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A B S T R A C T

Muscle fibers are multinucleated, and muscle fiber nuclei (myonuclei) are believed to be post-mitotic and are
typically situated near the periphery of the myofiber. Due to the unique organization of muscle fibers and their
nuclei, the cellular and molecular mechanisms regulating myofiber homeostasis in unstressed and stressed con-
ditions (e.g., exercise) are unique. A key role myonuclei play in regulating muscle during exercise is gene tran-
scription. Only recently have investigators had the capability to identify molecular changes at high resolution
exclusively in myonuclei in response to perturbations in vivo. The purpose of this review is to describe how
myonuclei modulate their transcriptome, epigenetic status, mobility and shape, and microRNA expression in
response to exercise in vivo. Given the relative paucity of high-fidelity information on myonucleus-specific con-
tributions to exercise adaptation, we identify specific gaps in knowledge and provide perspectives on future di-
rections of research.
Background

Skeletal muscle comprises approximately 40% of body mass in adult
humans and plays an integral role in whole body energy metabolism,
glucose homeostasis, and locomotion.1 Due to its abundance and central
role in human health, biomedical research elucidating underlying
mechanisms regulating muscle mass and function is of great importance.
It is well established that exercise regulates the maintenance of healthy
skeletal muscle throughout the lifespan.2,3 Regular physical activity re-
duces the risk of chronic disease, thus lowering burden on the health care
system.4–8 Skeletal muscle is a plastic tissue that adapts in response to
many stimuli and demonstrates distinct adaptations to varied exercise
modalities (e.g., resistance, endurance, and concurrent or combined ex-
ercise). Muscle adaptations to exercise include loading-induced muscle
growth (e.g., hypertrophy) as well as metabolic and contractile trans-
formations (e.g., fiber-type transitions and mitochondrial accumu-
lation/remodeling to accommodate the demands placed on the muscle
cell).

At the center of adaptations in skeletal muscle are the nuclei- the
“brains” of the cell- called myonuclei. Most cell types throughout the
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body have a single nucleus; however, the long, cylindrical, and volumi-
nous skeletal muscle fibers (myofibers) contain hundreds to thousands of
myonuclei. Myofiber multinucleation is the result of the fusion of
numerous mononucleated precursor cells during development.9,10 These
precursor cells ultimately become muscle stem cells, or satellite cells
(SCs), in adult skeletal muscle. The myofiber syncytium is believed to be
post-mitotic. Myonuclei do not undergo division, nor is the myofiber
thought to divide or “split” at an appreciable level.11,12 Thus, fusion of
SCs is required if additional myonuclei or myonuclear replacement is
required. The precise cellular and molecular contributions of resident
myonuclei versus SC-derived myonuclei in exercise adaptation are
incompletely understood, making it an area of ongoing investigation.

Only recently have robust models emerged that allow for the
dissection of specific molecular contributions from myonuclei to in vivo
mammalian adult skeletal muscle exercise adaptation.13 The purpose of
this review is to outline contemporary knowledge on the role of myo-
nuclei, both resident and SC-derived, during exercise adaptation in vivo.
Many studies infer myonuclear contributions to exercise adaptation from
tissue samples, which is a reasonable approach, but we aim to focus on
studies specifically and intentionally examining myonuclei in adult
muscle using direct measures. In presenting this overview, we identify
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Abbreviations

Satellite cells (SCs)
Fibro/adipogenic progenitors (FAPs)
Ribonucleic acid (RNA)
Ribosomal RNA (rRNA)
Synergist ablation-induced mechanical overload (SA)
Progressive weighted wheel running (PoWeR)
Resistance exercise (RE)
Endurance exercise (EE)
Deoxyribonucleic acid (DNA)
MYC proto-oncogene (Myc)
RNA-sequencing (RNA-seq)
Extracellular matrix (ECM)
Rho guanosine triphosphate hydrolyze enzyme (Rho-GTPase)
Myosin heavy chain (MyHC)
Tumor necrosis factor (TNF)
TNF-like weak inducer of apoptosis (TWEAK)
TNF receptor superfamily member 12A (Tnfrsf12a)
Fibroblast growth factor-inducible 14 (Fn14)
Wingless-related integration site (Wnt)

Nuclear Factor Kappa B (NF-κB)
Assay for transposase-accessible chromatin using sequencing (ATAC-

seq)
Myostatin (Mstn)
Insulin-like growth factor 1 (IGF1)
Mechano-growth factor (MGF)
Matrix metallopeptidase 9 (MMP9)
Peroxisome proliferator-activated gamma coactivator-1 alpha (PGC-

1α)
Peroxisome proliferator-activated receptor gamma (PPAR-δ)
Pyruvate dehydrogenase kinase 4 (PDK4)
Kilodaltons (kDa)
Electrical pulse stimulation (EPS)
MicroRNAs (miRNAs or miRs)
Myofiber enriched microRNAs (myomiRs)
Phosphoinositide 3-kinase (PI3k)
Protein Kinase B (AKT)
Glucose-6-phosphate dehydrogenase (G6pdx)
Histone 2B- Green Fluorescent Protein (H2B-GFP)
Single myonucleus RNA sequencing (smnRNA-seq)
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specific gaps in knowledge and provide guidance on future directions of
research.

A brief primer on heterogeneity of nuclei in skeletal muscle

The skeletal muscle environment contains a diversity of nuclei found
in mononuclear cells outside of the multinuclear myofiber. These cells
include SCs, fibro/adipogenic progenitors (FAPs), immune cells, endo-
thelial cells, and tenocytes, to name a few. Under resting conditions,
myonuclei comprise ~50%–70% of all nuclei within the muscle tis-
sue.14,15 When murine muscle is subject to acute mechanical overload (a
rapid hypertrophic stimulus), the myonuclear proportion can drop to
~30% of all nuclei.14 This shift in proportion is primarily due to infil-
tration and proliferation of non-muscle cell types such as fibrogenic and
immune cells (e.g., macrophages and neutrophils). The relative propor-
tion of myonuclei at rest, as well as the changes that can occur under
dynamic muscle loading conditions highlights the complexity of myo-
nuclear contributions to adaptation. It can be reasonably inferred that
certain genes are being expressed by myonuclei in muscle tissue since
they are muscle fiber-specific (e.g. myosin heavy chains, skeletal muscle
actin, myoglobin, muscle creatine kinase, etc.), but advances in single cell
RNA-sequencing technology reveal the diverse influence of mononuclear
cell types to the overall gene expression profile of muscle in stressed
conditions.16 Furthermore, myonuclei have specificity for maintaining
specialized regions of the myofiber; examples include the cell body,
neuromuscular junction, and myotendinous junction-associated myonu-
clei.17,18 Myonuclear subpopulations can complicate the interpretation of
myonuclear contributions to exercise. There are clear differences in
myonuclear density according to myosin fiber type,19–22 which points to
fiber type-specific differences in myonuclear behavior. The specific in-
fluence of SC-acquired myonuclei during exercise adaptation are also
poorly understood. Overall, the molecular contributions of myonuclei to
exercise adaptation is an area of open inquiry.

The regulation of transcription according to myonuclear number
in response to loading

An intuitive task that the myonucleus performs to support exercise
adaptations is transcription of muscle-specific genes coding for contrac-
tile elements, as well as excitation-contraction coupling, extracellular
matrix, metabolism, and ribosomal genes. The latter is especially
3

prevalent since ~85% of RNA in muscle is ribosomal RNA (rRNA).23 One
potential method to increase transcription of protein coding genes and
rRNA as adult myofibers adapt to exercise is more myonuclei. It is
well-established that myonuclear accretion occurs via fusion of SCs to the
myofiber following endurance, resistance, and concurrent exercise, in the
presence or absence of myofiber hypertrophy.19,24–37 Irrespective of the
cause of myonuclear addition in response to exercise, how new myonu-
clei contribute to myofiber adaptation at the molecular level can be
difficult to discern.38 The reason for a lack of specific evidence is largely
technical; it is difficult to track, isolate, and interrogate myonuclei in a
syncytial cell in vivo.39 Using different genetically modified mouse
models, recent evidence suggests that newly-fused myonuclei contribute
specific transcription factors and ribosomal proteins to growing myo-
fibers as a consequence of synergist ablation-induced mechanical over-
load (SA) or high-volume hypertrophic progressive weighted wheel
running (PoWeR).40,41 Apart from these recent studies, it is assumed that
increased myonuclear number generally amplifies transcriptional po-
tential, which could support adaptation in myofibers.35,42 Interestingly,
on a per-nucleus basis, global transcription rate in the early phases of
loading-induced hypertrophy appears lower when myonuclei are added
to an adult muscle fiber than when not added.43 Apart from the regen-
erative roles of SCs in response to highly damaging exercise,38,44 there is
minimal evidence regarding the specific myonuclear contributions to
adult muscle fiber hypertrophy in the context of exercise.

Myonuclear transcriptional responses to resistance-type exercise
in vivo

Following SA mechanical overload of the mouse plantaris, which is a
well-documented hypertrophic stimulus, transcription upregulates up to
7-fold in muscle tissue within a few days.43 Up to 14 days after overload,
the majority of transcription in muscle during hypertrophic loading is
reportedly myonuclear.43 Without myonuclear accretion from SCs, resi-
dent myonuclei can upregulate transcription during myofiber hypertro-
phy, providing evidence of myonuclear transcriptional reserve in
growing adult muscle.43 Given most RNA in muscle is rRNA, and rRNA
increases dramatically in response to resistance exercise (RE) but not
endurance exercise (EE),45 it can be inferred that a large proportion of
myonuclear transcription is ribosomal. Ribosome biogenesis is a process
thought to be essential for sustained loading-induced muscle
growth.46–48
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Global epigenetic profiling of myonuclei after acute SA in mice
further points to growth-related transcription by myonuclei.14 Generally,
myonuclear DNA hypomethylation occurs after acute short-term
loading.14 Specifically, hypomethylation of the promoter region of the
oncogene and ribosome biogenesis-related transcription factor Myc oc-
curs with SA, along with promoter sites in numerous muscle growth and
autophagy genes.14,45 There is also differential methylation in areas of
ribosomal DNA.14,45 It is unclear whether myonuclear methylome
changes after an acute or short-term phase of muscle loading (hours to
days) are persistent for a long period of time after loading has ceased.
RNA-sequencing (RNA-seq) in myonuclei of short-term overloaded
muscle corroborates upregulation of Myc at the gene expression level.49

Recent evidence suggests the powerful transcription factorMyc is central
to the muscle hypertrophy-associated gene expression program.49 Myo-
nuclear RNA-seq further reveals robustly elevated levels of extracellular
matrix (ECM) and Rho-GTPase genes by the myofiber during the early
phase of rapid muscle hypertrophy.49 Although myonuclei may account
for a large portion of transcription in muscle tissue during hypertrophy,
other cell types such as SCs and fibro/adipogenic progenitors also
contribute to muscle gene expression in various ways and to varying
degrees.49 Using single myonuclear RNA-seq, evidence indicates the
presence of SCs may influence myonuclear transcription in response to
acute PoWeR exercise independent from fusion to the myofiber.17,50

In addition to murine studies evaluating the acute myonuclear gene
expression contribution to myofiber growth, human studies report gene
expression in isolatedmyofibers following a bout of RE and with training.
It is assumed most genes detected by this method are transcribed by
myonuclei. In young adults, fast-twitch myosin heavy chain (MyHC) 2A
fibers are more responsive than MyHC 1 fibers to acute RE at the gene
expression level; this included a variety of genes implicated in myofiber
hypertrophy.51,52 One gene, the TWEAK receptor (Tnfrsf12a or Fn14), is
highly upregulated by acute RE as well as training in pools of MyHC 2A
fibers. Young adults are also more responsive than older adults to acute
and chronic RE, regardless of myofiber type- in line with the observation
that older adults are less responsive to RE training.52–54 However,
caution should be used when interpreting isolated myofiber gene
expression. Mononuclear cells such as SCs can adhere to myofibers after
mechanical isolation,14 potentially influencing gene expression profiles.
To this point, activated muscle stem cells are the cell type most enriched
for Fn14 in skeletal muscle.16

With respect to resistance-type training, a few studies evaluated
myonuclear epigenetic contributions to adaptation and show responses
to chronic exercise may be partly distinct from acute exercise. Eight
weeks of PoWeR alters the myonuclear DNA methylation landscape in
resident myonuclei (e.g., myonuclei present at the start of training) of the
plantaris muscle of young mice.37 Genes in myonuclei with
training-induced promoter region hypomethylation correspond with
processes linked to protein turnover, mitochondrial biogenesis, and
cellular remodeling, such as Wnt and NF-κB signaling. Following PoWeR
in mice from 22 to 24 months of age, soleus myonuclear DNA methyl-
ation was characterized by global hypomethylation across genomic fea-
tures including promoters.36 A subset of genes with differential promoter
methylation from training also have changes in gene expression corre-
sponding with methylation status. Apart from these studies, there is little
high-resolution myonucleus-specific in vivo information available
regarding hypertrophic exercise adaptation.

The current evidence collectively indicates that myonuclear tran-
scription contributes to muscle hypertrophy with resistance-type exercise
in vivo, and that complimentary processes such as ECM gene expression
and Myc induction are regulated in the myofiber. Some changes in
myonuclear gene expression are linked to changes in the DNA methyl-
ation status of myonuclear DNA. Applying modern technologies such as
single myonuclear RNA-seq and ATAC-seq to exercised muscle tissue in
vivo will provide more granular insight on myonucleus-autonomous
events regulating hypertrophy.
4

Myonuclear gene expression responses to resistance-type exercise
in vitro

In vitro models of RE utilizing electrical pulse stimulation (EPS) have
emerged as a method to study muscle adaptation to exercise.55–57 Such
models can provide insight into the specific contributions of myonuclei to
hypertrophic exercise since only myogenic cells are used to generate
myotubes in culture. In murine-derived C2C12 myotubes, these models
reveal a decreased expression ofMSTN and increased expression of IGF-1,
MGF, and MMP9.55,56 In one model, altered gene expression overlaps
significantly between acute myotube stimulation in culture and in vivo RE
in human muscle tissues; however, in vitro RE did not mimic the epige-
netic response to in vivo RE.56 The dissimilarity in epigenetic modifica-
tions between in vitro and in vivo RE may be due to contraction type and
mechanical factors (e.g., deformation, maximum tension, and changes in
muscle length that occur in vivo), or indicate that epigenetic modifica-
tions are differential in vitro versus in vivo, perhaps due to the influence of
non-muscle cell types. Hypertrophic stimuli may also modulate trans-
location of nuclear proteins (e.g., transcription factors).
Capsaicin-induced hypertrophy of myotubes increase the migration dis-
tance of high molecular weight (55–110 kDa) nuclear proteins derived
from a given myonucleus in the syncytium. Uptake of proteins generated
by neighboring myonuclei may function as a signal to coordinate tran-
scription during growth, but more work is needed to understand the
mechanisms of this process.58

Myonuclear gene expression responses to endurance-type
exercise

To our knowledge, investigators have not performed in vivomodels of
EE in conjunction with myonuclear isolation. As a surrogate, exercise
models utilizing EPS in vitro with C2C12 myotubes are used to mimic in
vivo models of EE. These models involve varying stimulation frequency,
amplitude, and duration used to simulate training in myofibers.57,59–62

An in vitro approach can provide some insight on myonucleus-specific
contributions to EE adaptation without the influence of other cell
types. Using these models, upregulated transcription of theMyHC 1 gene,
myogenic factors, and genes involved in mitochondrial biogenesis such
as PGC-1α occurs in myotubes in vitro.57,59–62 An ex vivo model of EE in
isolated mouse soleus myofibers similarly demonstrates enhanced gene
expression of PGC-1α, PPAR-δ, and PDK4 concomitant with hypo-
methylation of their respective promoters.63 The regulation of these
genes in myofibers can drive fiber type transitioning and metabolic
changes.64–67 The gap in knowledge regarding direct measures of myo-
nuclear gene expression in vivo with EE training warrants further
attention.

Myonuclear mobility and morphology with exercise

The myonucleus may modulate transcription to promote exercise
adaptation by moving within the myofiber, changing shape, and func-
tioning as a mechanosensor.68–70 Muscle damage often occurs in
response to unaccustomed exercise and eccentric contractions.71,72

Emerging evidence suggests following acute contraction-induced muscle
damage, myonuclei can move along the myofiber to the site of injury to
aid in localized delivery of mRNA and enhance protein synthesis for
muscle sarcomere repair.73 Myonuclei are generally positioned at the
periphery of the cell along the path of capillaries and will realign
themselves as new capillaries form.74 Myonuclear spatial organization
may also “optimize” domains without physically disrupting the conti-
nuity of the myofibril network.42,70,75,76 When myonuclei move from a
more peripheral location to a site of damage after more severe injury,
they may relocate to the center of the myofiber and disproportionally
contribute to transcriptional activity.77 Following a week of wheel
running in mice, bona fide myonuclei that were genetically labeled prior
to exercise are found in the center of myofibers.78 Perhaps this
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myonuclear translocation is associated with movement toward sites of
sarcolemmal and/or sarcomere repair to facilitate adaptation to exercise.
Recent evidence also suggests that myonuclei are less elongated with
different types of exercise training in rodents.78,79 Myonuclear shape
change with exercise could be related to their post-training transcrip-
tional status and role as a mechanosensor.69 Some evidence suggests that
PGC-1α expression, which is induced by exercise in muscle, can alter
myonuclear shape.80 More work is needed to elucidate the function of
myonuclear mobility and shape change in the context of exercise
adaptation.

Myofiber enriched microRNAs (myomiRs) and their role during
exercise

MicroRNAs (miRNAs or miRs) are short, non-coding RNA that affect
mRNA stability and translational efficiency, consequently changing
protein levels without altering the genetic code. A subclass of miRNAs
known as myomiRs are enriched in striated muscle and are sensitive to
EE and RE training.81–83 As myomiRs are expressed almost exclusively in
skeletal muscle myofibers, it can be inferred they are produced mostly by
myonuclei. MyomiRs appear integral to regulating muscle growth, at-
rophy, and fiber type switching, but much is yet to be discovered about
their functions in muscle.84–86 The most abundant myomiR in skeletal
muscle, miR-1, is a presumptive negative regulator of muscle mass by
inhibiting factors in the IGF-1/PI3k/AKT axis, consequently blunting
protein synthesis.79,87 MiR-1 also inhibits the gene target of
glucose-6-phosphate dehydrogenase (G6pdx), the rate-limiting enzyme
in the pentose phosphate pathway, potentially contributing to metabolic
reprogramming during muscle loading.88,89 MiR-1 decreases acutely and
chronically in response to RE training.77,90–94 Conversely, acute bouts of
EE can increase miR-1.83,95 MiR-206 is another myomiR relevant to ex-
ercise adaptations and could facilitate fiber-type transitioning by inhib-
iting transcriptional repressors of the MyHC 1 gene.82,84,90,96 Worth
mentioning, though, miR-206 is also abundant in SCs and subsets of
FAPs.97–101 Therefore, its presence in muscle tissue may not always be
attributable to myonuclear transcription.

Myonuclear histone modifications and exercise

Histone modifications, including acetylation, methylation, phos-
phorylation, and ubiquitination, may epigenetically regulate gene
expression.102–104 Literature regarding exercise-induced histone modifi-
cations exclusively in myonuclei is scant, limiting the depth of our
commentary. In mice, four weeks of voluntary running increases histone
turnover (proxied by incorporation of H2B-GFP into nucleosomes) in
conjunction with fewer histones.105 These histone adaptations cause
loosening of nucleosomes and may lead to increased gene expression.
Following acute SA, histone H3 acetylation, which typically coincides
with increased transcription, was greater in myonuclei.43 Further, acute
bouts of forced eccentric muscle contractions and downhill treadmill
running in mice induced a transient elevation in phosphorylation and
acetylation of histone H3 in myonuclei.106 These studies indicate that
exercise may modify histones in a manner that allows for modulating
accessibility to the DNA sequence and thus gene expression.

Myonuclear “memory” of past training adaptations

In the context of sport performance, “muscle memory” usually refers
to rapid re-acquisition of muscular strength or sport skills. The mecha-
nism for this re-acquisition is at the intersection of motor learning,
neuromuscular adaptations, and longer-lasting changes to skeletal mus-
cle fibers after prolonged periods of detraining.107 Several lines of evi-
dence direct the molecular explanation for “muscle memory” towards
myonuclei. At the cellular level, one proposed mechanism for muscle
memory is permanence of myonuclei acquired by SCs during exercise
training.108 Recent review papers and cross-talk debates have discussed
5

the plausibility of myonuclear permanence with detraining, atrophy, and
aging in great detail.109–115 In summary, the current evidence suggests
that myonuclei gained during exercise training may constitute a muscle
memory in the short term (weeks to months), but are likely not perma-
nent over the long term. The maintenance of myonuclei gained during
exercise training may therefore not be a definitive explanation for muscle
memory. That said, myonuclear loss may also have the prerequisite of
significant muscle atrophy (> 30%) and be muscle-type or myofiber-type
specific.78,109 Technical issues may also contribute this contested area of
inquiry. For example, results from a recent meta-analysis indicate that
denervation- the most commonly used model of myofiber atrophy in
rodents- causes a significant increase in the number of SCs. Satellite cell
behavior and/or abundance may influence the process of maintaining
myonuclear number during atrophy.109 It is also imperative to clearly
identify the myofiber cell border to ensure non-myonuclear cells are not
mis-identified. The complexity of myonuclear identification may exac-
erbate challenges when quantifying myonuclei via cross section or iso-
lated single fibers. To navigate these challenges, future investigations
should use models of genetic myonuclear labeling to ensure exclusively
resident myonuclei are quantified.13,78

While data are limited in the current literature, other prospective
mechanisms for muscle memory are long-lasting changes to methylation
in certain regions of myonuclear DNA, as well as altered miRNA
expression. DNA methylation is a dynamic process and, as previously
discussed, both EE and RE alter the DNA methylome. One rodent study
reported that after chronic PoWeR training and a period of detraining
(return to baseline myofiber size), myonuclear DNA partially maintains
its differential methylation status months later, particularly in genes
involved in muscle hypertrophy.37 Upon a month of retraining, previ-
ously trained mice have accelerated muscle hypertrophy. Studies utiliz-
ing human muscle tissue corroborate long-term changes to muscle DNA
methylation after training.116–118 There is some reversion of modifica-
tions to the DNA methylome to pre-training state after detraining.
However, when previously trained individuals retrain, they more rapidly
restore modifications to the DNA methylome, along with muscle
mass/strength and myofiber size compared to untrained in-
dividuals.116,118 A similar pattern is shown with respect to miRNAs. After
two months of PoWeR training in mice, miR-1 levels are significantly
reduced, which persists after six months of detraining.78 Perhaps myo-
miR expression is subject to epigenetic regulation as well.

Collectively, the concept of cellular muscle memory has an evidence-
based foundation, but the mechanisms of muscle memory are not fully
elucidated. Myonuclear permanence over extended periods of time is one
possibility. An alternative explanation is that epigenetic modifications to
myonuclear DNA allow for genes involved in hypertrophic adaptation to
be more readily expressed once training resumes, thereby facilitating
more rapid adaptation.

Summary

Through recently developed technologies such as inducible myonu-
clear labeling and single myonuclear RNA-seq (smnRNA-seq), re-
searchers can overcome the barrier of analyzing heterogenous nuclear
populations in skeletal muscle. These advances can allow for the
dissection of specific molecular contributions of resident and SC-derived
myonuclei to exercise adaptation in vivo. Prior to the utilization of these
modern technologies, it could be reasonably inferred that transcription is
augmented in response to exercise partly due to fusion of SCs to the
myofiber during both EE and RE training. Enhanced transcription may
even occur in the absence of hypertrophy; some evidence suggests indi-
vidual myonuclei in adult muscle can upregulate transcription several-
fold. Alterations in myonuclear gene expression driving muscle hyper-
trophy with resistance-type exercise in vivo are linked to changes in DNA
methylation status and myomiR expression, particularly in genes
important for growth, autophagy, extracellular matrix remodeling, and
ribosome biogenesis. Less is known about myonucleus-specific gene



Fig. 1. With acute exercise, myonuclei can migrate along the myofiber to a site of damage and aid in localized mRNA delivery to facilitate muscle sarcomere repair.
Myonuclear movement is likely of particular relevance with unaccustomed exercise featuring an eccentric (damaging) component, but some evidence also suggests
that myonuclei can move as a consequence of contraction. Satellite cells activate and may proliferate in response to several acute exercise-induced signals. The
presence of satellite cells can also influence the myonuclear transcriptome independent from fusion, as revealed by satellite cell loss-of-function studies. Epigenetic
modifications that occur in myonuclear DNA after exercise include hypomethylation in promoter regions of genes involved in muscle growth, autophagy, and ri-
bosomal biogenesis, along with lower expression of miR-1. Epigenetic modifications in muscle fibers may result in transiently reduced expression of oxidative
metabolism genes, as well as increased expression of extracellular matrix and ribosomal biogenesis genes. With chronic exercise training, myofiber size and myo-
nuclear density increase due to fusion of satellite cells, and a decrease in myonuclear length. The myonuclear transcriptome may be altered by the presence of satellite
cells and epigenetic modifications to myonuclear DNA such as hypomethylation of genes involved in protein turnover, cellular remodeling, capillarization, and
mitochondrial biogenesis, as well as chronically reduced expression of miR-1. Epigenetic modifications are sustained with detraining and may function as a “muscle
memory” to potentiate a rapid re-acquisition of training adaptations upon retraining. Figure was generated using BioRender.
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expression changes following endurance-type exercise in vivo. In vitro
models show elevated mRNA expression of genes involved in fast-to-slow
fiber type switching, myogenic factors, and mitochondrial biogenesis.
Transcription profiles in resident and SC-derived myonuclei may be
distinct and appear partly regulated by DNAmethylation. Myonuclei may
also have a muscle memory of past training adaptations. We posit this
memory is more likely due to epigenetic modifications to the DNA
methylome and/or changes in myomiR expression, and less likely myo-
nuclear permanence. Precisely what drives epigenetic modifications in
myonuclei is poorly understood. Taken together, the current evidence
provides a preliminary understanding of the myonuclear functions that
support exercise adaptations (Fig. 1), but there are still numerous gaps in
knowledge.

Future directions in studying myonuclei

Newmodels of murine exercise training are rapidly developing.119,120

Combining murine exercise with pre-clinical models of genetic myonu-
clear labeling will provide a robust platform for studying myonuclear
adaptations to different forms of exercise.13,39 Developing new methods
to track SC-derived myonuclei in vivo will further enhance these efforts.
Directing effort toward understanding how SC-derived myonuclei
contribute to specific fiber types could also be worthwhile since
6

myonuclear addition with training can differ according to MyHC iso-
form.25 In humans, the utilization of an antibody to specifically isolate
myonuclei will enable high-resolution analysis of myonuclear adapta-
tions to exercise,121 although recent evidence suggests a more specific
antibody may be required, specifically during times of muscle stress.122

High-resolution sequencing of RNA, miRNA, chromatin accessibility,
DNAmethylation, and other molecular layers at single nucleus resolution
in mice and humans will provide molecular maps of exercise adaptation
across age ranges and sexes, and further reveal subpopulations and het-
erogeneity among myonuclei in dynamic conditions.
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