ, Yu HM, Cheng YQ, Qin YY, Wang WJ, et al. A novel classification in predicting prognosis and guiding postoperative management after R0 liver resection for patients with hepatocellular carcinoma and microvascular invasion. Eur J Surg Oncol : J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2022;48(6):1348–55. https://doi. org/10.1016/j.ejso.2021.12.466
- Qi YP, Zhong JH, Liang ZY, Zhang J, Chen B, Chen CZ, et al. Adjuvant transarterial chemoembolization for patients with hepatocellular carcinoma involving microvascular invasion. Am J Surg. 2019;217(4): 739–44. https://doi.org/10.1016/j.amjsurg.2018.07.054
- Liu S, Guo L, Li H, Zhang B, Sun J, Zhou C, et al. Postoperative adjuvant trans-arterial chemoembolization for patients with hepatocellular carcinoma and portal vein tumor thrombus. Ann Surg Oncol. 2018; 25(7):2098–104. https://doi.org/10.1245/s10434-018-6438-1
- Ye JZ, Chen JZ, Li ZH, Bai T, Zhu SL, Li LQ, et al. Efficacy of postoperative adjuvant transarterial chemoembolization in hepatocellular carcinoma patients with microvascular invasion. World J Gastroenterol. 2018;23(41):7415–24. https://doi.org/10.3748/wjg.v23.i41. 7415
- Hu S, Gan W, Qiao L, Ye C, Wu D, Liao B, et al. A new prognostic algorithm predicting HCC recurrence in patients with Barcelona clinic liver cancer stage B who received PA-TACE. Front Oncol. 2018;11:742630. https://doi.org/10.3389/fonc.2021.742630
- Wang YY, Wang LJ, Xu D, Liu M, Wang HW, Wang K, et al. Postoperative adjuvant transarterial chemoembolization should be considered selectively in patients who have hepatocellular carcinoma with microvascular invasion. HPB : official J Int Hepato Pancreato Biliary Assoc. 2019;21(4):425–33. https://doi.org/10.1016/j. hpb.2018.08.001
- Lee S, Kang TW, Song KD, Lee MW, Rhim H, Lim HK, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation. Ann Surg. 2021;273(3):564–71. https://doi.org/10.1097/sla.0000000000 03268
- Costentin CE, Ferrone CR, Arellano RS, Ganguli S, Hong TS, Zhu AX. Hepatocellular carcinoma with macrovascular invasion: defining the optimal treatment strategy. Liver cancer. 2017;6(4):360–74. https:// doi.org/10.1159/000481315
- Yang L, Gu D, Wei J, Yang C, Rao S, Wang W, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Liver cancer. 2019;8(5):373–86. https:// doi.org/10.1159/000494099
- Li Y, Zhang Y, Fang Q, Zhang X, Hou P, Wu H, et al. Radiomics analysis of [F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma. Eur J Nucl Med Mol Imag. 2021;48(8):2599–614. https://doi.org/10. 1007/s00259-020-05119-9
- 22. Liao B, Liu L, Wei L, Wang Y, Chen L, Cao Q, et al. Innovative synoptic reporting with seven-point sampling protocol to improve detection

rate of microvascular invasion in hepatocellular carcinoma. Front Oncol. 2021;11:726239. https://doi.org/10.3389/fonc.2021.726239

- Pawlik TM, Delman KA, Vauthey JN, Nagorney DM, Ng IOL, Ikai I, et al. Tumor size predicts vascular invasion and histologic grade: implications forselection of surgical treatment for hepatocellular carcinoma. Liver Transpl. 2005;11(9):1086–92. https://doi.org/10.1002/ lt.20472
- Onaca N, Davis GL, Jennings LW, Goldstein RM, Klintmalm GB. Improved results of transplantation forhepatocellular carcinoma: a report from the international registry of hepatic tumors in Liver-Transplantation. Liver Transpl. 2009;15(6):574–80. https://doi.org/ 10.1002/lt.21738
- Chen W, Ma T, Zhang J, Zhang X, Chen W, Shen Y, et al. A systematic review and meta-analysis of adjuvant transarterial chemoembolization after curative resection for patients with hepatocellular carcinoma. HPB Oxf. 2020;22(6):795–808. https://doi.org/10.1016/j. hpb.2019.12.013
- Lu X, Zhao H, Yang H, Mao Y, Sang X, Miao R, et al. A prospective clinical study on early recurrence of hepatocellular carcinoma after hepatectomy. J Surg Oncol. 2009;100(6):488–93. https://doi.org/10. 1002/jso.21354
- Raoul JL, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat Rev. 2019;72:28–36. https://doi.org/10.1016/j.ctrv.2018.11.002
- Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind JF. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a systematic review of efficacy and safety data. Hepatology. 2016; 64(1):106–16. https://doi.org/10.1002/hep.28453
- Wang Z, Ren Z, Chen Y, Hu J, Yang G, Yu L, et al. Adjuvant transarterial chemoembolization for HBV-related hepatocellular carcinoma after resection: a randomized controlled study. Clin Cancer Res. 2018; 24(9):2074–81. https://doi.org/10.1158/1078-0432.ccr-17-2899
- Wei W, Jian PE, Li SH, Guo ZX, Zhang YF, Ling YH, et al. Adjuvant transcatheter arterial chemoembolization after curative resection for hepatocellular carcinoma patients with solitary tumor and microvascular invasion: a randomized clinical trial of efficacy and safety. Cancer Commun (Lond). 2018;38(1):61. https://doi.org/10.1186/ s40880-018-0331-y

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Luo L, Shan R, Cui L, Wu Z, Qian J, Tu S, et al. Postoperative adjuvant transarterial chemoembolization improves survival of hepatocellular carcinoma patients with microvascular invasion: a multicenter retrospective cohort. United European Gastroenterol J. 2023;11(2):228–41. https://doi.org/10.1002/ueg2.12365