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Abstract

Mass spectrometry-based proteomics is constantly challenged by the presence of contaminant 

background signals. In particular, protein contaminants from reagents and sample handling are 

often abundant and almost impossible to avoid. For data-dependent acquisition (DDA) proteomics, 

exclusion list can be used to reduce the influence of protein contaminants. However, protein 

contamination has not been evaluated and is rarely addressed in data-independent acquisition 

(DIA). How protein contaminants influence proteomics data is also unclear. In this study, 

we established protein contaminant FASTA and spectral libraries that are applicable to all 

proteomic workflows and evaluated the impact of protein contaminants on both DDA and DIA 

proteomics. We demonstrated that including our contaminant libraries can reduce false discoveries 

and increase protein identifications, without influencing the quantification accuracy in various 

proteomic software platforms. With the pressing need to standardize proteomic workflow in 

the research community, we highly recommend including our contaminant FASTA and spectral 

libraries in all bottom-up proteomics workflow. Our contaminant libraries and a step-by-step 

tutorial to incorporate these libraries in different DDA and DIA data analysis platforms can be 

valuable resources for proteomics researchers, which are freely accessible at https://github.com/

HaoGroup-ProtContLib.
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INTRODUCTION

Mass spectrometry (MS)-based proteomics is constantly challenged by exogenous 

contaminants and interferences that can be introduced into samples throughout the 

experimental workflow. Contaminations from polymers, detergents, solvents, ion sources, 

and other additives are often singly charged, which can be avoided by the careful 

selection of reagents or removed by ion mobility MS interface (e.g., FAIMS).1–3 However, 

contaminant proteins and peptides are almost impossible to eliminate from the experimental 

workflow. For example, keratins from researchers’ skin and hair can be found on all 

surfaces and dust during sample handling.4 Rodent and sheep keratins can originate from 

animal facilities and wool clothing. Residue cell culture medium can lead to bovine protein 

contaminations. Protein digestion enzymes (e.g., trypsin and Lys-C) and the production 

of enzymes can introduce protein contaminants into bottom-up proteomics workflow.1 

Additionally, bovine serum albumin (BSA), immobilized antibodies, and affinity tags (e.g., 
streptavidin, FLAG, HA) from affinity columns/beads also represent major contaminants 

in immunoassays and affinity purification MS.5,6 These exogenous contaminant proteins/

peptides can compete with real samples in the MS ion source, occupy the cycle times in the 

mass analyzer, reduce the number of useful peptide spectra, and hinder the detection of low 

abundant proteins from complex biological samples.

Sample type-specific interferences have been evaluated previously and are important 

proteomic resources, such as non-specific interactions in affinity purification and 

contaminations from plasma proteomics.6,7 It is important to note that these interference 

proteins are specific to certain types of experiments and may actually be useful proteins in 
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other types of proteomic studies. Therefore, these interference proteins cannot be marked as 

universal exogenous contaminant proteins for all proteomic experiments. Due to the negative 

effects of protein contaminants in MS-proteomics, various methods have been implemented 

to combat this problem. Keratin contaminations can be reduced by using a laminar flow 

hood and fastidiously wiping down surfaces with ethanol and water.8 However, it is 

almost impossible to eliminate keratins from proteomic experiments. Contaminations from 

proteolytic enzymes and affinity tags can be reduced by carefully optimizing the amount of 

enzymes and beads. Nevertheless, such practices may not be feasible for MS facilities and 

biological samples with limited amounts. For data-dependent acquisition (DDA) proteomics, 

an exclusion list can be used to disregard specific ions from being isolated for MS/MS 

fragmentation.9–12 However, an exclusion list is highly specific to LC-MS gradient and 

instrumentation, which is difficult to transfer across different MS platforms and laboratories. 

Peptides with similar m/z and retention times could also be accidentally excluded in 

complex biological samples. Contaminant peptides are not entirely useless and can be used 

as quality control to evaluate sample preparation reproducibility. Trypsin peptides can also 

be used to normalize retention time.13 In order to mark contaminant proteins from the 

dataset, contaminant FASTA libraries can be used in various DDA software platforms.14–18 

The most widely used contaminant FASTA files are from MaxQuant15 and cRAP (https://

www.thegpm.org/crap/). However, these FASTA files have not been updated in years and 

contain many deleted/unassigned UniProt entries and human protein standards which are not 

contaminant proteins.

Despite various strategies to reduce the influence of protein contaminants in DDA 

proteomics, protein contamination has not been evaluated and is rarely addressed in data-

independent acquisition (DIA) proteomics. Many exogenous contaminants from different 

species cannot be identified unless included in FASTA or spectral libraries. DDA exclusion 

list is not compatible with DIA because all co-eluting peptides within a pre-determined 

isolation window are fragmented together regardless of precursor intensities in DIA. Due 

to the wide isolation window in DIA, we hypothesized that contaminant proteins/peptides 

could be especially problematic if left unaddressed, leading to false identifications in DIA 

proteomics.

DIA data analysis can be conducted using spectral library-based software tools (e.g., 
OpenSWATH19, Spectronaut20, DIA-NN21, Skyline22, EncylopeDIA23, MaxDIA24) or 

library-free strategies with in-silico digested pseudo peptide spectra based on FASTA protein 

sequences (e.g., DirectDIA25, DIA-NN21, DIA-Umpire26, PECAN27,28, DeepDIA29). While 

contaminant FASTA libraries are widely implemented in DDA data analysis, they are rarely 

used for DIA data analysis.13,30 The PRIDE31 website provided a contaminant spectral 

library based on the commonly used cRAP list. However, the cRAP contaminant list has not 

been updated for 10 years and contains many noncontaminant human protein standards such 

as cathepsins, annexin, and myoglobin.

In this study, we created a series of contamination-only samples to establish the universal 

contaminant protein spectral and FASTA libraries that can be used in all bottom-up 

proteomic experiments. We then evaluated how protein contaminants and contaminant 

libraries influence identification and quantification in DDA and DIA proteomics. The 
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benefits and applicability of these contaminant libraries were demonstrated in various DDA 

and DIA data analysis platforms. These contaminant FASTA and spectral libraries are freely 

accessible at https://github.com/HaoGroup-ProtContLib with a step-by-step user manual to 

promote standardized and reproducible proteomics data analysis and reporting pipeline in 

the broad proteomics community.32–34

MATERIALS AND METHODS

Generation of Contaminant-Only Samples

We generated a series of contaminant-only samples by adding different proteolytic enzymes 

to the lysis buffer (1M Urea in 50 mM Tris-HCl), commonly used beads coated with affinity 

tags, and fetal bovine serum (FBS) that is commonly used for cell culture medium.The 

proteolytic enzymes used here include sequencing grade Trypsin (V5111), Trypsin Gold 

(V5280), Trypsin/Lys-C (PRV5073), and Lys-C (VA1170) from Promega. The beads 

used here include Sero-Mag streptavidin magnetic beads (Cytivia), Anti-Flag M2 affinity 

agarose beads (Sigma), and EZview Red anti-HA affinity agarose beads (Sigma). Clean 

ungloved hands were purposely rubbed together above these samples to increase keratin 

contaminations.

Human Cell Culture and Mouse Brain Tissues

HEK293 cells were maintained in DMEM/F12 HEPES medium containing 10% of FBS. 

Mouse brain samples were obtained from wild-type mice (C57/B6) under protocols 

approved by the George Washington University Institutional Animal Care and Use 

Committee. HEK cells and mouse brain samples were lysed in 8 M Urea in 50 mM Tris-HCl 

buffer and sonicated for 15 min in an ice-cold water bath using a QSonica Q700 Sonicator 

with alternating cycles of 1 min on and 30 s off. Protein lysates were clarified by 15 min of 

centrifugation at 12,000 rpm at 4 ºC and stored in −80 ºC. Total protein concentrations were 

determined using a detergent-compatible colorimetric protein assay (DCA, BioRad).

Proteomic Sample Preparation

The routine bottom-up proteomic workflow was conducted for contaminant-only samples, 

HEK cells and mouse brain lysates as described previously.35,36 Briefly, disulfide bonds 

were reduced using 5 mM Tris(2-carboxylethyl)phosphine (TCEP) for 30 min, 15 mM 

of iodoacetamide for 30 min in dark, and 5 mM TCEP for 10 min on a ThermoMixer 

shaking at 1,200 rpm at 37 ºC. Protein digestions were conducted using various enzymes 

(contaminant-only samples) and Trypsin/Lys-C (HEK and mouse samples) for 18 hours at 

37 ºC on a ThermoMixer, and quenched with 10% trifluoroacetic acid until pH < 3. Peptides 

were then desalted on a Waters Oasis HLB Plate using the manufacturer’s protocol, dried 

down under SpeedVac, and stored at −30 ºC.

LC-MS/MS Analysis for DDA and DIA Proteomics

Peptide samples were analyzed on a Dionex UltiMate 3000 RSLCnano system coupled with 

a Thermo Fisher Q-Exactive HF-X mass spectrometer. The mobile phase buffer A was 0.1% 

formic acid in water, and buffer B was 0.1% formic acid in acetonitrile. HEK cells and 

mouse brain samples were injected onto an Acclaim PepMAP C18 trap column (3 μm, 
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100Å, 75 μm × 2cm) and further separated on an Easy-spray PepMap C18 column (2 μm, 

100Å, 75 μm × 75cm) with a flow rate of 0.2 μL/min, an LC gradient of 210 min, and 

a column temperature of 55 ºC. Contaminant-only samples were analyzed with a 15 cm 

PepMap C18 column, a flow rate of 0.3 μL/min, and an LC gradient of 120 min. For DDA 

analysis, MS scans from m/z 380 to 1,500 with a resolving power of 120K (at m/z 200 

FWHM), an automatic gain control (AGC) target of 1 × 106, and a maximum injection time 

(maxIT) of 50 ms. Precursors were isolated at a window of m/z 1.4 and fragmented with a 

normalized collision energy (NCE) of 30%, a resolving power of 7.5K for MS/MS, and a 

maxIT of 40 ms. For DIA analysis, MS scans from m/z 400 to 1000 at a resolving power of 

60K, an AGC target of 1 × 106, and a maxIT of 30 ms. The precursor isolation window was 

set to m/z 8.0 (staggered) with 75 sequential DIA MS/MS scans between m/z 400 to 1000 

at a resolving power of 30K, an AGC target of 5 × 105, a MaxIT of 30 ms, and an NCE of 

30%.

Repository Data from ProteomeXchange

Two repository datasets from the ProteomeXchange website were downloaded and 

reanalyzed using our contaminant libraries. Repository dataset A is a HepG2 human cell 

DIA dataset (PXD022589) containing 27 raw data.24 Dataset B is a fractionated mouse 

cortex DIA dataset (PXD005573) containing 12 raw data.37 Additionally, a fractionated 

HEK and HeLa cell DDA dataset (PXD001468) was used to generate a spectral library for 

library-based DIA data analysis.38

DDA Proteomics Data Analysis

All DDA proteomic datasets in this study were analyzed with both the MaxQuant (2.0.2.0) 

and Thermo Fisher Proteome Discoverer (2.4.1.15) software. Contaminant-only samples 

were analyzed with the new contaminant FASTA library only. HEK cells and mouse brain 

samples were analyzed using the Swiss-Prot Homo sapiens database (reviewed) and Mus 
musculus database (reviewed), respectively, with and without our contaminant FASTA 

library. The false discovery rate (FDR) cutoff for protein and peptide spectral matches 

(PSMs) identifications was set at 0.01. Trypsin or Lys-C enzyme was used with a maximum 

missed cleavage of two. Precursor tolerance was set to 20 ppm. The fixed modification 

was cysteine carbamidomethyl, and variable modifications were methionine oxidation and 

protein N-terminus acetylation.

DIA Proteomics Data Analysis

Spectronaut software: Several were generated using Pulsar in Spectronaut 15 with 

“BGS Factory settings”.20 The contaminant spectral library was generated using the set 

of contaminant-only DDA dataset. Two spectral libraries were generated for each sample 

type (mouse brain and human cell) with and without including the contaminant-only 

samples (Supplemental Table S2). Specific trypsin digestion was set with a maximum of 

two missed cleavages. A fixed carbamidomethyl modification of cysteine, and up to three 

variable modifications for oxidation of methionine and acetylation of the protein N-terminus 

were allowed. PSM, peptide and protein FDR were set to 0.01. Both library-based and 

library-free (DirectDIA) analyses were performed in Spectronaut 15 using default settings. 
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The quantification step was modified to perform an interference correction that used only 

identified peptides to train the machine-learning model. No cross-run normalization or 

imputation of missing values was used.

DIA-NN software: DIA-NN (v1.8) was used for both spectral library-based and library-

free DIA analyses.21 Raw data files were converted to the open-format .mzML using the 

msConvert feature of the ProteoWizard package.39 Library-based analysis was conducted 

in DIA-NN using the spectral libraries established above in Spectronaut Pulsar. A fixed 

carbamidomethyl modification of cysteine, and up to three variable modifications for 

oxidation of methionine and acetylation of the protein N-terminus were allowed. Protein 

interferences were removed based on gene ID. FDR (0.01) was controlled by manually 

filtering the protein and peptide q-values in the report file. For library-free analysis, FASTA 

digest was selected. The spectral libraries were also included to train the deep learning 

model.

Post-Data Analysis Filtering

To increase the confidence of protein/peptide identifications, proteins that were identified 

with only one precursor or an intensity below 10 were removed from all datasets using R. 

Contaminant proteins can be easily filtered out from the results by searching the “Cont_” 

prefix in the UniProt ID column from the result files. Contaminant proteins were removed 

before calculating the coefficient of variation and Spearman’s correlation to evaluate 

proteomics quantification.

Data Availability

All raw files have been deposited to the ProteomeXchange Consortium with the data 

identifier, PXD031139. The protein contaminant library and step-by-step user tutorial are 

also freely accessible at https://github.com/HaoGroup-ProtContLib.

RESULTS AND DISCUSSION

Building the Contaminant Protein FASTA and Spectral Libraries

Most exogenous contaminant proteins originated from reagents and sample handling are 

commonly shared in all bottom-up proteomic experiments. Therefore, we aim to build 

universal contaminant protein libraries that can be used in all bottom-up proteomics (Figure 

1). Although widely used for DDA proteomics, protein contaminant lists from MaxQuant 

and cRAP have not been updated for years, containing many deleted/unassigned UniProt 

IDs, sample-specific interference (noncontaminant) proteins, and commercially available 

human protein standards which are incorrectly listed as contaminant proteins. Therefore, we 

first built a new contaminant FASTA library by manually merging the available contaminant 

lists online, updating their UniProt entry IDs, deleting noncontaminant proteins, searching 

for new contaminant proteins on UniProt, and combining them into a new FASTA file. 

Our new contaminant FASTA library contains 381 contaminant proteins including all 

human keratins related proteins, bovine contaminants from cell culture medium and affinity 

columns, various proteolytic enzymes, affinity tags, and other contaminants (Supplemental 

FASTA and Table S1). When compared to the MaxQuant and cRAP contaminant lists, our 
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new FASTA library contains an additional 166 contaminant proteins (Figure 2A). This new 

FASTA library can be used for both DDA and DIA proteomics. We also added a “Cont_” 

prefix in each contaminant entry in the FASTA library, allowing contaminant proteins to be 

easily filtered and removed in the result files.

To establish comprehensive contaminant protein spectral libraries for DIA proteomics, 

we created a series of contaminant-only samples using various proteolytic enzymes, 

affinity purification beads and fetal bovine serum (FBS) that are commonly used for cell 

culture medium. We validated the presence of each contaminant peptides by creating 

spectral libraries in MaxQuant, Proteome Discoverer and Spectronaut Pulsar. Hundreds 

of contaminant peptides were detected throughout the LC-MS gradient (Figure 2B and 

Supplemental Table S3). Since trypsin and Lys-C are the two most commonly used 

enzymes for bottom-up proteomics, we created two DIA spectral libraries using Spectronaut 

Pulsar: tryptic contaminant peptides, and Lys-C-digested contaminant peptides. These 

spectral libraries are built from highly confident fragment ions assigned to each peptide 

sequence (Figure 2C, Supplemental Table S4), also freely accessible on ProteomeXchange 

(PXD031139). We compared our new FASTA library to the existing contaminant FASTA 

from MaxQuant and cRAP using DDA and DIA analyses of HEK samples. Improved 

protein/peptide identifications were achieved using the new library (Figure 2D). Further 

assessment of the contaminant proteins showed that fetal bovine serum proteins, human 

keratins and Lys-C enzyme produced the largest number of contaminant PSMs. Lys-C 

enzyme provides higher cleavage efficiency at lysine and is therefore often used in 

combination with trypsin to improve digestion efficiency.40 However, Lys-C enzyme 

contains almost two fold more arginine/lysine residues compared to trypsin, leading to 

many contaminant peptides. Additionally, bovine protein contaminants (albumin, etc.) 
were identified in all affinity purification beads despite conducting pre-washing steps. 

Streptavidin coated beads generated overwhelming streptavidin peptide signals.5 These 

exogenous contaminant proteins originated from a different species will not be identified 

unless the contaminant FASTA library is in use. Although our libraries provided commonly 

observed contaminant proteins for most proteomics experiments, contaminant proteins could 

be sample-specific. For example, keratins may be biomarkers for skin and oral cancer.41 In 

this special case, keratins may be important proteins that should not be removed. Our new 

FASTA library marked these common contaminant proteins with “Cont_” in the UniProt 

ID and we suggest researchers examine these proteins IDs before removing them from the 

results.

Contaminant Peptides can Cause False Discoveries in DIA Proteomics

Contaminant FASTA library has been widely used for DDA proteomics, but is rarely 

included in DIA data analysis.30,35,42,43 Since DIA uses a much wider precursor isolation 

window (4–15 Da) compared to DDA (0.4–2 Da), contaminant peptides in DIA are 

more likely to be coeluted and co-fragmented with other peptides. If not addressed 

properly, contaminant peptides may cause false identifications of peptides/proteins. To 

evaluate the influence of contaminant peptides, we analyzed several DIA proteomic 

datasets with and without our contaminant FASTA library. As shown in Figure 3A, 

when the contaminant FASTA library is not included during data analysis, a contaminant 
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Lys-C peptide was misidentified as a KIF20B peptide due to numerous shared peptide 

fragments. After including the contaminant library, the peak picking algorithm identified an 

additional y3 ion and y7++ ion and assigned the fragmentation spectra to Lys-C instead 

of KIF20B with higher confidence and lower peptide q-values. This misidentification 

occurs frequently when Trypsin/Lys-C or Lys-C is used in multiple samples both during 

library generation and data processing (Supplemental Figure S1A). A similar scenario 

happened to a bovine contaminant protein SERPINA1 which was misidentified as CFAP100 

(Figure 3B). Including the contaminant library allows the identification of three additional 

fragments to correctly assign to SERPINA1 contaminant peptide. We carefully examined 

the identification spectra in all datasets and found that these misidentifications do not 

happen on a large scale, yet still represent clear evidence of false discoveries caused by 

contaminant peptides when contaminant protein libraries are not in use. Furthermore, as 

contaminant peptides elute throughout the LC gradient and mass range (Figure 2B), many 

contaminant peptides can be coeluted and co-fragmented with real peptides of interest 

(Supplemental Figure S1B–D). Although co-elution and co-fragmentation are common 

in DIA proteomics, highly abundant contaminant peptides can suppress the detection of 

low abundant peptides by competing with them in the ion source and mass analyzer. In 

proteomics, a target-decoy strategy is commonly used to estimate the false discovery rate. 

High abundant contaminant peptides can generate high scores, potentially hindering the 

selection of low-score biologically meaningful proteins.44 Therefore, carefully optimizing 

experimental workflow to reduce contaminant signals and integrating contaminant libraries 

into the data analysis pipeline should be combined together to improve proteomics data 

quality.

Including Contaminant Protein Library Improves both DDA and DIA Proteomics

Contaminant libraries can be integrated into the DDA and DIA data analysis workflow 

via different strategies. DDA and library-free DIA analyses only require the contaminant 

FASTA protein sequences. Library-based DIA analysis requires both FASTA and spectral 

libraries. Contaminant spectral library can be generated in two ways: 1) an integrated 

spectral library built from contaminant-only raw data and custom proteomics data together; 

2) two separate spectral libraries for contaminant and custom proteomics data. Contaminant 

FASTA file is also required when building these spectral libraries. In Spectronaut software, 

multiple spectral libraries can be included during data analysis. We found that the integrated 

spectral library performs similarly to two separate libraries with slightly higher total 

protein identifications in some datasets (Supplemental Figure S2). Either method is better 

compared to the results analyzed without the contaminant library. However, many other 

DIA software platforms do not allow the inclusion of multiple spectral libraries, and thus 

require an integrated spectral library. Including the additional contaminant FASTA and 

spectral libraries did not increase the software processing time for multiple DDA (Proteome 

Discoverer, MaxQuant) and DIA (DIA-NN, Spectronaut) platforms.

To demonstrate the benefits of contaminant protein libraries for both DDA and DIA 

proteomics, HEK cells and mouse brain samples were analyzed in DDA and DIA workflows 

in various data analysis software (Figure 4). After removing the contaminants, more 

peptides/proteins were identified when contaminant libraries were in use. The overall 
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increase of protein and peptide identifications were around 0.9% and 1.3%, respectively, 

across all software and sample types. The improvement in noncontaminant protein IDs 

is likely due to decreased false identifications and altered target/decoy ratios when 

including the contaminant libraries. For DDA data, including contaminant FASTA improved 

noncontaminant peptide identifications but protein IDs were not influenced. Benefited from 

the additional contaminant spectral library, library-based DIA platforms provided a greater 

increase of identifications compared to library-free platforms. This is likely due to the 

high quality and abundant contaminant peptide spectra from our contaminant-only samples. 

For various DIA platforms, library-free DIA-NN generated the highest number of protein 

and peptide IDs possibly due to the deep learning model implemented in search algorithm 

and interference correction algorithm. Besides in-house generated proteomics data, we also 

analyzed repository datasets with and without contaminant library. Two DIA repository 

datasets were downloaded from ProteomeXchange: repository dataset A from HepG2 human 

cell samples24 and dataset B from mouse brain samples37. An increased number of proteins 

and peptides were identified when the data was analyzed with contaminant libraries (Figure 

5). Particularly for repository dataset A, more than 5% of additional proteins and peptides 

(noncontaminants) were identified when contaminant library was used in library-based 

Spectronaut platform. Many bovine contaminant proteins were identified from repository 

dataset A, similar to our in-house generated HEK cell dataset, which can be traced back 

to the FBS used for human cell culture. To minimize the contaminations from cell culture 

medium, we highly recommend 2–3 times quick washes with phosphate-buffered saline 

(PBS) during cell harvest.

Since our contaminant libraries can improve protein/peptide identifications, we further 

assessed protein quantification with and without contaminant libraries. Coefficient of 

variation (CV) of all quantified proteins from HEK cells (Figure 6A) and mouse brain 

samples (Figure 6B) were calculated after removing the contaminant proteins. No significant 

differences were observed with and without including contaminant libraries. DIA-NN 

resulted in more protein identifications, but higher CVs compared to Spectronaut platform. 

Library-based methods provided less variation and better reproducibility compared to 

library-free methods, consistent with other reported studies.23,45 Protein intensities were 

not exactly the same when the data was analyzed with or without contaminant libraries, but 

they did correlate very well with spearman’s correlation close to 1 (Figure 6C and 6D). 

To rule out the possibilities that differences in protein identification and quantification may 

be caused by additional entries in the libraries, we performed a control analysis where 381 

random proteins were removed from the human FASTA library (Supplemental Figure S3). 

Including contaminant library always outperformed the method without contaminant library. 

No major differences in quantification were observed in this control analysis, demonstrating 

that including additional contaminant libraries do not influence protein quantification.

CONCLUSIONS

To sum up, we highly recommend using our contaminant libraries for both DDA and 

DIA proteomics data analysis. This study filled a critical gap in bottom-up proteomics 

by establishing and evaluating contaminant protein libraries to reduce false discoveries 

and improve identifications in both DDA and DIA proteomics. Although the software 
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used here (Spectronaut, DIA-NN, MaxQuant, Proteome Discoverer) are not an exhaustive 

list of all available data analysis platforms, we believe that our contaminant libraries can 

be universally applied to all bottom-up DIA and DDA proteomics software. In fact, we 

provided step-by-step tutorial on how to best incorporate our contaminant FASTA and 

Spectral libraries for many other software platforms such as Skyline22, MaxDIA24, and 

PECAN27 (Supplemental Tutorial). Recognizing the different nature of samples used in 

various proteomics experiments, our ongoing efforts will continue updating and enriching 

our contaminant libraries to include sample type-specific contaminant libraries on our 

website (https://github.com/HaoGroup-ProtContLib). Current available FASTA libraries 

include the universal contaminant FASTA evaluated in this study, as well as new FASTA 

libraries specifically for cell culture, mouse tissue, and rat tissue. These freely accessible 

contaminant FASTA and spectral libraries can be valuable resources for proteomics 

researchers and facilitate the standardization of proteomic data analysis across different 

laboratories.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Schematic of building and using the contaminant libraries for DDA and DIA 
proteomics.
A series of contaminant-only samples were created by adding different proteolytic enzymes 

to keratin-contaminated lysis buffer, commonly used beads coated with affinity tags, and 

fetal bovine serum (FBS) for cell culture medium. New contaminant FASTA and spectral 

libraries were created using DDA proteomic analyses of contaminant-only samples. These 

new contaminant libraries were evaluated using different biological samples and repository 

datasets in various DDA and DIA software platforms.
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Figure 2: Characterization of the contaminant protein FASTA and spectral libraries.
(A) Venn diagram comparison of contaminant protein lists from our newly generated 

contaminant FASTA and commonly used MaxQuant and cRAP contaminant FASTA files. 

(B) Scatterplot of identified contaminant peptides merged from contaminant-only samples 

in DDA LC-MS/MS analyses. (C) Scatterplot of contaminant peptides in our contaminant 

spectral libraries, generated by the Spectronaut Pulsar. iRT stands for in-silico normalized 

retention time. (D) Comparison of DDA and DIA protein and peptide identifications from 

HEK samples using our new contaminant FASTA in comparison to the MaxQuant and cRAP 

FASTA libraries.
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Figure 3: Examples of protein false identifications caused by contaminant peptides when 
contaminant library is not used in DIA data analysis.
Example contaminant peptide chromatograms and MS/MS fragments were shown in red, 

real peptides of interest were shown in blue. (A) Lys-C (proteolytic enzyme contaminant) 

was misidentified as KIF20B. (B) SERPINA1 (bovine contaminant) was misidentified as 

CFAP100.
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Figure 4: Evaluation of protein/peptide identifications influenced by the protein contaminant 
libraries in DDA and DIA proteomics.
HEK cells and mouse brain samples were analyzed by various DDA and DIA software 

platforms, with (blue) and without contaminant libraries (grey). Venn diagrams showed 

the identified proteins from various datasets overlapping with the contaminant lists in 

the FASTA library (red). Bar graphs showed the identified contaminants (red) and 

noncontaminant proteins/peptides with and without using contaminant libraries.
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Figure 5: Repository DIA proteomic datasets reanalyzed with and without the contaminant 
protein libraries.
Various DIA data analysis platforms were used to reanalyze two DIA datasets (human cells: 

PXD022589; mouse cortex: PXD005573) with (blue) and without contaminant libraries 

(grey). Contaminant FASTA library and identified contaminant proteins were marked in red 

in the Venn diagrams and bar graphs.
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Figure 6: Protein Quantification is not Influenced by the Protein Contaminant Libraries.
Violin boxplots showing the coefficient of variance for protein quantification with (blue) and 

without (grey) the contaminant library in HEK cells (A) and mouse brain tissue (B) DIA 

proteomics datasets. Spearman’s correlations of protein intensities were calculated with and 

without the contaminant libraries in HEK cells (C) and mouse brain tissue (D).
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