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Abstract

Background.—While ADHD has been associated with differences in the structural connections 

formed by the brain’s white matter tracts, studies of such differences have returned inconsistent 

findings, likely reflecting small sample sizes. Thus, we conducted a mega-analysis on in vivo 
measures of white matter microstructure obtained through diffusion tensor imaging of over 6000 

participants, from five cohorts.

Methods.—In a mega-analysis, linear mixed models tested for associations between the 

fractional anisotropy of 42 white matter tracts and ADHD traits and diagnosis. Contrasts were 

made against measures of mood, anxiety, and other externalizing problems.

Findings.—Overall, 6993 participants (between ages 6 to 18 years, mean 10.62 [SD 1.99]; 3,368 

girls, 3,625 boys; 4146 white, non-Hispanic, 764 African American, 2083 other race/ethnicities) 

had either measures of ADHD and other emotional/behavioral symptoms (N=6933) and/or enough 

clinical data to allow a diagnosis of ADHD (N=951) or its absence (N=4884). Both the diagnosis 

and symptoms of ADHD were associated with lower fractional anisotropy of inferior longitudinal 

and left uncinate fasciculi (at FDR adjusted p<0.05). Associated effect sizes were small (the 

strongest association with ADHD traits had an effect size of partial-r=−0.14, while the largest case 

control difference was associated with an effect size of d=−0.3). Similar microstructural anomalies 
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were not present for anxiety, mood, or externalizing problems. Findings held when ADHD cases 

and controls were matched on in-scanner motion.

Interpretation.—While present across cohorts, ADHD-associated microstructural differences 

had small effects, underscoring the limited clinical utility of this imaging modality in isolation.

Keywords

ADHD; diffusion tensor imaging; mega-analysis; white matter tracts; big data; fractional 
anisotropy

Introduction

ADHD is increasingly conceptualized as a disorder of connectivity, a “dysconnectome” in 

which microstructural differences in the white matter tracts that form structural connections 

in the brain underlie disruptions in large-scale brain systems that are tied to symptoms (1, 

2). The evidence for such altered structural connectivity rests mainly upon cross-sectional 

demonstrations of ADHD-associated differences in a marker of white matter microstructure, 

fractional anisotropy, as measured by diffusion tensor imaging (DTI). While four meta-

analyses point to alterations both in the longitudinal fasciculi that connect different cortical 

regions and to the corpus callosum that connects the two hemispheres, there is little 

consensus on the exact regions and tracts that are compromised (3–6). Furthermore, 

one meta-analysis posited that head motion may be driving most diagnostic differences, 

highlighting the need for strict control of this parameter (4). The lack of consistent findings 

likely reflects differences in criteria for data selection, methods of synthesis and the reliance 

upon published findings via coordinates-based meta-analytic methods, rather than the use 

of ‘raw’ diffusion tensor imaging data. These meta-analyses have typically used Activation 

Likelihood Estimation (ALE) or Seed-based d Mapping (SDM), or both (7, 8). These 

methods differ in the way that they synthesize data. For example, only SDM allows for 

overlapping increases and decreases from different studies to be synthesized together, so 

that contradictory findings cancel each other out (7). Furthermore, for inclusion in most 

coordinate-based meta-analyses, a cluster must meet statistical significance in the original 

paper, with subthreshold group differences often unavailable or not includable. This is 

problematic when considering the lack of statistical power in most neuroimaging studies and 

the problems related to publication bias, which each inflate type-I and type-II error rates, 

and which thus cause significant problems for retrospective quantitative summaries of the 

literature (9, 10).

Here, we attempt to overcome these issues by analyzing data from five datasets, with a total 

of 6993 participants, in an effort to identify signals that emerge when combining multiple 

cohorts. The use of original DTI data, processed at one site in a uniform manner, also 

allows us to control for critical potential confounders including in-scanner motion through 

procedures such as nearest neighbor matching based on motion parameters.

In this study we consider both ADHD traits as measured by a parent/caregiver completed 

Child Behavior Check List (CBCL), and the diagnosis of ADHD, ascertained by DSM-based 

interviews (11, 12). We predicted that ADHD traits and diagnoses would be associated with 
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similar differences in white matter microstructure, as has been found for ADHD-related 

differences in cortical anatomy (13). We also aimed to determine the specificity of white 

matter differences related to ADHD symptoms through a contrast with the other empirical 

scales extracted from the CBCL.

Methods

Cohorts

We included data from the Healthy Brain Network (HBN), Adolescent Brain and Cognitive 

Development (ABCD), Neurobehavioral Clinical Research (NCR), National Consortium 

on Alcohol and Neurodevelopment in Adolescence (NCANDA), and Human Connectome 

Project – Developmental (HCP-D) datasets (14–19). The Supplemental Methods summarize 

each study’s recruitment methods and sampling strategies, protocols and image acquisition 

parameters. All studies had IRB/ethical approval and acquired informed assent and/or 

consent using IRB approved procedures. For the questionnaire-based analyses, the main 

inclusion criteria were ages ≥6 years and ≤18 with an IQ>70, availability of all covariate 

data, and availability of parent/caregiver completed questionnaire CBCL data. In the primary 

analyses we consider raw scores of the six empirical scales which are based on factor 

analyses of the items and include attention problems (11, 12). Raw scores were analyzed 

in this study because age and sex were included as covariates in the regression models. 

For the case-control analyses, ADHD was defined using DSM criteria (diagnostic data were 

available for all cohorts except HCP-D). Unaffected controls were those with no ADHD 

diagnosis and not on any psychotropic medications. See Supplemental Methods for further 

details.

Diffusion tensor imaging of white matter tracts

Choice of primary outcome measure—The primary outcome variable was fractional 

anisotropy calculated for the brain’s 42 major white matter tracts as defined by the IIT 

Human Brain Atlas version 5.0 (20). This measure was chosen as it is the most widely used 

index of microstructure, and it has been the focus of the four meta-analyses of DTI studies in 

ADHD (3–6). We also include results for other DTI indexes in the supplemental material.

We conducted analyses at two levels of data quality. In the main analyses, we excluded 

individuals who had any of the six-motion parameters that lay in the worst 10%. This 

left 6993 (79.8% of subjects with processed DTI images and necessary covariate data) 

individuals with scans, of whom 6933 had CBCL scores available and 5835 had ADHD 

diagnostic data. We next removed as an outlier any tract values that lay outside the mean 

+− 3 SDs interval for that tract within each cohort (at this stage the removal was of tract 

values not entire individual datasets). We repeated analyses at a more stringent level of 

quality control, removing those who had any motion parameter in the top 20%, leaving 

5533 (63.14% of subjects with processed DTI images and necessary covariate data). Further 

discussions on excluded subjects are given in the Supplementary Methods. Comparisons 

between subjects included and excluded at each level of stringency are provided in 

Supplementary Tables 1 and 2, and Supplementary Figure 1.

Sudre et al. Page 3

Biol Psychiatry. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Analyses

In the primary analysis, we tested if tracts differed in their associations with ADHD 

traits and diagnoses. Specifically, we tested for the interaction between tract identity and 

attention problems scores or ADHD diagnosis on fractional anisotropy, while including 

demographic and in-scanner motion covariates as fixed effects, and including subject as a 

random intercept term, nested within cohort, site, and family. A significant interaction would 

indicate that the association between fractional anisotropy and ADHD differs according to 

anatomical location, ruling out a uniform global association between fractional anisotropy 

and the disorder. Following this, linear mixed models tested for an association between 

the predictor (the empirical CBCL problem scales, or ADHD diagnosis) and the fractional 

anisotropy for each individual tract. Following this, linear mixed models tested for an 

association between the predictor (the empirical CBCL problem scales, or ADHD diagnosis) 

and the fractional anisotropy for each individual tract. We control for variables for which 

there is evidence they are a cause of ADHD, or of white matter tract variation, or of both 

(21). We adjusted for age, sex, socio-economic status and race/ethnicity, given evidence of 

effects of these demographic variables on ADHD prevalence (22, 23) and white matter tract 

microstructure (24, 25). We also controlled for in-scanner motion. The individual motion 

parameters were highly correlated and we thus conducted a principal components analysis 

of the six parameters and their squares, and retained the first three principal components for 

motion which explained 85.4% of the total variance – Supplementary Figure 2.

Measures of intelligence may in part be impacted by ADHD, and not just temporally 

antecedent and thus we conduct analyses both with and without this variable (26–28). 

Random intercept terms for cohort, site, and nuclear family identity were included. To 

examine the specificity of findings to the attention problems subscale, we also examined 

associations between FA and scores on the remaining CBCL empirical scales. Adjustment 

was made for tests conducted for the 42 tracts and the nine predictors (diagnosis and 

the eight CBCL empirical scales) for a total of 378 tests, using FDR procedures with 

adjusted p<0.05 taken as significant (29). We used the linear.hypothesis function from the 

car package (30) for R (version 4.0.2; http://www.r-project.org) to test whether the strength 

of the associations between each tract and the attention problems scale was significantly 

different from the associations involving each of the remaining CBCL empirical scales (see 

Supplementary Methods for details).

Robustness analyses

We checked the robustness of results by using an approach based on complementary pairs 

stability (31). In this approach, the entire sample is randomly split into two independent 

halves (resamples) multiple times, such that there are no statistical differences between 

halves in any of the covariates within cohort (p > .1), and individuals of the same family are 

confined to the same half. We test repeatedly for associations between the predictor (ADHD 

traits or diagnosis) and outcome (white matter tract) on each half in each resample, declaring 

an association to be corroborated if it is present in both halves at a p<0.05. We then note the 

proportion of ‘corroborated’ associations (e.g., if it is present in both halves in 20 of the 100 

splits, then n=20%). We interpret the distribution of n against a null distribution of n, derived 
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through permutations that randomly shuffle the white matter tract values across subjects. 

This approach is similar in spirit to testing for association with independent discovery and 

replication samples. The approach is superior to a single split of our cohort, multiple splits 

can reduce the variability of statistics due to sampling variability (32, 33), and has been 

applied to GWAS (34).

We furthermore performed a number of sensitivity analyses to assess the robustness of 

the results. As noted above, we examined the results using a stricter threshold (being 

in the worst 20% of any motion-related parameter). We also performed analyses on 

samples matched on in-scanner motion, using the propensity matching without replacement 

algorithms available in the MatchIt package version 4.3.2 in R (35)– see Supplemental 

Methods.

Additionally, we include analyses controlling for IQ, as well as analyses performed after 

removing those with possible bipolar affective and/or psychotic symptoms. We also consider 

the possibility that parents under-report attention problems and ADHD symptoms as they 

think of their child’s symptoms while ‘on medication’. In line with previous similar studies 

(36), we replaced the attention problem score of a child on stimulants with the mean score 

for all children who were on psychostimulants or other medication for ADHD that had the 

same or a higher attention problems score. Finally, we contrasted the results from ‘clinical’ 

(cohorts with diagnosis of ADHD >50%) and ‘population’ cohorts (which had prevalence 

rates of ADHD at rates of 10% or lower). Further details on these robustness checks are 

given in the Supplement.

Exploratory axial diffusivity, radial diffusivity and voxelwise analyses

While in the primary analysis we focused on tract-level estimates of fractional anisotropy, 

we also report supplementary findings based on axial diffusivity, which is the coefficient 

of diffusion along the axon (or the long axis of the tensor ellipsoid) along with radial 

diffusivity, or the coefficient of diffusion perpendicular to the long axis.

We further supplemented our fractional anisotropy analyses performed at the tract level 

with voxelwise examinations. This allowed us to examine for any potential local, sub-tract 

associations between fractional anisotropy and ADHD traits and diagnosis, in addition to 

leveraging even further the benefits of using a single analysis pipeline across cohorts. Full 

details are given in the Supplemental Methods.

Results

There was a highly significant interaction between tract identity and the attention problem 

scale (χ(41)2=299, p<0.00001) as well as between tract identity and ADHD diagnosis 

(χ(41)2=632, p<0.00001) on fractional anisotropy, suggesting that tracts differed in 

their associations with ADHD traits and diagnosis, rather than having uniform, global 

associations with these clinical variables. Overall, 6933 subjects contributed to the analyses 

using the CBCL - Table 1. Significant associations emerged in the mega-analysis between 

attention problem scores and lower fractional anisotropy of the left inferior longitudinal 

fasciculus (B=−0.0002 [SE 0.00007], t=−3.53, p=0.0004, adjusted p=0.048), and the left 
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uncinate fasciculus (B=−0.0003 [SE 0.00008], t=−4.13, p=0.00004, adjusted p=0.02). The 

effect sizes were small. For left inferior longitudinal fasciculus the effect size was partial-

r=−0.12 (95%CI −0.19 to −0.05), while for the left uncinate fasciculus the effect size was 

partial-r=−0.14 (95%CI −0.21 to −0.07). The associations between the uncinate fasciculus 

and the attention problems scales were, for the most part, significantly different than their 

associations with all other CBCL empirical scales, except for the social problems scale. For 

the inferior longitudinal fasciculus, the association with the attention problems scale differed 

relative to those observed for the anxious-depressed, somatic problems, aggressive problems 

and thought problem scales. No other CBCL problems, measured by the empirical scales, 

were associated with fractional anisotropy of any tract at adjusted levels of significance, 

although nominal associations emerged particularly for social problems. See Figures 1 & 2, 

Table 3 and Supplementary Tables 3 and 4.

These associations between ADHD and lower fractional anisotropy held in the same 

tracts in diagnostic contrasts of 951 ADHD cases against 4884 unaffected controls: the 

left inferior longitudinal fasciculus (B=−0.003 [SE 0.0008], t=−3.43, p=0.0006, adjusted 

p=0.048) the left uncinate fasciculus (B=−0.003 [SE 0.0009], t=−3.84, p=0.0001, adjusted 

p=.02) and, in addition the right inferior longitudinal fasciculus (B=−0.003 [SE 0.0009], 

t=−3.49, p=0.0005, adjusted p=.048) met FDR adjusted significance- Table 2, Figures 1 & 

2, Supplementary Table 5. Effect sizes were small. Similar effect sizes were observed for 

both the left and right inferior longitudinal fasciculus (left: −0.27 (95%CI −0.42 to −0.11); 

right: −0.27 (95%CI −0.42 to −0.12), while for the left uncinate fasciculus, an effect size 

of −0.3 (95%CI −0.45 to −0.15) was observed. Nominally significant associations between 

ADHD and reduced fractional anisotropy of other association tracts, some projection tracts 

(fronto-, parieto and occipito-pontine and corticospinal tracts) and callosal tracts are noted in 

Supplementary Table 5.

Robustness checks

Results of the complementary pairs stability analysis are shown in Supplementary Table 6. 

In brief, we find that the association between FA of the left uncinate fasciculus and CBCL 

attention scale had n=77%, p < .001 (i.e. it was nominally significant p < .05 in both halves 

of the data for 77 out of the 100 random splits, and such a high n was never observed in 

any of the 1000 permutations of the data). Similarly, the association between that index and 

ADHD diagnosis was n=64% (p < .001). The relationship between FA in the left inferior 

longitudinal fasciculus and CBCL attention problems was n=50% (p < 0.001), and ADHD 

diagnosis was 47% (p < 0.001). That same value for n was also observed for the relationship 

between FA in the right inferior longitudinal fasciculus.

Although motion parameters were considered as covariates in the main analyses, we 

conducted further analyses to ensure that findings were not driven by motion. The pattern 

of findings held at the more stringent level of quality control (that retained 62.4% of the 

individuals in the original cohort- Table 2 and Supplemental Tables 7 & 8). Moreover, those 

with ADHD problems were propensity matched on motion parameters and demographic 

variables with those who had no ADHD problems (2560 and 3561 participants in each 

group). These groups did not differ in any motion parameters thus ensuring that motion 
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was not contributing to findings. Effects of the matching procedure in the relationship 

between ADHD variables and motion parameters are given in Supplementary Table 9. 

The findings of associations between the fractional anisotropy of long association tracts 

and attention problems scores all held– Supplementary Tables 10 & 11. The pattern of 

association between attention problems and tract fractional anisotropy held when covarying 

for estimates of general intelligence – Supplementary Tables 12 & 13. Following adjustment 

for a possible under-reporting of attention problems (due to ADHD medication), we 

found that associations with white matter tract microstructure were more pronounced - 

Supplementary Table 14. This was also the case after excluding subjects with possible 

bipolar disorder and/or psychosis symptoms - Supplementary Tables 15 & 16.

We further examined whether associations between white matter microstructure and ADHD 

traits and diagnoses changed or remained stable with age. To limit confounds between 

age range and cohort, we explored this question in the four datasets with suitably wide 

age ranges, excluding the ABCD cohort as subjects were aged 9–10 years old at time 

of scanning. We first fit models examining linear, quadratic, and cubic trends across all 

included subjects, which were compared using Akaike’s Information Criterion (AIC). The 

best fitting terms for age were then examined in interactions with (1) attention problems and 

(2) ADHD diagnosis. The results of these analyses are reported in Supplementary Table 17 

and, importantly, do not overlap with the tracts implicated in ADHD in the primary analysis. 

For completion we examined interactions in the ABCD cohort, focusing on linear trends 

given the small age range covered. No tracts met FDR-corrected significance for either the 

interaction with attention problems or ADHD diagnosis for the ABCD cohort.

There were consistently lower mean effect sizes for the clinical cohort combined (mean 

−0.34 for attention problems, −0.65 for ADHD Diagnosis) than the population cohorts 

combined (−0.09 for attention problems, −0.21 for ADHD Diagnosis) within the white 

fiber tracts shown in Figure 2. Significant interactions between diagnosis and the nature 

of the cohorts (clinic-based vs population) were observed in the right inferior longitudinal 

fasciculus (t=1.98, p=.048), and between attention problems in the left uncinate fasciculus 

(t=3.41, p=.0007). Trends were also observed between the nature of the cohorts and ADHD 

diagnosis in the left uncinate fasciculus (t=1.87, p=.06), and attention problems in the left 

inferior longitudinal fasciculus (t=1.86, p=.06).

Exploratory axial diffusivity, radial diffusivity and voxelwise analyses

To supplement our examination of the associations between white matter microstructure 

assessed using fractional anisotropy and ADHD traits and diagnosis, we examined 

associations involving alternative measures of white matter microstructure. We found that 

the axial diffusivity and radial diffusivity of the inferior longitudinal fasciculi and the left 

uncinate fasciculus were also associated with ADHD at nominal levels of significance. See 

Figure 2 and Supplementary Tables 18–21.

Two clusters in the supplementary voxelwise analysis for the association between attention 

problems and FA were significant at p=.02 and p=.04, with one cluster intercepting with 

the left frontopontine tract, and a second located around the middle cerebellar peduncle. No 

Sudre et al. Page 7

Biol Psychiatry. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clusters reached statistical significance for ADHD diagnosis. See Supplementary Table 22 

and Supplementary Figure 3.

Discussion

Both ADHD traits and diagnosis showed significant associations with altered microstructure 

of the inferior longitudinal fasciculi and the left uncinate fasciculus. The overall effect sizes 

were small, with the strongest association involving ADHD traits as assessed using the 

CBCL associated with an effect size of partial-r=−0.14, and the largest group difference 

when comparing cases and controls associated with an effect size of d=−0.3. White matter 

tract microstructural anomalies were not as prominently associated with problems related 

to mood, anxiety or other externalizing problems. The findings held in multiple sensitivity 

analyses and robustness checks, including after matching ADHD cases and unaffected 

controls on the basis of motion parameters.

ADHD problems were associated with lower fractional anisotropy of the long association 

tracts, specifically the inferior longitudinal and uncinate fasciculi. This is consistent with 

prior meta-analyses that found lower fractional anisotropy in ADHD in the sagittal stratum 

(which contain fibers that form the inferior longitudinal fasciculus (4, 5)). Our finding is 

also consistent with models of ADHD as the result of disruptions to several large-scale 

brain networks mediating key cognitive functions in the disorder. For example, the inferior 

longitudinal fasciculus has been implicated previously in ADHD, mainly through its role in 

visuospatial attention (37). Finally, the uncinate fasciculus has been implicated in ADHD as 

a core component of both emotion and reward processing systems (38, 39).

The findings were similar in analyses that treated ADHD as a trait and as a diagnostic 

category, complementing demonstrations that ADHD traits and diagnosis have similar 

cortical anatomic changes and share a common genetic basis (13, 40, 41). In both cases, 

small effect sizes were reported. Small effects are in line with other recent large-scale 

investigations of associations between clinical and brain phenotypes in psychiatry, most 

saliently the recent work of Marek and colleagues, as well as the emerging conclusion that 

real, reproducible associations between individual differences in complex biological systems 

and multifaceted, heterogenous disorders such as ADHD will almost certainly involve small 

univariate effect sizes (10, 13, 42).

The study represents six advances. First, we analyze ‘raw’ data, rather than meta-analyzing 

published summary results, as the latter is biased by signals that attained thresholds for 

declaring significance within each study. In light of the small effect sizes reported here, it is 

likely that such results would have been missed using retrospective voxelwise meta-analytic 

methods, as they are unlikely to have survived the corrections for multiple comparisons at 

the level of single studies. Second, data were analyzed at one site using a uniform processing 

pipeline, thus circumventing the introduction of confounds tied to software (43). Third, the 

use of ‘raw’ DTI data allows us to control for critical confounders, particularly motion, 

at the individual level, and to perform follow-up analyses on nearest neighbor matched 

samples. Such procedures essentially exclude the possibility that the diagnostic and trait 

differences are artifacts of in-scanner motion. Fourth, we were able to show that white 
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matter differences tied to ADHD were largely ADHD-specific relative to anxiety, mood or 

non-ADHD externalizing problems assessed using the CBCL. Fifth, we were able to begin 

to explore whether clinically enriched samples may be able to detect differences of larger 

effects than those seen in more population-based, representative cohorts, reporting that effect 

sizes tended to be larger in clinically ascertained cohorts (HBN, NCR) than cohorts of 

the general population (ABCD, HCP-D and NCANDA). Finally, we employed a stability 

computational framework that can serve as a viable alternative to foster reproducibility of 

results when replication samples are unavailable.

Limitations of the study include the fact that subjects with ADHD diagnoses, lower IQ, 

lower socioeconomic status and who were male were disproportionately excluded due to 

excessive in-scanner motion, at both levels of stringency. This likely made the sample 

unrepresentative of ADHD subjects as a whole, which is an issue known to impact 

neuroimaging studies of neurodevelopmental disorders, and we cannot consider our effect 

size estimates to be population level estimates for the population of U.S. children (44, 45). 

Second, as we considered cross-sectional studies, we were limited in our ability to examine 

developmental questions, including whether the associations between brain structure and 

ADHD traits and diagnoses changed with age(46). While we examined this question cross-

sectionally, such cross-sectional approaches are potentially confounded by cohort effects, 

and are unable to capture changes in brain structure and ADHD traits at the individual 

level. Furthermore, our use of cross-sectional data meant that we were unable to make 

statements about the direction of effects. While it is possible that anomalies in white matter 

tract development leads to ADHD symptom formation, it is also feasible that the experience 

of ADHD symptoms per se has an impact on white matter tract development. Indeed, 

using longitudinal data from a large Dutch population cohort, it was found that higher 

externalizing and internalizing symptoms at baseline predicted smaller increases in global 

fractional anisotropy over time, but baseline white matter properties were not associated 

over time with later symptoms (47). Third, given its prominence in the field, we opted 

to analyze the fractional anisotropy of white matter tracts derived using DTI methods. 

However, it is possible that recent advances in diffusion weighted imaging could return 

diagnostic signals which have larger effect sizes, including the acquisition of multi-shell 

diffusion weight sequences, analyzed using methods that more accurately reconstruct fiber 

orientation within voxels (such as the ‘fixel’ based approach) (48–50).

In summary, we conducted a large, multi-cohort study of white matter differences associated 

with ADHD diagnosis and traits, in which we processed multiple large datasets according 

to a harmonized imaging pipeline, thereby overcoming issues known to inflate effect sizes 

and false positive rates of both smaller individual neuroimaging studies and retrospective 

meta-analyses of neuroimaging studies based on the published literature (9, 10). The results 

showed ADHD-associated differences in white matter microstructure within long association 

tracts that were not found for anxiety, mood and non-ADHD externalizing problems, 

supporting the hypothesized role for white matter alterations in the pathophysiology of 

ADHD. Nonetheless, while our findings do not preclude the possibility that DTI data could 

add value to other data sources in building tools for diagnosis, prognosis and treatment 

guidance, particularly when machine learning rather than traditional statistical approaches 

are employed, the small effect sizes observed limit the clinical utility of this imaging 
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modality in isolation, as such differences cannot reliably distinguish individuals with and 

without ADHD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Association between fractional anisotropy of white matter tracts and ADHD diagnosis, 

and scores on the empirical subscales from the Child Behavior Checklist. Colors indicate 

t-statistic, single black stars are nominally significant p < .05, double black stars at p < .01, 

and double red stars mark associations significant at FDR adjusted p < .05. Results for AD 

and RD metrics are exploratory only, and displayed for comparison to the main FA results.
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Figure 2. 
Forest plots showing the effect sizes for associations between fractional anisotropy and (A) 

the diagnosis of ADHD; and (B) CBCL attention problems scale. The individual cohorts 

are given, followed by the mega-analytic effect size, then results for the population and 

clinic-based cohorts. Effect sizes are estimated using Cohen’s d in (A) and partial-r in (B). 

The association between the FA in the right inferior longitudinal fasciculus and attention 

problems (lower, right plot) only reached nominal significance p < 0.01 in the main analysis, 

but it is displayed here for completeness.
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Table 1.

Demographic details on the five cohorts used in the current study for N=6933 subjects included in the primary 

analyses of associations between white matter microstructure and scores on the empirical CBCL scales.

Cohort

ABCD HBN HCP-D NCANDA NCR Total

Total (N) N=5420 N=564 N=292 N=516 N=141 N=6933

Female N (%) 2639 219 166 264 63 3351

(48.69%) (38.83%) (56.85%) (51.16%) (44.68%) (48.33%)

Male N (%) 2781 345 126 252 78 3582

(51.31%) (61.17%) (43.15%) (48.84%) (55.32%) (51.67%)

Age: mean (SD) years 9.96 (0.63) 11.36 (3.21) 12.62 (2.6) 15.05 (1.66) 12.07 (2.91) 10.6 (1.97)

IQ: mean (SD) - 101.26 (15.89) - 114.62 (13.53) 110.29 (15.49) 107.95 (16.17)

Scaled matrix: mean (SD) 10.24 (2.8) - 11.62 (3.28) - - 10.31 (2.84)

Race/ethnicity

White, non-Hispanic 3211 (59.24%) 271 (48.05%) 192 (65.75%) 333 (64.53%) 100 (70.92%) 4107 (59.24%)

African American/Black 604 (11.14%) 54 (9.57%) 18 (6.16%) 66 (12.79%) 13 (9.22%) 755 (10.89%)

Other 1605 (29.61%) 239 (42.38%) 82 (28.08%) 117 (22.67%) 28 (19.86%) 2071 (29.87%)

Household income

<$50k per annum 1437 (26.51%) 115 (20.39%) 36 (12.33%) 86 (16.67%) 19 (13.48%) 1693 (24.42%)

$50-$100k 1599 (29.5%) 127 (22.52%) 66 (22.6%) 134 (25.97%) 31 (21.99%) 1957 (28.23%)

$100-$200k 1744 (32.18%) 116 (20.57%) 138 (47.26%) 170 (32.95%) 38 (26.95%) 2206 (31.82%)

>200k 640 (11.81%) 206 (36.52%) 52 (17.81%) 126 (24.42%) 53 (37.59%) 1077 (15.53%)

Abbreviations. ABCD, Adolescent Brain Cognitive Development; HBN, Healthy Brain Network; HCP-D, Human Connectome Project 
– Development; IQ, intelligence quotient; NCANDA, National Consortium on Alcohol and Neurodevelopment in Adolescence; NCR, 
Neurobehavioral Clinical Research.
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