
Unsupervised contrastive learning based transformer for lung 
nodule detection

Chuang Niu,

Ge Wang

Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic 
Institute, Troy, New York, United States of America

Abstract

Objective.—Early detection of lung nodules with computed tomography (CT) is critical for 

the longer survival of lung cancer patients and better quality of life. Computer-aided detection/

diagnosis (CAD) is proven valuable as a second or concurrent reader in this context. However, 

accurate detection of lung nodules remains a challenge for such CAD systems and even 

radiologists due to not only the variability in size, location, and appearance of lung nodules 

but also the complexity of lung structures. This leads to a high false-positive rate with CAD, 

compromising its clinical efficacy.

Approach.—Motivated by recent computer vision techniques, here we present a self-supervised 

region-based 3D transformer model to identify lung nodules among a set of candidate regions. 

Specifically, a 3D vision transformer is developed that divides a CT volume into a sequence of 

non-overlap cubes, extracts embedding features from each cube with an embedding layer, and 

analyzes all embedding features with a self-attention mechanism for the prediction. To effectively 

train the transformer model on a relatively small dataset, the region-based contrastive learning 

method is used to boost the performance by pre-training the 3D transformer with public CT 

images.

Results.—Our experiments show that the proposed method can significantly improve the 

performance of lung nodule screening in comparison with the commonly used 3D convolutional 

neural networks.

Significance.—This study demonstrates a promising direction to improve the performance of 

current CAD systems for lung nodule detection.
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1. Introduction

Global cancer statistics in 2018 indicate that Lung cancer is the most popular, i.e. 11.6% of 

the total cases, and the leading cause of cancer death, up to 18.4% of the total cancer deaths 
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(Bray et al 2018). Various studies have shown that early detection and timely treatment of 

lung nodules can improve the 5 year survival rate (Blandin Knight et al 2017). Therefore, 

major efforts have been made on early and accurate detection of lung nodules in different 

aspects, such as imaging technologies (NLST 2017, Niu et al 2022), diagnosis workflows 

(MacMahon et al 2005), and computer aided detection and computer aided diagnostic 

systems (Messay et al 2010). Particularly, recent results indicate that computer aided 

detection/diagnosis (CAD) systems empowered by artificial intelligence (AI) algorithms as 

the second or concurrent reader can improve the performance of lung nodule detection on 

chest radiographs (Yoo et al 2021) and computed tomography (CT) images (Roos et al 2010, 

Prakashini et al 2016).

Lung cancer CAD systems usually involve lung region segmentation, nodule candidate 

generation, nodule detection, benign and malignant nodule recognition, and different types 

of lung cancer classification. In recent years, deep learning methods were developed for 

CAD systems, continuously improving the performance of some or all the key components 

in a CAD system. For example, Harrison et al (2017), Hofmanninger et al (2020) 

showed that deep learning methods for CT lung segmentation significantly improved the 

performance through training the models with a variety of datasets. Motivated by the 

progress in deep learning based objection detection (Ren et al 2015, Lin et al 2017) in 

various domains (Jiang and Learned-Miller 2017, Niu et al 2018), the performance of lung 

nodule candidate generation and detection was significantly improved by adapting advanced 

object detection algorithms (Jaeger et al 2020, Baumgartner et al 2021). Nevertheless, a 

high false positive rate is still a main challenge for accurate lung nodule detection (Pinsky 

et al 2018). Clearly, a key step for accurate nodule detection is to effectively reduce the 

false positive rate for nodule candidates. Recent studies addressed this issue using various 

techniques, such as 3D convolutional neural network (Dou et al 2017), multi-scale prediction 

(Gu et al 2018, Cheng et al 2019), relation learning (Yang et al 2020), multi-checkpoint 

ensemble (Jung et al 2018), multi-scale attention (Zhang et al 2022), etc. After identifying 

lung nodules, various methods were proposed to further analyze them, i.e. predicting the 

malignancy (Shen et al 2017, Al-Shabi et al 2022) and sub-types (Liu et al 2018, Yuan et al 

2018) of lung nodules. It is exciting that adapting emerging techniques in machine learning 

and computer vision based on domain knowledge leads to great progress in CAD systems 

with great potential for clinical translation.

Recently, transformers (Vaswani et al 2017), originally developed for natural language 

processing (NLP), have achieved great success in various tasks of computer vision. The key 

component of the transformer is the attention mechanism that utilizes global dependencies 

between input and output. For the first time, vision transformer (ViT) divides an image 

into a sequence of non-overlap patches, analyzes them as a sequence of elements similar to 

words, and produces state-of-the-art results demonstrating the effectiveness and superiority 

in image classification (Dosovitskiy et al 2020). Since then, ViT has been successfully 

applied to various other vision tasks including medical imaging (Pan et al 2021) and medical 

image analysis (Lyu et al 2021). However, the performance of the original ViT relies on 

a large labeled image dataset including 300 million images, and the conventional wisdom 

is that the transformers do not generalize well if they are trained on insufficient amounts 
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of data. Therefore, directly adopting the transformers for CAD systems is not trivial when 

labeled data are scarce.

The lack of labeled data is a common problem in medical imaging and many other fields. 

A most promising direction of deep learning is the so-called unsupervised or self-supervised 

learning (Niu et al 2020, 2020, 2021) that recently achieved remarkable results which even 

approach the performance of supervised counterparts. Particularly, unsupervised learning 

works by pre-training a neural network on a large scale unlabeled dataset to benefit 

downstream supervised tasks that only offer a limited number of training samples (He 

et al 2019). For unsupervised or self-supervised learning (Niu and Wang 2022a, 2022b), 

the pretext task is the core to learn meaningful representation features. Recent progress 

suggests that instance contrastive learning (Chen et al 2020) and masked autoencoding 

(He et al 2021) are the two most effective and scalable pretext tasks for unsupervised 

representation learning. Specifically, instance contrastive learning maximizes the mutual 

information between two random transformations of the same instance (e.g. an object in a 

natural image or a patient represented by a CT volume). This can be achieved by forcing 

the representation features from different transformations of the same instance to be similar 

while the features from different instances to be dissimilar. On the other hand, masked 

autoencoding recovers masked parts from the rest visible data, which has been used for 

pre-training in various tasks and recently produced encouraging results (He et al 2021), 

using an asymmetric encoder-decoder architecture and a high proportion masking strategy.

Based on the above progress, here we study how to effectively adapt ViT and unsupervised 

pretraining for lung nodule detection, so that the false positive rate can be reduced for 

lung nodules to be effectively singled out of a set of candidates, in comparison with the 

commonly used 3D CNNs. In our work, we adapt the original transformer to a CT volume 

with the fewest possible modifications. Advantages of keeping the original transformer 

configuration as much as possible include the scalability in the modeling capacity and the 

applicability across multiple modality datasets. With this preference in mind, we simply 

divide a 3D CT volume into non-overlap cubes and extract their linear embeddings as the 

input to the transformer. These cubes are equivalent to the tokens or words in NLP. However, 

without pretraining on large-scale datasets, the superiority of the transformer cannot be 

realized, especially for lung nodule analysis where labeled data are usually expensive and 

scarce, e.g. there are only over one thousand labels in public datasets. To overcome this 

difficulty, we perform unsupervised region-based contrastive learning on public CT images 

from the LIDC-IDRI dataset to effectively train the adapted transformer. Our experimental 

results show that while the adapted 3D transformer trained with a relatively small number 

of labeled lung nodule data from scratch achieved worse results than the 3D CNN model, 

the pretraining techniques enabled the adapted transformer to outperform the commonly 

used 3D CNN. Interestingly, we found that unsupervised pretraining is more effective 

than supervised pretraining with natural images in a transfer learning manner to boost the 

performance of the adapted transformer.

The rest of this paper is organized as follows. In the next section, we describe our 

transformer architecture and implementation details. In the third section, we report our 
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experimental design and representative results in comparison to competing CNN networks. 

In the last section, we discuss relevant issues and conclude the paper.

2. Methodology

2.1. Vision transformer for lung nodule detection

In this section, we describe the architecture of our adapted Transformer for lung nodule 

detection in a CT volume. The whole architecture is depicted in figure 1, where there are 

four parts. The details on each part are given as follows.

Input and linear embedding: The input is a 3D tensor, x ∈ ℝH × W × D, which is a local 

candidate volumetric region of interest in a whole CT volume. Similar to what ViT does, 

the image volume is divided into a sequence of non-overlap cubes, xc ∈ ℝS × S × S, similar 

to words in NLP, where H, W, D are the input volume size, S is the cube size, and c 
is the index for cubes. Then, the linear embedding layer maps these cubes to embedding 

features independently. In practice, the linear embedding layer is implemented as a 3D 

convolutional layer, where both the kernel size and convolutional stride are S × S × S. 

Therefore, this embedding layer can directly take the original 3D volume as input and 

outputs the embedding features of non-overlapped cubes, i.e. zc = E xc ∈ ℝd, where c = 

1, 2, …, S × S × S, and d is the dimension of embedding. As in ViT, the [class] token 

of a learnable embedding is prepended to the sequence of embedded cubes, and the final 

sequence of linear embedding features are denoted as [z0; z1; ⋯; zN], where z0 denotes the 

learnable class embedding, and N = S × S × S + 1 this the total number of input embeddings.

Position embedding: For the model to be aware of the relative position of each cube, 

position embeddings are coupled with the feature embeddings. In this study, we extend the 

sin-cosine position encoding (Dosovitskiy et al 2020) into the 3D space. Specifically, sine 

and cosine functions of different frequencies are used to encode 3D position information as

PE x, y, z = PEsin x , PEcos x , PEsin y , PEcos y , PEsin z , PEcos z ,
PEsin p = sin p/10000i/dpos , i = 0, 1, ⋯, dpos − 1,
PEcos p = cos p/10000i/dpos , i = 0, 1, ⋯, dpos − 1,

(1)

where (x, y, z) is the relative position of a cube and PE x, y, z ∈ ℝd is the corresponding 

position embedding, here the position embedding of the class token is a zero vector. The 

position embedding consists of six parts and the dimension of each part is d/6. To be 

consistent with the notations of feature embeddings, we use PEc to denote the position 

embedding of a specific cube. Finally, the point-wise summations of position and feature 

embeddings are input to the transformer encoder.

Transformer encoder: The transformer encoder consists of L stacked identical blocks, 

where each block has two layers, i.e. a multi-head self-attention layer and a simple 

position wise fully-connected layer. As shown in figure 1, the residual connection and 

layer normalization are applied in these two sub-layers. More specifically, given a sequence 
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of input embeddings, z0 = z0
0 + PE0; z1

0 + PE1; ⋯, zS3
0 + PES3 ∈ ℝN × d, the output of the lth 

multi-head self-attention layer is computed as

qlm, klm, vlm = LN zl − 1 Uqkv
lm ,

Alm = softmax qlmklmT ,
zlm = Almvlm, m = 1, 2, ⋯, M,
zatt

l = zl1, zl2, ⋯, zlM Umsa
l + zl − 1, l = 1, 2, ⋯, L,

(2)

where the first three equations describe the operation of a specific self-attention head and 

the last equation represents the integration of multiple heads. Specifically, LN(·) denotes the 

layer norm function, Uqkv
lm ∈ ℝd × 3dm represents a linear layer that maps each input embedding 

vector zl−1 into three vectors, qlm, klm, vlm ∈ ℝN × dm, which are known as the query, key, 

and value vectors respectively, Alm ∈ ℝN × N is the self-attention weight matrix computed 

as the inner product between query and key vectors followed by a softmax function. 

Then, the output, zlm ∈ ℝN × dm, of each self-attention head is the weighted sum over all 

input embeddings to realize global attention. There are M self-attention heads running in 

parallel, with m being the head index, which jointly attend to information from different 

representation subspaces at different positions (Vaswani et al 2017). To avoid increasing the 

number of parameters, the vector dimension in each self-attention head is split to dm = d/M. 

The output zatt
l  of the multi-head self-attention layer is the concatenation of all self-attention 

outputs transformed by a linear layer Umsa
l ∈ ℝd × D and increased by the signal from the 

residual connection. Then, this output is forwarded to the MLP layer for the final output of 

the lth block:

zl = MLP LN zatt
l + zatt

l . (3)

Thus, the final output of the transformer encoder is zL ∈ ℝN × d, which has the same 

dimension as the input embeddings.

Classification head: The classification head is a linear layer that projects extracted 

features by the transformer encoder to classification scores. The classification head only 

takes the feature vector at the position of the [class] token and outputs a classification score 

as

y = z0
LUcls, (4)

where z0
L ∈ ℝ1 × d, Ucls ∈ ℝd × C, and C is the number of classes.

2.2. Region-based contrastive learning

It is well known that the transformer is extremely data-hungry but labeled lung nodule 

data is relatively scarce. Hence, we propose a region-based contrastive learning method to 

pretrain the adapted transformer model by leveraging more unlabeled CT volumes. The 

popular constrastive learning framework is adopted in figure 2. It consists of two branches 

that take many pairs of similar samples and outputs the their features. Generally, this 

framework enforces similar samples to be closer to each other while dissimilar samples to be 
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more distinct in the representation feature space as measured by the InfoNCE (Oord 1807) 

loss.

In the unsupervised context, how to properly define similar and dissimilar samples is the 

key component (Tian et al 2020). Although great progress was reported by introducing 

various random transformation techniques, it is still an open problem on how to keep useful 

information and compress noise and artifacts in representation features for downstream 

tasks. Actually, knowledge of specific downstream tasks plays an important role in defining 

appropriate similar samples (Tian et al 2020).

In our application, similar and dissimilar samples can be defined as follows. First, as we 

focus on classifying sub-volumes of a CT volume as lung nodule or not, we divide the 

whole CT volume into a set of non-overlap cubes and regard each as a unique instance. This 

assumes that every 3D sub-region in a patient is different from the others. Second, two sub-

regions with a large intersection should be similar to each other. Third, although different 

organs/tissues are usually inspected under different HU windows, the same region under 

slightly different HU windows should be similar to each other. Fourth, two sub-regions 

different by a random rotation should be similar to each other as the angular information is 

not critical in detecting lung nodules.

Based on the above assumptions, we first divide a CT volume into a set of non-overlap 

S1 × S1 × S1 cubes from all patient CT scans to build the whole training dataset, xi i = 1
I , 

where I is the total number of cubes. During training, two sub-cubes of S2 × S2 × S2 (S2 

< S1) voxels are randomly cropped from a given cube and randomly rotated, and their HU 

values are randomly clipped, as shown in figure 2. In each training iteration, a set of B cubes 

are randomly selected, and then each cube is randomly transformed into two sub-cubes 

xi
′, xi

". Finally, the network parameters are optimized with the InfoNCE (Oord 1807) loss as 

follows:

ℒ = 1
2B i = 1

B

ℒ xi
′, xi

″ + ℒ xi
″, xi

′ , ℒ xi
′, xi

″ =

− log
exp P ℱ xi

′; θℱ ; θP
TP ℱ xi

″; θℱ
m ; θP

m /τ

j = 1, j ≠ i

I exp P ℱ xi
′; θℱ ; θP

TP ℱ xj
′′; θℱ

m ; θP
m /τ

,
(5)

where ℱ and  represent the feature encoder and projection head functions with parameters 

θℱ and θ  to be optimized, θℱ
m and θP

m are the moving averaging versions of θℱ and θ
respectively, i.e. θℱ

m μθℱ
m + (1 − μ)θℱ and θP

m μθP
m + (1 − μ)θP, which are updated in each 

iteration, here μ ∈ [0, 1) is a momentum coefficient, μ was to 0.99 the same as that in 

Chen et al (2021), and τ is a temperature parameter and was set to 1. Note that the feature 

encoder is exactly the transformer model without the classification head, and the projection 

head is the same as in MoCo v3 (Chen et al 2021). As defined in equation (5), the InfoNCE 

loss term ℒ xi
′, xi

″  maximizes the cosine similarity between features from two random 

transformations of the same cube (i.e. the ith cube) in the numerator while minimizing 

the cosine similarity between the ith cube and other cubes (i.e. ∀j≠i) in the denominator. 

Although the InfoNCE loss has a similar formulation to the commonly used softmax-based 
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cross-entropy loss function in the supervised classification task, the difference is that it 

directly compares the features between different transformations of the same cube and the 

features between different cubes without using any annotations. The final loss ℒ is the 

average over a batch of B samples.

2.3. Implementation details

In our adapted transformer, the size of a candidate region was set to H = W = D = 72, 

the size of each non-overlap cube S = 8, the embedding dimension d = 384, the number of 

blocks L = 11, and the number of attention heads M = 12. In our region-based contrastive 

learning, the size of non-overlap sub-regions was set to S1 = 96, and the size of each input 

cube S2 = 72, the low and high HU values of the clip window were randomly sampled 

from [ −1200, −1000] and [600, 800] respectively. During unsupervised pre-training, the 

batch size was set to B = 1024, Adamw was used to optimize the model, the learning 

rate was 0.0001 with cosine annealing. At the fine-tuning stage, only the pretrained linear 

embedding layer and transformer encoder were kept, the projection head was removed, a 

randomly initialized classification head was added, the batch size was set to 64, and all other 

hyperparameters for training were kept the same as those in MoCo v3 (Chen et al 2021). 

To address the imbalance issue, we randomly sampled each training batch according to the 

predefined positive sampling ratio meaning that each batch approximately had a fixed ratio 

of positive to negative samples. By default, the positive sampling ratio was set to 0.2, and the 

effects of different sampling ratios on the performance were empirically evaluated in section 

3.5.

3. Experimental design and results

3.1. Dataset and preprocessing

In this study, two evaluation settings were created to evaluate the effectiveness of the 

presented method. In the first evaluation setting, the lung nodules larger than 6 mm were 

selected from the LUNA16 (Setio et al 2017) dataset (a subset of the LIDC-IDRI (Armato et 

al 2011) dataset) as the Fleischner Society guidelines suggest that the nodule size threshold 

(diameter) for determining the need for follow-up has been increased to 6 mm (Sumikawa 

et al 2008, Callister et al 2015). Then, 436 patients containing 684 nodules were obtained, 

which were further randomly divided into a training set containing 349 patients and a 

testing set containing 87 patients. Here we assume that the candidate regions have been 

obtained. Specifically, the preprocessing process is as follows: (1) each CT volume was first 

bi-linearly interpolated along the longitudinal direction so that the longitudinal resolution 

is the same as the axial resolution; (2) the annotated nodules were center-cropped into the 

96 × 96 × 96 positive regions; (3) 100 × 436 (100 from each patient) negative regions of 

96 × 96 × 96 (not overlapping with any positive regions) were randomly cropped based on 

the candidate points provided in LUNA16 (Setio et al 2017). To test the generalizability 

of different methods, the testing set from another dataset LUNGx (Kirby et al 2016) was 

used to evaluate the performance of different models trained on the LIDC-IDRI dataset. The 

LUNGx testing set consists of 73 CT scans, each of them contains 1 or 2 positive nodules 

and 200 negative regions per scan, where the negative regions were randomly selected and 

other prepossessing steps are the same as those for LIDC-IDRI dataset. Some positive and 
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negative samples are shown in figure 3, where it can be seen that the appearance of positive 

nodules maybe very different, and similar structures in the negative regions present strong 

interference. Also, these datasets are extremely unbalanced (#positive:#negative «1:100 and 

1:200), making this task challenging. This evaluation setting was used in sections 3.3, 3.4, 

and 3.5.

In the second evaluation setting, the full LUNA16 dataset was used to evaluate the presented 

method, where the testing set is the same as that in the first evaluation setting and the rest 

801 CT volumes were used as the training set, and all nodules larger than 3 mm were 

selected as the positive nodules. In this setting, we implemented the popular Faster R-CNN 

Ren et al (2015) object detection method for detecting candidate nodule regions, and more 

details are described in section 3.6.

For region-based unsupervised contrastive learning, 84 875 non-overlap regions were 

collected from 801 CT volumes (excluding the testing set of 87 CT volumes in the 

above two settings) in the LUNA16 dataset. Specifically, each volume was first bi-linearly 

interpolated along the longitudinal direction so that the longitudinal resolution is the same as 

the axial resolution, and then split into a set of 96 × 96 × 96 cubes in a non-overlap manner, 

as illustrated in figure 2. For each dimension, if the size cannot be exactly divided by 96, the 

margins will be removed evenly.

Also, the nodule distributions are shown in figure 4 in terms of physical size and the number 

of pixels for the training and testing datasets in different settings. As the LUNGx dataset 

only provides the locations of nodules without information, the corresponding distribution is 

not known.

3.2. Evaluation metric

Due to imbalance of positive and negative samples in the evaluation dataset, the common 

free response receiver operating characteristic (FROC) curve and competition performance 

metric (CPM) were used to evaluate the model performance. Specifically, the true positive 

rate (TPR) and false positive rate (FPR) are defined as

TPR = TP
TP+FN,

FPR = FP
TN+FP,

(6)

where TP, FN, TN, FP are the number of true positive, false negative, true negative, and false 

positive, respectively. Then, the average number of false positives per scan, FPS, is defined 

as

FPS = FPR × TN
NS , (7)

where NS is the number of CT scans. The FROC curve is plotted as TPR v.s. FPS, which 

is a variant of the ROC curve, i.e. TPR v.s. FPR. The CPM score is defined as the average 

TPR (also called sensitivity) at the predefined FPS points: 0.125, 0.25, 0.5, 1, 2, 4, and 8 

respectively.
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3.3. Comparative analysis

In this sub-section, we evaluated the effectiveness of the proposed method relative to the 

following three baselines. First, we modified ResNet (He et al 2016) to the 3D version, 

named ResNet3D, as a strong baseline method. Second, the transformer model was trained 

from scratch, named ScratchTrans. To make sure that ScratchTrans be sufficiently trained, 

we doubled the number of training epochs and observed the essentially same results. 

Third, we initialized the transformer model with the weights of the pretrained DeiT on 

the labeled ImageNet dataset in a transfer learning manner, named the resultant network 

DeiTTrans. Finally, our proposed transformer model pretrained via unsupervised region-

based contrastive learning is referred to as URCTrans.

The comparison results in terms of the sensitivity and CPM scores are summarized in table 

1, and the FROC curves are plotted in Figure 5. These results show that the ResNet3D model 

is a very strong baseline with a 0.920 CPM score. The ScratchTrans achieved the worst 

results among these methods, which is consistent to the results in other domains showing 

that the transformer is extremely data-hungry and cannot perform well without a large-scale 

dataset. Through transfer learning, DeiTTrans significantly improved the performance of the 

transformer model and produced results similar to that obtained with ResNet3D. In contrast, 

our pretraining method without leveraging any labeled data offered the best performance 

among all comparison methods (0.950 CPM score, 3% higher than DeiTTrans and the 

commonly used ResNet3D). Further inspecting the sensitivities at different FPS points, it 

can be seen that the URCTrans model performed significantly better than the others when 

the average number of false positive nodules per scan is small (⩽1). That is the most 

desired result to effectively avoid falsely reported nodules. Clearly, our experimental results 

demonstrate that the transformer pretrained with more CT data through contrastive learning 

promises a performance superior to the commonly used 3D CNN models.

The generalizability performance results on LUNGx are reported in table 2, where the 

models trained on LIDC-IDRI were directly evaluated. Although the relative performance 

of different methods is the same as above, the performance improvement of URCTrans 

is significantly increased in ccomparison with ResNet3D and DeiTTrans counterparts 

especially for the lower false positive number (⩽1). These results further demonstrated the 

superiority of the presented method in terms of the generalizability.

3.4. Effects of the input size

As mentioned in Gu et al (2018), Cheng et al (2019), different sizes of an input tensor 

allow various levels of contextual information, leading to different performance metrics. 

Combining the results from multi-scale inputs would boost the performance further. In this 

sub-section, we investigate the effect of the input size on the performance of the transformer 

model for lung nodule detection. The results are in table 3, showing that the medium input 

size of 72 achieved the best result. It seems heuristic that there is a trade-off between the 

input size and the model performance, since a too large input may bring more interfering 

structures while a too small input may not contain enough contextual information to identify 

lung nodules. Nevertheless, these relatively similar results indicate that the transformer 

model is robust to the input size.
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3.5. Effects of the positive sampling ratio

In section 2.3, we applied a strategy that each batch of training samples was randomly 

sampled according to a predefined positive sampling ratio. Here we evaluated the effects of 

positive sampling ratios on the lung nodule detection performance of the transformer model. 

The results in table 4 show that when the positive sampling ratio was set to 0.2, the result 

is the best. Actually, the larger positive sampling ratio the more positive nodules the model 

tends to predict, as demonstrated in table 4. Nevertheless, it can be seen that the model is 

quite robust to this hyper-parameter as there is no big difference in performance.

3.6. Effectiveness on faster R-CNN candidates

In this section, we evaluated the effectiveness of the presented method on processing the 

nodule candidates detected by the Faster R-CNN model. Specifically, we adapted the plain 

Faster R-CNN model for the lung nodule detection task based on the Detetron21 platform. 

In our implementation, the fourth CNN layer of the ResNet-50 backbone was used as the 

detection features, the anchor sizes were set to 8, 18, 32, 64, 128, the input size is 3 × 512 

× 512, here 512 × 512 is the original dimension of CT slices and 3 means three adjacent 

slices were used as the input, and the HU window was set to [−1200, 600]. During training, 

the total number of training iterations was set to 90 000, and all other hyper-parameters were 

the default values in Detectron2. In the inference stage, each and every slice (along with its 

two adjacent slices) of a patient CT volume is forwarded to the trained Faster R-CNN model 

to output 2D candidate regions on slices. Then, all candidate 2D regions were merged to 

the 3D candidates according to the principle that if two 2D candidates are on two adjacent 

slices and their intersection-over-union (IoU) is larger than 0.5, then these two candidates 

belong to the same 3D candidate, and the score of the merged 3D candidate is the mean 

score of its 2D candidates. Next, top 100 candidates (including both the merged 3D and 

isolated 2D candidates) were preserved according to the predicted score. Finally, the center 

of each selected region is regarded as the location of a nodule candidate, and a 72 × 72 × 72 

candidate region was center-cropped at the predicted location.

Given the candidate regions detected by the Faster R-CNN model, the true positive and false 

positive regions can be identified by comparing with the annotations, where the IoU between 

the predicted and annotated regions is larger than 0.1 is regarded as the true positive and 

otherwise as the negative. Then, the same process introduced in section 3.1 was used to train 

and evaluate the presented and the competing models. The results of different methods on 

Faster R-CNN candidates are shown in figure 6. It can be seen that the presented URCTrans 

can effectively improve the detection performance of the Faster R-CNN detection results and 

consistently outperforms the 3D CNN baseline. Also, if the ViT model is not appropriately 

pretrained, its performance is even worse than that of the 3D CNN.

4. Discussions and conclusion

In this study, we have adapted the ViT model and unsupervised contrastive learning for 

lung nodule detection from a CT volume. Using neither multi-scale inputs nor assembling 

1https://github.com/facebookresearch/detectron2.
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techniques, our presented transformer model pretrained in an unsupervised manner has 

outperformed the state-of-the-art 3D CNN models. Importantly, we have found that 

unsupervised representation learning or pretraining on a large-scale dataset can significantly 

benefit the transformer model, which is scalable, and highly desirable especially when 

labeled data are scarce.

However, it is worth mentioning the limitations of this study. First, we only applied ViT with 

unsupervised pretraining to the false positive reduction stage for lung nodule detection, and 

its effectiveness could be further studied in the nodule candidate detection stage. Second, 

the number of CT volumes used for pretraining can be scaled up, and the performance with 

respect to different numbers of pretraining volumes could be studied in the future.

Nevertheless, our pilot results suggest that for the medical analysis tasks where labeled 

data are expensive and limited, it is very promising to build a large-scale model, pre-trains 

it on a related big dataset via domain-knowledge driven self-supervised, and transfers the 

learned large-scale prior to benefit down-stream tasks. Although this study was only focused 

on CT image representation learning, combining specific imaging modality data with other 

modalities, such as diagnostic text reports, clinical data, other imaging approaches, etc, has 

the potential to unleash strong power of AI for diagnosis and treatment.

In conclusion, we have presented an adapted 3D ViT model pretrained via region-based 

contrastive learning for lung nodule detection. Specifically, we have introduced how to adapt 

the generic transformer model for lung nodule detection. To make the transformer model 

work well on a relatively small labeled dataset, we have introduced a self-learning method 

leveraging public CT data. The comparative results have demonstrated the superiority of the 

presented approach over the state of the art 3D CNN baselines. These findings suggest a 

promising direction to improve CAD systems via deep learning.
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Figure 1. 
Transformer architecture for lung nodule detection.
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Figure 2. 
Region-based contrastive learning framework for lung nodule detection.
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Figure 3. 
Samples in the lung nodule dataset. The red and green boxes are positive and negative 

samples respectively.
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Figure 4. 
Long nodule distributions on different datasets. ‘Train-1’ and ‘Train-2’ show the nodule size 

distribution for the training datasets in the fist and second settings respectively, and ‘Test’ 

denotes the distributions on the test dataset in the fist and second settings. ‘mm’ and ‘pix’ 

represent the physical size and the number of pixels of nodule diameter respectively.
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Figure 5. 
FROC curves for different methods.
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Figure 6. 
FROC curves for different methods on Faster R-CNN candidates.
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Table 1.

Quantitative results. The sensitivities at different FPS points and CPM scores were computed, with the best 

result highlighted in bold.

Methods 0.125 0.25 0.5 1 2 4 8 CPM

ResNet3D 0.773 0.879 0.924 0.947 0.955 0.977 0.985 0.920

ScratchTrans 0.561 0.659 0.712 0.765 0.788 0.841 0.909 0.748

DeiTTrans 0.803 0.879 0.902 0.932 0.962 0.977 0.985 0.920

URCTrans 0.902 0.917 0.955 0.962 0.962 0.977 0.977 0.950
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Table 2.

Generalizability performance results on LUNGx. The sensitivities at different FPS points and CPM scores 

were computed, with the best result highlighted in abold.

Methods 0.125 0.25 0.5 1 2 4 8 CPM

ResNet3D 0.712 0.767 0.808 0.890 0.918 0.959 0.973 0.861

ScratchTrans 0.630 0.685 0.740 0.863 0.863 0.904 0.932 0.802

DeiTTrans 0.781 0.822 0.877 0.890 0.904 0.904 0.904 0.869

URCTrans 0.822 0.849 0.918 0.945 0.959 0.959 0.959 0.916
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Table 3.

Quantitative results obtained by URCTrans with different input sizes. The best result is highlighted in bold.

Input size 0.125 0.25 0.5 1 2 4 8 CPM

64 0.826 0.879 0.917 0.947 0.962 0.977 0.985 0.926

72 0.902 0.917 0.955 0.962 0.962 0.977 0.977 0.950

80 0.916 0.916 0.932 0.939 0.962 0.977 0.977 0.946
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Table 4.

Quantitative results obtained by URCTrans using different positive sampling ratios. The best result is 

highlighted in bold. The numbers of positive nodules predicted by the transformer model trained with different 

positive sampling ratios, where the input region is regarded as positive if the prediction score ≥ 0.5.

Positive ratio 0.125 0.25 0.5 1 2 4 8 CPM #Predicted

0.1 0.795 0.841 0.894 0.924 0.933 0.947 0.969 0.900 158

0.2 0.826 0.879 0.917 0.947 0.962 0.977 0.985 0.926 217

0.3 0.765 0.856 0.917 0.932 0.969 0.977 0.985 0.915 247

0.4 0.788 0.841 0.879 0.917 0.962 0.962 0.962 0.902 369

0.5 0.795 0.841 0.909 0.947 0.947 0.970 0.970 0.911 409
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