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Abstract
In mammals, meiotic recombination is initiated by the introduction of DNA double strand breaks (DSBs) into narrow seg-
ments of the genome, defined as hotspots, which is carried out by the SPO11/TOPOVIBL complex. A major player in the 
specification of hotspots is PRDM9, a histone methyltransferase that, following sequence-specific DNA binding, generates 
trimethylation on lysine 4 (H3K4me3) and lysine 36 (H3K36me3) of histone H3, thus defining the hotspots. PRDM9 activity 
is key to successful meiosis, since in its absence DSBs are redirected to functional sites and synapsis between homologous 
chromosomes fails. One protein factor recently implicated in guiding PRDM9 activity at hotspots is EWS, a member of the 
FET family of proteins that also includes TAF15 and FUS/TLS. Here, we demonstrate that FUS/TLS partially colocalizes 
with PRDM9 on the meiotic chromosome axes, marked by the synaptonemal complex component SYCP3, and physically 
interacts with PRDM9. Furthermore, we show that FUS/TLS also interacts with REC114, one of the axis-bound SPO11-
auxiliary factors essential for DSB formation. This finding suggests that FUS/TLS is a component of the protein complex 
that promotes the initiation of meiotic recombination. Accordingly, we document that FUS/TLS coimmunoprecipitates with 
SPO11 in vitro and in vivo. The interaction occurs with both SPO11β and SPO11α splice isoforms, which are believed to play 
distinct functions in the formation of DSBs in autosomes and male sex chromosomes, respectively. Finally, using chromatin 
immunoprecipitation experiments, we show that FUS/TLS is localized at H3K4me3-marked hotspots in autosomes and in 
the pseudo-autosomal region, the site of genetic exchange between the XY chromosomes.
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Introduction

The protein FUS (fused in sarcoma)/TLS (translocated in 
liposarcoma), along with the gene products encoded by 
the Ewing’s sarcoma breakpoint region 1 (Ewsr1) and the 
TATA-box binding associated factor 15 (Taf15), are RNA 
and DNA-binding proteins which belong to the FET (FUS, 
EWS, TAF15) family of proteins [1]. FET proteins mainly 
localize into the cell nucleus [2]. They are highly conserved 
and ubiquitously expressed and contribute to several basic 
biological processes in RNA and DNA metabolism, includ-
ing the control of transcription, RNA processing and cyto-
plasmic fates of messengers RNAs [3–9], and detection 
of DNA damage [10–15]. They contain several conserved 
domains: a serine-tyrosine-glycine-glutamine (SYGQ) 
domain embedded in the DNA activation domain (AD), 3 
glycine-arginine (RGG) rich regions that affect RNA bind-
ing, one conserved RNA-binding domain (RBD, formed by 
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an RNA-recognition motif, RRM), and a zinc finger domain 
that is also involved in nucleic acid binding [1]. Interestingly 
FET proteins are also expressed in testis, where, in addition 
to controlling transcription of post-meiotic genes [16], they 
play key functions in the early stages of meiosis, as dem-
onstrated by massive germ cell apoptosis in spermatocytes 
carrying ablation of either Ewsr1 or Fus genes [17, 18].

In mammals, spermatogenesis starts within the seminifer-
ous tubules, at postnatal age. In mice, a few days after birth, 
gonocytes differentiate into spermatogonia, which divide 
and subsequently differentiate into preleptotene spermato-
cytes 8–9 days post-partum (dpp). Next, as preleptotene cells 
enter meiosis, germ cell subpopulations appear consecu-
tively and continuously, and seminiferous tubule becomes 
enriched of germ cell subpopulations at successive stages of 
differentiation. Thus, while prepuberal 9 dpp testes contain 
somatic cells and germ cells at early stages of differentiation 
(i.e., spermatogonia and preleptonema cells), seminiferous 
tubules of 10 dpp mice are additionally populated by pro-
phase I cells at leptonema and zygonema, while early to late 
pachytene stage cells appear by 12–14 dpp. Subsequently, 
meiotic prophase I and II are completed and at adult age, 
post-meiotic spermatids and testicular sperm become the 
predominant cell types in the seminiferous tubules. The 
overall differentiation process from spermatogonia to mature 
spermatozoa requires ~ 35 days, while successive waves of 
spermatogenesis begin approximately once every 8 to 9 days 
[19]. It follows that while during the first wave of sper-
matogenesis meiotic cells appear in seminiferous tubules 
semi-synchronously, in the adult testes successive waves 
overlap each other, resulting in the association of cells that 
characterize the stages of spermatogenesis [20, 21]. Dur-
ing the prophase of meiosis I, homologous chromosomes 
(henceforth referred to as homologs) from differing parental 
origins (each consisting of two sister chromatids), pair, and 
synapse. Following the formation of physical links (chias-
mata), they subsequently align and move to opposite poles 
at metaphase I. At the second meiotic division, sister chro-
matids separate to form round haploid spermatids, which 
elongate and eventually mature into spermatozoa. In normal 
cells, pairing between the homologous chromosomes (that 
is, approaching and juxtaposing of the chromosomes) begins 
premeiotically with recombination-independent mechanisms 
[22, 23]. However, stable pairing maintenance and synap-
sis requires recombination [22], which is initiated by the 
formation of double-stranded DNA breaks (DSBs) by the 
SPO11/TOPOVIBL complex [24–29]. After their formation, 
the DSB ends are repaired by homologous recombination, 
and homologous synapsis is stabilized by the formation of a 
zipper-like proteinaceous structure called the synaptonemal 
complex (SC) [30]. Recombination ultimately gives rise to 
both crossover (CO) and non-crossover (NCO) products. 
NCOs form with a much higher frequency than COs, and the 

formation of intermediates of NCOs promotes homologous 
pairing. Only one to two COs form in each chromosome in 
mice, leading to the formation of interhomolog DNA links 
cytologically identifiable as chiasmata [24, 31, 32]. Proper 
formation of meiotic DSBs requires not only the SPO11/
TOPOVIBL complex, but also the expression of SPO11 aux-
iliary factors, including IHO1, MEI1, MEI4, and REC114 
[33–40]. These proteins assemble along the chromosome 
axes prior to DSB formation and form cytologically vis-
ible foci that are essential for activating SPO11/TOPOVIBL 
function. When the expression of one of these protein fac-
tors is impaired, DSB formation fails, with the consequent 
failure of homologs synapsis [33–40]. Proper establishing of 
synapsis between homologs requires that DSBs are initiated 
at multiple sites along the length of chromosomes. For this 
reason, the DSB numbers mediated by SPO11/TOPOVIBL 
largely exceed that of crossovers. Accordingly, if the num-
ber of DSBs is reduced below a critical threshold, homolog 
synapsis fails, with the consequent elimination of defective 
spermatocytes by apoptosis [41, 42]. In addition to a numeri-
cal constraint, it is necessary that DSBs are made in specific 
genomic regions called hotspots. A widely conserved meth-
yltransferase responsible for marking DSBs hotspot sites in 
mammals is the meiosis-specific protein PR domain-contain-
ing 9 (PRDM9) [43]. After its interaction with the chroma-
tin remodeler HELLS [44, 45], PRDM9 binds onto DNA, 
and trimethylates histone 3 at Lys-4 (H3K4me3) and Lys-
36 (H3K36me3) allowing access onto the DNA of SPO11/
TOPOVIBL [46–50]. In mice displaying inactivation of the 
Prdm9 gene, DSBs form in normal numbers, but occur in 
functional regions, such as promoters and enhancers, which 
are rarely targeted in wild-type mice [47, 51]. This parallels 
a defect in the repair of DSBs, with the consequent failure 
of synapsis between the homologs and cell death [20, 47, 
51, 52]. It is noteworthy that the phenotype of mice with 
functional inactivation of Prdm9 resembles that of Ewsr1 
and Fus/Tls knockout mice, in which DSBs form in normal 
numbers, but homolog synapsis fails, causing male sterility 
[17, 18, 53]. In an effort to understand the specific role of 
EWS in meiosis, it was recently shown that EWS is a direct 
binding partner of PRDM9 [54], and that its genetic abla-
tion in spermatocytes leads to a reduced level of H3K4me3 
and H3K36me3 at hotspots, accompanied by the disappear-
ance of a selection of H3K4me3 hotspots and the shift of a 
fraction of DSB hotspots to heterochromatin-rich regions, 
normally cold in wild-type cells. This suggests that Ewsr1 
supports proper PRDM9 and DSB activity in spermatocytes 
[53].

Formation of DSBs occurs in the context of the spatial 
organization of meiotic chromosomes, which form chro-
matin loops that extend from a linear protein axis. Based 
on the yeast model, it is thought that the DSB machinery 
(assembled on axes) captures and breaks loop DNA [55, 56]. 
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Given that EWS and PRDM9 interact in vitro and in vivo 
and that EWS interacts with the chromosome axis bound 
cohesin REC8 [53, 54], it has been proposed that EWS par-
ticipates in the association of H3K4me3-marked hotspots 
with the axis [53], thus marking the site of DSB formation 
and genetic recombination [57–59]. However, since a sig-
nificant portion of PRDM9-dependent hotspots is still form-
ing DSBs in Ewsr1 deleted spermatocytes [53], EWS is not 
likely the only protein directing PRDM9-marked DNA to 
the axis. Given the meiotic phenotype of Fus/Tls knockout 
mice [18] and the high level of homology between FUS/TLS 
(henceforth called FUS) and EWS, we asked whether FUS 
could also play a regulative function in DSB formation. A 
comparison of Ewsr1−/− and Fus−/− phenotypes in spermato-
cytes revealed that synaptic defects of Fus−/− spermatocytes 
are more severe than in Ewsr1−/− cells [17, 18]. This sug-
gests that the two proteins might perform similar but not 
overlapping functions during meiosis.

Here, we demonstrate that FUS interacts with PRDM9 
and SPO11 in vitro and in vivo. Furthermore, we show 
that FUS interacts with REC114, one of the axis-bound 
proteins required to activate the SPO11/TOPOVIBL func-
tion. Finally, we prove that FUS localizes onto chromatin 
at H3K4me3 hotspot sites of the autosomes, and in the 
pseudo autosomal region (PAR), the site of genetic exchange 
between the XY chromosomes.

Results

FUS expression is finely regulated during male 
meiosis

Early studies have demonstrated that FUS is abundantly 
expressed in mouse pachytene spermatocytes, whereas its 
expression was weakened in round spermatids [18]. To 
better characterize the global expression of FUS in mouse 
testes, we collected whole testes at different time points 
from prepuberal to adulthood and performed a Western blot 
analysis. As shown in Fig. 1A, FUS expression was high in 
the 9 dpp and 12 dpp testes, which are enriched in somatic/
premeiotic and early pachytene stage cells, respectively; 
while it decreased in the adult testes, suggesting elevated 
expression in somatic cells and prophase I germ cells, and 
low expression at later stages of meiosis. To confirm this 
observation, we performed a protein expression analysis 
from partially purified testis cell populations. Somatic cells 
and a mixed population of preleptotene/leptotene and zygo-
tene stage cells were isolated from 10 dpp mice, according 
to the protocol described by Rossi et al. [60]. Isolated popu-
lations of germ cells at pachynema/diplonema and round 
spermatids were obtained from adult mice by centrifugal 
elutriation [61]. As shown in Fig. 1B, we found that FUS is 

expressed at a high level in somatic cells and in prophase I 
stages up to pachynema/diplonema, and weakly expressed 
in round spermatids. Next, to localize FUS in specific germ 
cell subpopulations, we immunolocalized it on testis sec-
tions. Cell types were identified according to the nuclei 
morphology and germ cell composition of the seminiferous 
tubules at the indicated stages of the epithelial cell cycle, 
as previously described [21, 62]. As shown in Fig. 1C, 
FUS was highly expressed in somatic Sertoli cells and was 
present at a reduced level in germ cells from leptonema to 
secondary spermatocytes. The expression further declined 
in round spermatids, and it was undetectable in elongated 
spermatids and spermatozoa. Next, to understand whether 
FUS was associated with chromatin in germ cells, surface-
spread chromosomes from juvenile wild-type mice were 
prepared. To identify germ cell substages, staining with the 
SC component SYCP3 was performed, which allows pre-
cise identification of prophase I cells [63, 64]. We found 
that FUS associates with chromatin and appeared to be dis-
tributed throughout the nucleus area from preleptonema to 
diplonema but was excluded at pachynema from the area 
of X and Y chromatin, known to undergo transcriptional 
silencing (Fig. 1D) [18, 65], confirming previous observa-
tions [18]. By carefully analyzing the localization pattern of 
FUS, we observed some areas of co-occurrence of SYCP3 
and FUS signals at zygonema, (Fig. S1A), however, whether 
this occurred more frequently than randomly was difficult 
to determine, because of the widespread pattern of FUS. 
To further evaluate this aspect, we resorted to confocal 
microscopy, which allowed for reduced FUS signal noise. 
We observed that the protein appeared to colocalize partially 
with the nascent SC stretches at preleptonema and leptonema 
(see magnifications in Fig. 1E a, b). This was confirmed by 
colocalization analysis of fluorescent signals using Pearson's 
colocalization coefficient (PCC). Rotation of FUS channels 
of 180 degrees served as a control for random colocalization 
(PCC 0.3 ± 0.017; Vs Ctr 0.05 ± 0.02, Fig. S1 B–D). At mid 
to late zygonema FUS remained partially associated with 
unsynapsed and synapsed chromosome axes as scattered foci 
(Fig. 1E c and S1E) persisting as spotted and weak more 
continuous staining on the axes, at pachynema (Fig. S1F).

FUS interacts with PRDM9 regardless of PRDM9 
methyltransferase activity

Recent studies demonstrated that the FET family member 
EWS interacts with PRDM9 through its functional zinc-
finger Ranbp2-type domain, which is conserved among 
the FET family [1, 54]. PRDM9 is expressed from pre-
leptonema to zygonema stages [52] (Fig. S2A) and a pro-
portion of the protein is expected to localize on meiotic 
chromosome axes [54], where it is believed to play a func-
tion in directing SPO11-TOPOVIBL activity at hotspot 
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Fig. 1   Analysis of FUS expres-
sion and localization. A Western 
Blot (WB) of FUS expression in 
total testes extracts from mice 
at the indicated age. At least 
two testes were used for each 
time point. The expression of 
clathrin proteins served as a 
normalizer. B WB analysis of 
FUS protein level in enriched 
cell populations of the testis. 
Somatic cells and pre-leptotene 
(pLe)/leptotene (Le)/zygotene 
(Zyg) stage cells were isolated 
from five wild-type 10 dpp 
old mice; pachytene/diplotene 
(Pach/Dip) stage cells and 
round spermatids (rSpe) were 
isolated from four wild-type 
adult mice. Tubulin served as 
a normalizer. C Immunolo-
calization of FUS (red) and cell 
nuclei (blue) in seminiferous 
tubules at the indicated stages 
of the epithelial cell cycle. The 
white arrows point to somatic 
Sertoli cells (Se) and germ cells 
at different stages of develop-
ment: spermatogonia (Sg), 
primary spermatocytes (SpI), 
secondary spermatocytes (SpII), 
elongated spermatids (eSp), and 
spermatozoa (Sp). Magnifica-
tion bar represents 50 μm. D 
Immunolocalization of FUS 
(red) and SYCP3 (green) on 
surface chromosome spreads 
of germ cells, at the indicated 
stages of development. Images 
were captured using an inverted 
fluorescence microscope. 
Magnification bar represents 
10 μm. E Confocal images of 
FUS (gray) and SYCP3 (red) on 
surface chromosome spreads at 
the indicated stages. The white 
arrows in magnifications (a–c) 
point at sites of colocalization 
of FUS with the unsynapsed 
chromosome axes identified by 
SYCP3. The yellow arrow in 
C points to FUS on synapsed 
chromosome axes. Magnifica-
tion bar represents 10 μm
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sites [47, 48, 66]. To understand whether FUS and the 
axis bound proportion of PRDM9 colocalize onto chro-
mosome axes, we immunolocalized FUS and PRDM9 on 
spermatocytes. As shown in Fig. 2A, a fraction of PRDM9 
localizes on SYCP3 positive chromosome axes (SYCP3/
PRDM9 PCC at preleptonema/leptonema is 0.17 ± 0.02; 
Vs Ctr 0.02 ± 0.006, Fig. S2B) and FUS/PRDM9 signals 
partially overlap (FUS/PRDM9 PCC at preleptonema/
leptonema is 0.3 ± 0.03; Vs Ctr 0.05 ± 0.01, Fig. S2C), 
suggesting a possible interaction. To further investigate 
it, we performed a FUS pull-down using PRDM9 as bait. 
To this end, a full-length Prdm9Dom2 allele expressed in 
E. coli with a C-terminal maltose-binding protein (MBP) 
tag (PRDM9-MBP) was purified and incubated with total 
extracts of juvenile mouse testes (Fig.  2B) or human 
embryonic kidney 293 (HEK-293) cells, which endog-
enously expresses FUS (Fig. 2C). We found that FUS and 
PRDM9 interact in vitro under both conditions. Next, to 
test the interaction of proteins in vivo, we immunoprecipi-
tated FUS from mouse testes extracts. Since PRDM9 and 
FUS are coexpressed at early meiotic stages (Fig. 1D and 
S2A), we immunoprecipitated FUS from juvenile (12 dpp) 
mouse testis extracts, which are enriched in germ cells 
from preleptotene to early pachytene stages (Fig. S2D) and 
an enriched fraction of cells at preleptonema/leptonema/
zygonema. As a control for PRDM9 signal specificity we 
performed a side-by-side immunoprecipitation of FUS 
from somatic cells of the testis, which lacks PRDM9 [52]. 
The interaction between PRDM9 and FUS was readily vis-
ible in immunoprecipitates from juvenile testes and even 
more in those cell extracts from preleptonema/leptonema/
zygonema cells (Fig. 2D). This demonstrates that FUS and 
PRDM9 also interact in vivo. Next, to understand whether 
the establishment of a physical interaction between FUS 
and PRDM9 can also occur before the epigenetic modi-
fications introduced by PRDM9, we analyzed the inter-
action in testicular extracts of Prdm9−/− transgenic mice 
in which the function of Prdm9 was complemented by 
a transgene (Tg) that expresses a functional Prdm9 (i.e. 
Prdm9−/−; Prdm9Tg/Tg genotype), or a Prdm9 that contains 
the Y/F inactivating substitution mutation in the catalytic 
domain (i.e. Prdm9−/−; TgPrdm9YF/YF) [47]. We observed 
that FUS coimmunoprecipitates with PRDM9 carrying the 
Y/F substitution, demonstrating that the interaction does 
not need PRDM9 catalytic function (Fig. 2E), and thus it 
may possibly occur before of H3K4me3 and H3K36me3 
modifications of the chromatin. Importantly, all pull-down 
and immunoprecipitations in this study were performed 
using extracts pre-incubated with benzonase, which 
digests nucleic acid. Thus, the observed interactions occur 
through a (direct or indirect) protein–protein binding.

FUS interacts with SPO11 and REC114 
during the early prophase I

Seminal studies in Saccharomyces cerevisiae proved that 
hotspots are localized in chromatin loops, while DSB for-
mation occurs on the chromosome axis [55, 57, 58] after 
functional activation of SPO11 by the complex of axis-
bound proteins that includes REC114 [33–40, 55, 58, 67, 
68]. As FUS was found to be partially localized on the 
chromosomal axes, we asked whether it could interact with 
REC114. First, to analyze the expression pattern of REC114, 
we collected an enriched-fraction of cells at preleptonema/
leptonema/zygonema from 10 dpp mice and compared it 
with that of aged-matched somatic cells of the testis and 
total testis. As shown in Fig. 2F (top panel), we observed 
that while in the total testis extract the antibody detected 
a doublet, in that from cells at the preleptotene/leptotene/
zygotene stages it recognized only the lower band, while 
only the upper band was detected in the extract of somatic 
cells. From comparison with the total testis extract from 
Rec114−/− mice we established that the lower band of the 
doublet was specific, confirming previous observations [37] 
obtained with the antibody in our supply. Next, we immu-
noprecipitated FUS and examined the presence of REC114 
in the immunoprecipitate. We observed that REC114 was 
coimmunoprecipitated with FUS in the preleptonema/lep-
tonema/zygonema enriched fraction, while no interaction 
was observed in somatic cells, as well as in testes extract 
subjected to immunoprecipitation with a nonspecific IgG 
(Fig. 2F, lower panel). We concluded that FUS interacts with 
REC114 in vivo. Next, since REC114 is a direct binding 
partner of TOPOVIBL [69] and the latter complexes with 
SPO11 [26], we asked whether FUS might be part of the 
protein complex containing SPO11. Therefore, we immu-
noprecipitated SPO11 from juvenile and adult testicular 
extracts and analyzed its interaction with FUS. As shown 
in Fig. 3A, we observed a strong interaction between FUS 
and SPO11 in extracts from juvenile testes and a weaker 
interaction in adults. FUS was not detected when SPO11 
was immunoprecipitated from an enriched fraction of cells 
at the pachytene/diplotene stages, despite comparable levels 
of FUS input (Fig. 3B) and SPO11 expression (Fig. 3A). 
This suggests that coimmunoprecipitation occurs in germ 
cells at the early stage of prophase. Furthermore, we found 
that PRDM9 coimmunoprecipitated strongly with SPO11 
in extracts of juvenile testes, while, in agreement with the 
observation that PRDM9 expression is restricted to cells 
of early meiotic stage, the interaction was weaker in testes 
extracts from adult mice and absent in germ cells in stages 
beyond zygonema (Fig. 3A, top panel). Subsequent analysis 
of the presence of REC114 in the immunocomplex revealed 
that, despite the fact that REC114 was also detectable in 
total extracts of both pachynema/diplonema and round 
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spermatids (see input in Fig. 3B), the protein clearly coim-
munoprecipitated with SPO11, only in extracts from juve-
nile testes. Conversely, it was weakly detectable in extracts 
from adult testes and undetectable in fractions enriched with 
pachynema/diplonema and in rounds spermatids (Fig. 3A). 
These experiments let us conclude that the SPO11/FUS/
PRDM9 and REC114 interactions occur in  vivo in the 
early stages of prophase I. Next, given the strict structural 
homology of FUS and EWS, we tested whether EWS also 
coimmunoprecipitates with SPO11. We found EWS immu-
noprecipitated with SPO11 and FUS (Fig. S2E), suggesting 
that FUS and EWS may have, at least, partially redundant 
functions (see discussion). Moreover, we observed that 
FUS and PRDM9 also coimmunoprecipitate in the testes 
of Spo11−/− mice (Fig. S2F), indicating that they interact 
regardless of SPO11 and the formation of DSBs.

FUS interacts with both SPO11β and SPO11α 
isoforms

In mice and humans, the Spo11 gene produces two major 
splicing variants: Spo11β and  Spo11α [70, 71], whose 
expression is regulated in a timely manner during meiosis. 
SPO11β is expressed earlier, when DSBs form nucleus-
wide, whereas SPO11α start to be expressed in late prophase 
I. The latter, likely plays a function in DSB formation in the 

PAR, the site of genetic exchange between XY chromosomes 
[72]. Our immunoprecipitation experiments showed that 
FUS interacts with SPO11β (first lane in Fig. 3A). However, 
whether it is also capable to interact with SPO11α remained 
unknown, as in adult wild-type testis the latter is always 
expressed concomitantly with SPO11β. To answer this ques-
tion, using juvenile testis extracts, we performed a GST-
pull down assay by using SPO11α and SPO11β recombinant 
proteins (see Coomassie in Fig. 3C) as baits. We observed 
that FUS interacts in vitro with both SPO11 splice isoforms 
(Fig. 3C). Afterward, to understand whether the interac-
tion requires the expression of testicular-specific factors, 
we repeated the pulldown using HEK293 cells as a source 
of FUS. Again, we observed the interaction of FUS with 
both SPO11β and SPO11α (Fig. 3D). Additionally, taking 
advantage of two mice models generated in our laboratory, 
expressing either SPO11β or SPO11α (Barchi M., unpub-
lished data), we immunoprecipitated SPO11 and asked if 
the interaction of FUS with either of the splice isoforms also 
occurs in vivo. As shown in Fig. 3E, after immunoprecipita-
tion of SPO11β from testes extract, we easily detected its 
interaction with FUS in vivo. Similarly, FUS was revealed in 
the immunoprecipitate from testes expressing only SPO11α, 
although the latter was expressed at a lower level than 
SPO11β (compare the two different exposures in Fig. 3E). 
We concluded that FUS interacts with both SPO11β and 
SPO11α splice isoforms, both in vitro and in vivo.

FUS localizes onto chromatin at hotspot sites 
marked by H3K4me3

If the interaction of FUS with PRDM9, SPO11, and REC114 
is of functional relevance to the formation of DSBs, we 
would expect FUS to localize at hotspot sites. Therefore, we 
performed a chromatin immunoprecipitation (ChIP) experi-
ment at characterized H3K4me3 PRDM9 hotspots. In mice 
and humans, the binding of PRDM9 to genomic sites varies 
according to the array of its zinc finger domain. Different 
mouse strains express different Prdm9 alleles, with conse-
quent variations in the genome-wide distribution of recom-
bination events [48, 51, 73]. To address the DNA binding 
ability of FUS at hotspots, we tested its enrichment at the 
hotspot sites identified by the Prdm9Dom2 allele from the 
C57BL6/J strain. We selected four sites, namely: 17b, 14a 
[47], 10qC2, and 12qA1.1 [51, 74]. First, to determine if the 
above are bona fide PRDM9-dependent hotspots, we looked 
at the enrichment of PRDM9, H3K4me3, H3K36me3, and 
DMC1 using a published dataset [47, 75]. As shown in Fig. 
S3, the selected regions are highly enriched of H3K4me3 
and DMC1. An enrichment was also found for H3K36me3 
and PRDM9, although the peaks are not all equally hot. We 
concluded that the genomic regions we selected are genuine 
hotspots. Next, we experimentally assessed the enrichment 

Fig. 2   FUS colocalizes/interacts with PRDM9 and coimmunopre-
cipitates with REC114. A Confocal imaging of FUS, SYCP3, and 
PRDM9 in surface chromosome spreads at leptonema. The white 
arrows indicate SYCP3 colocalization with FUS (left panel), SYCP3 
colocalization with PRDM9 (mid panel) or FUS colocalization with 
PRDM9 (right panel). Magnification bar represents 10  μm. B Pull-
down by maltose-binding protein (pMAL-MBP) and PRDM9-malt-
ose binding protein (PRDM9-MBP) of FUS from 11–12 dpp total 
testis extracts  (four testes per lane). C Pulldown by the PRDM9-
MBP protein of endogenously expressed FUS in HEK293 cells. The 
Coomassie stained gel shows the purified PRDM9-MBP protein. D 
IP/WB analysis of FUS and WB of PRDM9 in total extracts from 
juvenile mice testes, isolated populations of germ cells and somatic 
cells obtained from 10 dpp old mice. IP from somatic cells of the 
testes and 10 dpp testes with anti-FUS and nonspecific IgG, respec-
tively, served as negative controls. pLe/Le/Zyg is a mix population 
of pre-leptotene, leptotene and zygotene stage cells. E IP/WB analy-
sis of FUS and WB of PRDM9 from total testis extracts from mice 
of the indicated genotypes. Wild types (wt) are six testes from 14 
dpp old C57BL6/J mice, Prdm9−/−; Prdm9Tg/Tg are two testes from 
adult mice, Prdm9−/−; Prdm9YF/YF are four testes from adult mice, 
Prdm9−/− are two testes from adult mice. F Top panel, identification 
of the REC114 specific band in inputs used for FUS immunoprecipi-
tation. The Rec114−/− adult testes served as a control. pLe/Le/Zyg is 
a mix population of pre-leptotene, leptotene and zygotene stage cells 
obtained from 10 dpp old mice. “Somatic” indicates a mix population 
of testicular somatic cells obtained from 10 dpp old mice. The total 
testis extract was prepared from 14 dpp old mice. Lower panel, IP/
WB analysis of the FUS-REC114 interaction in the extracts indicated 
above. The IP with a non-specific IgG served as negative control. 
Seven testes were used for each point. The asterisk indicates a non-
specific band
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of H3K4me3 at these hotspots by ChIP from juvenile tes-
tes. As expected, we found that H3K4me3 was significantly 
enriched at all hotspot sites (Fig. 4A), while the intragenic 
region of Polr2a, which has been shown to be a cold spot for 

H3K4me3 (Fig. S3 and [74]), was used as a negative control. 
Next, we analyzed FUS enrichment at the same genomic 
locations. Remarkably, we observed enrichment of FUS on 
the chromatin of all hotspot sites, but not in the coldspot 
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region (Fig. 4B). These experiments let us conclude that 
FUS binds onto chromatin at PRDM9-marked hotspot.

Since FUS also coimmunoprecipitates with SPO11α, we 
also asked whether FUS was also associated with the large 
H3K4me3 hotspot in the PAR [51]. Data mining in ChIP-seq 
genome-wide datasets [75] allowed the selection of two PAR 
regions (hereafter called PAR1 and PAR2) highly enriched 
in H3K4me3 and DMC1 reads (Fig. S3). H3K4me3 ChIP 
analysis of these regions confirmed that these are true hot-
spots (Fig. 4C). In the experiment, the non-PAR X- hotspot 
and the X-chromosome RJ2 strain hotspot were used as posi-
tive and negative controls, respectively. Notably, we found 
that FUS binds specifically at the non-PAR X-hotspot and 
PAR1 and PAR2 genomic regions (Fig. 4D).

Discussion

PRDM9 plays a key function in meiotic recombination, 
as it specifies the hotspots, the sites of genetic recombina-
tion. By promoting the trimethylation of H3K4 and H3K36, 
PRDM9 modifies the nucleosomes near its binding site to 
DNA [46, 66], thus creating an environment conducive to 
the formation of DSBs by the heterotetrameric complex 
SPO11/TOPOVIBL [46, 58, 76]. DSBs form in conjunc-
tion with the development of axial chromosome structures, 
to which chromatin loops connect forming linear arrays. 
Studies in S. Cerevisiae indicate that DSBs mostly occur at 
sites not constitutively axis-associated but within loops that 
are tethered to the axis before or at the time of DSB forma-
tion through the action of SPO11, by accessory proteins that 
assemble onto the axis [55]. To date, it is unknown whether 

the loop/axis-tethering model applies to mammals. However, 
observations that mammals express homologous auxiliary 
factors to those of yeast, that these assemble as foci on the 
chromosome axis [34–40, 58] and that DSB markers asso-
ciate with the axis [77], suggest that the mechanism may 
be similar. This allows for the possibility that the SPO11/
TOPOVIBL complex may first bind at chromatin loops at 
sites specified by PRDM9, then it is tethered to the chromo-
some axis, where the SPO11 is activated by its interaction 
with the auxiliary factors.

In recent years, numerous efforts have been devoted 
to clarifying the molecular steps occurring from PRDM9 
binding to DSB formation. By looking at PRDM9 interac-
tors, it has been found that the RNA-binding protein EWS 
interacts with the N-terminal of PRDM9 in vitro through 
its Ranbp2-type zinc finger functional domain [54, 78], 
and that in vivo, EWS binds to REC8, a protein compo-
nent of the linear core forming the chromosome axes, and 
with SYCP3, a component of the SC [54]. This allowed the 
authors to propose a role for EWS in the bridge of hotspot 
DNA from out-of-chromosome loops down to the chromo-
some axis [54]. Successively, using the Ewsr1 conditional 
knockout mouse model, it was demonstrated that EWS is 
not strictly required for the designation of hotspot sites by 
PRDM9. Instead, it mostly plays a role in empowering the 
deposition of H3K4me3 and activation of SPO11 at the hot-
spots [53]. This predicts the presence of additional (Ewsr1-
independent), or backup mechanisms, that guarantee the des-
ignation of PRDM9-dependent hotspots. Although protein 
factors involved in this mechanism are currently unknown, 
it is plausible to expect that failure of association between 
hotspot marks and SPO11 activity would cause a meiotic 
phenotype highly similar to that of Prdm9−/− spermatocytes, 
showing normal DSB number and inefficient recognition and 
synapsis of homology throughout the nucleus, caused by 
the lack of hotspots designation [51, 52]. In this respect, our 
attention was drawn to the phenotype of Fus−/− spermato-
cytes. Like Prdm9−/− cells, spermatocytes lacking Fus show 
nucleus-wide mispaired synapsis of the homologs, besides 
efficient formation of DSBs [18]. Thus, given the structural 
similarities among FET proteins, we sought to ask whether 
FUS could play a role in the initiation of meiotic recom-
bination. First, we asked whether FUS associates with the 
chromatin and chromosome axes. We observed a nucleus-
wide distribution of FUS onto chromatin, as well as focal 
colocalization with the chromosome axe-associated protein 
SYCP3. Next, given the conservation of the Ranbp2-type 
zinc finger domain among FET proteins, we asked whether 
FUS colocalizes and interacts with PRDM9. We observed 
that a fraction of FUS and PRDM9 colocalize on the axes 
and that FUS and PRDM9 interact in vitro and in vivo in 
the absence of nucleic acids, specifically in early meiotic 
cells, the time of development when SPO11-mediated DSBs 

Fig. 3   FUS interacts with SPO11 in  vivo and in  vitro. A IP/WB 
analysis of SPO11 and WB of FUS, PRDM9, and REC114 coim-
munoprecipitating from juveniles and adult mice total testes extracts 
and from isolated populations of germ cells. Pach/Dip and rSpe are 
pachytene/diplotene stages enriched fractions and round spermatids, 
respectively, obtained from adult mice. Total extracts of juvenile 
mice testes were prepared from five 12 dpp mice. The total extracts 
of the testes of adult mice were from a 6-month-old mouse. The IP 
with a non-specific mouse IgG served as negative control. The immu-
noprecipitation of SPO11 from a purified fraction of r-Spe served 
as a control for PRDM9 and REC114 signal specificity. The aster-
isks indicate nonspecific bands (see Fig. 2F, top panel). B FUS and 
REC114 expression in total extracts of the input. SYCP3 served as 
a measure of spermatocyte cell content, while tubulin was used as 
an independent loading control. C Pulldown by the SPO11β-GST 
and SPO11α-GST recombinant proteins, of FUS from 12 dpp testis 
extracts, or D from extracts of HEK293 cells. Coomassie-stained gels 
in B and C show SPO11-GST fusion proteins. E IP/WB analysis of 
SPO11β/SPO11α and WB of FUS coimmunoprecipitated from total 
testis extracts of adult knock-in mice expressing only either SPO11β 
or SPO11α cDNA. The higher exposure of the film of SPO11 IP is 
shown to allow a better visualization of the SPO11α splice isoform. 
IgG indicates immunoglobulin. The asterisk in the input indicates a 
nonspecific band
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form physiologically [27]. The interaction between FUS 
and PRDM9 also occurred using HEK293 as a source of 
FUS, suggesting that it does not require the expression of 
testicular-specific factors and therefore may be direct. Given 
the well-known function of PRDM9 in the specification of 
the DSB sites, these results suggested a function of FUS 
at the DSB sites. It is interesting that immunoprecipitation 
of FUS from testis shows the presence of a doublet, which 
could be the result of post-translational modifications of 
the protein, or an as yet uncharacterized splicing isoform. 
According to the loop/axis-tethering model, activation of 
the SPO11 function is thought to occur on the chromosome 
axis where it interacts with axis-bound auxiliary factors, 
including REC114 [56, 58]. To understand whether FUS 
may interact spatially with one of these factors, we tested 
its interaction with REC114. We observed that the two pro-
teins were coimmunoprecipitated, suggesting a putative 
function of FUS at the sites where the SPO11 function is 
activated. Again, the interaction occurred regardless of the 
presence of nucleic acids, indicating that it occurs (directly 
or indirectly) between the proteins. Physiologically, SPO11 
cleaves DNA at the hotspots marked by H3K4me3; suc-
cessively, DNA is resected, and the free 3'end becomes the 
binding site of single-strand binding proteins that promote 
strand invasion, such as DMC1 [32]. Therefore, if FUS 
plays a function at hotspots, we expected to find it at sites 
enriched for both H3K4me3 and DMC1. In accordance our 
experiments showed that FUS is enriched at autosomal sites 
10qC2, and 12qA1.1 selected from a combination of the 
H3K4me3 and DMC1 ChIP-Seq data set [51], as well as 
at the 17b and 14a sites, which derive from a combination 

of PRDM9, H3K4me3, H3K4me36 and DMC1 ChIP-seq 
experiments [75]. Furthermore, we show that H3K4me36 
and PRDM9 are enriched at the autosomal sites 10qC2 and 
12qA1.1, although with different magnitudes. We concluded 
that FUS is localized to DNA at genuine hotspot sites, along 
with PRDM9. Next, we asked whether FUS could physi-
cally interact with SPO11. By a pull-down assay, we found 
that FUS interacts with SPO11 in vitro, in the absence of 
testis-specific factors. Moreover, by immunoprecipitating 
SPO11β from testis extracts, we observed FUS in the immu-
nocomplex in cells in the early meiotic stage in vivo, as there 
were also PRDM9 and REC114. Notably, although FUS and 
PRDM9 were found in the immunocomplex with SPO11, 
their interaction also occurred in the Spo11−/− testes, indicat-
ing that the protein complex forms independently of SPO11 
and the formation of DSBs, perhaps in advance of DSBs.

Recent data shows that TOPOVIBL can form a stable 
complex with REC114, and that this interaction is essential 
for the formation of DSBs across the genome in the females, 
while in males it promotes the proper timing of DSB forma-
tion, and the placement of DSBs in the subtelomeric regions 
and in the PAR [69]. As SPO11β and TOPOVIBL are direct 
binding partners [26], according to the loop/axis-tethering 
model, we speculate that in females the interaction between 
TOPOVIBL and REC114 plays a key role in promoting the 
association of SPO11 with the DSB sites on the axis. In 
males, in which the lack of interaction between TOPOVIBL 
and REC114 has a less dramatic effect, FUS by interacting 
(directly or indirectly) with both PRDM9 and SPO11 may 
implement the association of SPO11 with the axis, through 
its (direct or indirect) protein–protein interaction with 
REC114 (Fig. 4E), while simultaneously adapting PRDM9-
tagged sites to the axis. It should be noted that the latter 
function has previously been assigned to EWS, due to its 
ability to bind PRDM9, and the proteins associated with the 
axis REC8 and SYCP3 [53]. Since PRDM9 forms soluble 
and DNA bound multimeric complexes [79–81], and EWS 
and FUS are both expressed in early meiotic stages and share 
the Ranbp2-type zinc finger functional domain, here we pro-
pose that FUS and EWS may bind concomitantly to PRDM9 
multimers (perhaps separately to the individual monomers 
of the PRDM9 complex), cooperating to tie PRDM9 to the 
axis, activating SPO11 function.

In this regard, we found that SPO11 also interacts with 
EWS in vivo, which supports this hypothesis. Given the 
substantial severe effect of Fus deletion [18] over that of 
Ewsr1 [54] on homologous synapsis, we speculate that 
FUS and EWS may have partially distinct functions, with 
FUS playing a predominant role in promoting the associa-
tion of SPO11 with PRDM9 in hotspots, and EWS acting 
more as a fine-tuning regulator. If this is correct, FUS 
would replace the function of EWS when the latter is not 
expressed. This would explain the mild effect of Ewsr1 

Fig. 4   FUS localizes at H3K4me3-marked hotspots. A Chromatin 
Immunoprecipitation (ChIP) of H3K4me3 and quantitative Real-
Time  PCR (qPCR) of the indicated PRDM9Dom2 hotspots. The 
intragenic region of Pol II (Pol II-intra)  is an H3K4me3 coldspot. 
B ChIP-qPCR of FUS at the indicated hotspots and the coldspot. C 
ChIP-qPCR of H3K4me3 and qPCR at two distinct pseudoautosomal 
regions named 1 and 2 (PAR1 and PAR2). X-Hs is a PRDM9Dom2 
hotspot of a non-PAR genomic region of the X chromosome. X-Cs 
is a PRDM9RJ2 hotspot in a non-PAR genomic region of the X chro-
mosome, expected to be a coldspot in the C57 background. D ChIP-
qPCR of FUS at the indicated hotspots. In all cases, the analyses 
were performed from at least three 12dpp old mice testes, and the 
data were normalized against the input. Nonspecific IgG-based qPCR 
served as a control. Each ChIP-qPCR experiment was performed at 
least in triplicate. Error bars are mean ± standard error of the mean. 
Statistical significances (*p < 0.05; **p < 0.005; ***p < 0.001; 
n.s. = not significant) indicates enrichment to IgGs (two tails t-test). E 
Putative model of the action of FUS in early meiosis, according to the 
axis loop tethering model. FUS by interacting concomitantly (directly 
or indirectly) with PRDM9 and SPO11 provides a link between the 
H3K4me3-marked chromatin loops and the SPO11/TOPOVIBL 
cleavage complex. The interaction of FUS with REC114 may pro-
mote the association of the PRDM9-marked hotspot with the axis. 
EWS by interacting (directly) with PRDM9 and (directly or indi-
rectly) with SPO11, may support the function of FUS
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deletion in the positioning of hotspots. This could be veri-
fied by analyzing the genome-wide distribution of the hot-
spots in Fus−/− mice. Unfortunately, the current available 
Fus knockout model dies at perinatal age [82], therefore, at 
present, direct testing of the hotspot positioning shift in the 
absence of Fus or Fus and Ewsr1 is not possible. In addi-
tion to FUS and EWS, PRDM9 has been previously shown 
to interact directly (in vitro and in vivo) with several other 
protein factors. Among them, a role at hotspots has so far 
been assigned to HELLS and speculated for EHMT2 [44, 
45, 54]. Such protein factors may interact with PRDM9 
with different timings with respect to FUS and EWS, play-
ing distinct functions (supplementary discussion). More 
studies will be needed to clarify this aspect.

FUS is a complex protein with many functions, includ-
ing DSB repair mediated by liquid–liquid phase separation 
[83, 84]. In this regard, the number of DSBs, identified 
by the RAD51 marker, appears to be very high in Fus 
−/− spermatocytes [18], indicating a possible defect in the 
processing of DSBs. However, a direct involvement of 
FUS in DSB repair would predict that it is persistent at 
the site of damage as a punctate staining; a pattern that 
was not observed in our study. This mitigates the possibil-
ity that FUS may play a widespread role in DSB process-
ing steps. In this regard, it is worth underlying that we 
observed that localization of FUS on the chromosome axis 
was only partial, suggesting that it is transient. This pre-
dicted dynamism of the interaction with the axis reminds 
of the dynamic location of SPO11, which is expected to be 
recruited to the axes and released immediately after DSB 
formation, to prevent its persistent activity on DNA [85].

Interestingly, our data also show that FUS interacts with 
the SPO11α splice isoform both in vivo and in vitro and 
localizes at the PAR hotspot, the site of genetic exchange 
between the XY chromosomes [72]. Therefore, FUS may 
also play a role in promoting efficient recombination of 
male-sex chromosomes. This probably occurs indepen-
dently of its interaction with PRDM9, as the latter is 
dispensable for the deposition of H3K4me3 at the PAR 
hotspot [51]. As SPO11α is thought to play a specific func-
tion in XY recombination [72], further studies aimed at 
uncovering other molecular interactors of SPO11α will be 
instrumental to identify new players involved in the initia-
tion of XY recombination, likely clarifying the function 
of FUS in this process.

Materials and methods

Mice

This study was carried out in accordance with the principles 
of the Declaration of Helsinki. The approval was granted 

by the Institutional Animal Care and Use Committee of the 
University of Rome Tor Vergata and by the “Istituto Supe-
riore di Sanità” of Italy and was carried out according to 
the guidelines of the committee. Prdm9−/−; Prdm9Tg/Tg and 
Prdm9−/−; TgPrdm9YF/YF mice testes were maintained in 
C57BL6/J background [47]. Spo11β-only and Spo11α-only 
mice were developed in our laboratory by knocking-in either 
Spo11β or Spo11α cDNA under the Spo11 promoter (manu-
script in preparation) and maintained in either C57BL6/J or 
mix (C57BL6/J and 129/Sv) backgrounds. Wild-type mice 
used in immunoprecipitation and pull-down experiments 
were C57BL6/J or CD1. Enriched fractions of germ cells and 
testes somatic cells were obtained from CD1 mice. Wild-
type mice used in the ChIP experiments were C57BL6/J. 
The age and number of testes used in each experiment are 
specified in the figure legends.

Preparation of spermatocytes spreads

Spreads were prepared as previously described [42, 61, 
86]. Briefly, testes were taken off from juvenile eutha-
nized mice and the tunica albuginea was removed. Next, 
the seminiferous tubules were placed in DMEM high glu-
cose (Euroclone, ECM0101L) and disrupted and mixed 
using a razor blade. The supernatant was centrifuged at 
7200 rpm for 1 min and the pellet was resuspended in 0.5 M 
sucrose (VWR, 27480.294). Cell suspension was fixed on 
slides (Thermo Sientific, Menzel-Glaser Superfrost Plus, 
J1800AMNZ) using 1% paraformaldehyde (PFA) (Chem-
Cruz, SC-281692)/0.015% Triton X-100 (Sigma-Aldrich, 
9002-93-1)/dH2O pH 9.2) and incubated for 2 h in a humidi-
fied chamber at room temperature (RT). When the slides 
were completely fixed, they were washed twice with Wash-
ing Buffer 2 [WB2, 0.4% Photo-Flo (Kodak Professional 
200 Solution, 1464510)/dH2O] and left air-drying at RT. 
Slides were either stained soon after or stored at − 80 °C for 
up to 6 months.

Immunofluorescence on the meiotic chromosome 
spreads

Immunofluorescence on surface chromosome spreads was 
performed as previously described [42, 86]. Briefly, air-
dried slides were washed with washing buffer 1 (WB1: 
0.4% Photo-Flo, 0.01% Triton X-100/dH2O) and incubated 
overnight (ON) at room temperature (RT) with primary anti-
bodies in antibody dilution buffer [ADB: 10% goat serum 
(Sigma-Aldrich, G9023), 3% bovine serum albumin (BSA) 
(Sigma-Aldrich, A7906), 0.05% Triton X-100 in buffered 
phosphate (PBS) (Euroclone, ECB4004L)]. The informa-
tion on the primary antibodies is shown in Table S1. After 
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10 min of washing with WB1 and WB2, slides were incu-
bated with secondary antibodies for 1 h at 37 °C in the dark 
using the NeoBrite System (NeoBiotech). Secondary anti-
bodies are listed in Table S1. Following 10 min washes with 
WB1 and WB2, slides were rinsed for 5 min in PBS and 
incubated in Hoechst (Thermo Fisher Scientific, 33258)/1X 
PBS solution for 20 min in a humidified chamber at RT. At 
the end of the incubation, the slides were air-dried at RT in 
the dark and mounted using ProLong Gold Antifade mount-
ing media without DAPI (Invitrogen, P36934). Images were 
captured using a Leica CTR6000 digital inverted microscope 
connected to a CCD camera. Confocal images were cap-
tured using the STEDYCON confocal microscope (Abberior 
Instruments).

Fluorescence image colocalization analysis

The colocalization of paired fluorescence signals was esti-
mated by ImageJ using Pearson’s correlation coefficient 
(PCC). As a control for random colocalization, we per-
formed a scrambling of the FUS channel by rotating the 
image of 180 degrees.

Histology and immunostaining of testes sections

Testes were collected and immediately frozen in O.C.T. 
(Sakura, Tissue-Tek, 4583). Following sectioning, tis-
sues were fixed on glass slides with PFA 4%/PBS for 
10 min at RT, followed by 10 min of washing in 1X PBS. 
Immunostaining was preceded by antigen retrieval using 
Tris–EDTA citrate buffer, pH 7.8 (UCS Diagnostic, 
TECH199) for 30 min in steam, followed by cooling to 
RT. The slides were then rinsed in dH2O to continue with 
the immunofluorescence assay as previously reported. The 
images were captured using a STEDYCON confocal micro-
scope (Abberior Instruments).

Isolation of the enriched somatic and germinal cell 
population

The isolation of the enriched somatic and germinal cell pop-
ulation was carried out according to Rossi et al. [60]. Briefly, 
the testes of five 10 dpp wild-type mice were washed in 1X 
PBS. After removing the supernatant, the testes were resus-
pended in collagenase (0.5 mg/ml) (Sigma-Aldrich, C7657) 
for 30 min at 32 °C in agitation in a water bath until the sem-
iniferous tubules were completely dispersed. After allowing 
the tubules to settle for 5 min, they were washed twice with 
1X PBS and digested with 1X Trypsin/EDTA (Aurogene, 
AU-X0930) for 5 min in agitation at 32 °C. Next, the diges-
tion was blocked with culture media (DMEM high glucose 
10% fetal bovine serum [FBS, Sigma-Aldrich, F7524], 1% 
penicillin/streptomycin [P/S, Euroclone, ECB3001D], 1% 

L-glutamine [Euroclone, ECB3000D], 1 mM sodium pyru-
vate [Euroclone, ECM0542D] and 2 mM sodium lactate 
[Sigma-Aldrich, L-7900]). Cells were then spun down and 
resuspended in a small volume of culture medium supple-
mented with 1X DNAse (Sigma-Aldrich, DN25). The sus-
pension was cultured in culture medium in a 5% CO2 atmos-
phere at 32 °C for 3 h. At the end of incubation, floating 
cells, which is the fraction of enriched germ cells, were col-
lected, washed with 1X PBS, and the pellet stored at − 80 °C 
until use. Cells in adhesion, which are the enriched fraction 
of testes somatic cells, were washed twice to remove the cul-
ture medium and treated with a hypotonic solution (20 mM 
Tris HCl pH 7.5) for 2 min to remove residual germinal cells 
and cultured for 24 h in high glucose DMEM without FBS. 
The following day, cells were collected, washed with 1X 
PBS, and the pellets were stored at − 80 °C until use.

Centrifugal elutriation

The isolation of enriched populations of male mouse germ 
cells was performed using centrifugal elutriation according 
to Barchi et al. [61].

Immunoprecipitation and Western Blot

Immunoprecipitation was performed according to [54] 
with minor changes. Briefly, testes from adult or juve-
nile wild type mice were decapsulated and lysed using 
the Pierce IP Lysis Buffer (Thermo Fisher Scientific, 
87787) complemented with proteases inhibitors 2X 
(Roche, cOmplete Tablets EDTA-free, 04693132001), 
phosphatases Inhibitors 1X (Sigma-Aldrich, Phosphatase 
Inhibitor Cocktail 3, P0044) and benzonase (ChemCruz, 
sc-202391A) according to manufacturer instructions. 
Supernatants were incubated with Dynabeads Protein-A 
(Thermo Fisher Scientific, 1002D) loaded with either the 
mouse monoclonal anti-SPO11-180 antibody (table S1), 
which recognizes specifically both SPO11β and SPO11α 
isoforms [85, 86], or anti-FUS antibody, which specifi-
cally recognizes FUS protein [87], in rotation at 4 °C. 
Mouse anti-IgG2A (table  S1) served as a control. At 
the end of incubation, the dynabeads were washed three 
times with Lysis buffer and eluted with standard Laemmli 
buffer. The samples were fractionated on 8–12% SDS-
PAGE and transferred to a PVDF membrane (GE Health-
care, Amersham Hybond P Western blotting membranes, 
GE10600023) using a semi-dry transfer system (Hoefer, 
TE22). For Western Blot (WB) analysis, membranes were 
probed with primary antibodies diluted in BSA 5%/TBS 
0.1% Tween 20 (TBS-T). Secondary antibodies were 
diluted in 5% nonfat dry milk (AppliChem, A0830)/TBS-
T. Primary and secondary antibodies are listed in Table S1. 
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WB signals were detected using ECL reagent (BIO-RAD, 
Clarity Western ECL Substrate, #170-5061).

Pulldown assay

Spo11β and Spo11α were cloned into a pGEX-4T1 plas-
mid (Addgene). PRDM9 was cloned in a pMAL-C5x 
plasmid (New England Biolabs), gifted by Petko Petkov. 
The plasmids pGEX-4T1 Spo11α and pGEX-4T1 Spo11β 
and pMAL-C5X PRDM9 were transformed by heat shock 
into E. coli BL21. Transformed cells were grown in LB 
medium, supplemented with 50 μg/mL Ampicillin (Sigma-
Aldrich, A0166), till an O.D. (600 nm) of 0.6–0.7 and 
induced with 0.5 mM isopropyl-thiogalactoside (IPTG) 
for protein expression, at 37 °C for 3 h. For GST-recom-
binant protein purification, each pellet was resuspended 
in GST binding buffer (PBS/1% Triton X-100 + protease 
inhibitors + DTT 1 mM), sonicated, and centrifugated at 
12,000 rpm for 30 min at 4 °C. Recombinant proteins were 
purified by incubating lysates with glutathione-agarose 
beads (Sigma-Aldrich, #SLBX5204), at 4 °C for 2 h under 
constant rotation. The beads were washed twice in GST 
binding buffer and used in the pull-down experiments. For 
the GST pull-down assay, testes were lysed in Pierce Lysis 
Buffer (Thermo Fisher Scientific, 87787) supplemented 
with protease inhibitors, phosphatases inhibitors, and 
benzonase, while HEK293 cells were lysed in HEK-lysis 
buffer (400 mM NaCl, 5 mM EDTA, 50 mM Hepes–NaOH 
ph 7.4, 1% TritonX-100) with protease inhibitors. The 
lysates were incubated with GST-Spo11α/β-beads for 
3 h at 4 °C. After washing with PBS 1X, proteins were 
eluted in Laemmli buffer 2X by heating to 95 °C for 5 min. 
Proteins were analyzed by WB. For PRDM9-MBP puri-
fication, each pellet was resuspended in MBP column 
binding buffer (20 mM Tris–HCl PH 7.4, 1 mM EDTA, 
100 mM NaCl + proteases inhibitors + DTT 1 mM), soni-
cated, and centrifugated at 12,000 rpm for 30 min at 4 °C. 
Recombinant proteins were purified by incubating lysates 
with Amylose resin (NEB, #E802S) at 4 °C for 2 h under 
constant rotation. The beads were washed twice in MBP 
column binding buffer and used in the pull-down experi-
ments. For MBP-pull down assay, testes and HEK293 cells 
were lysed in Pierce Lysis Buffer and HEK-lysis buffer, 
respectively, and incubated with PRDM9-MBP-beads for 
3 h at 4 °C. After washing with PBS 1X, proteins were 
eluted in Laemmli buffer 2X by heating to 95 °C for 5 min. 
Proteins were analyzed by WB.

Chromatin immunoprecipitation (ChIP)

Crosslinking from mouse testes chromatin

Testes were taken off from juvenile euthanized male mice 
and the tunica albuginea was removed. The seminiferous 
tubules were placed in 1X PBS on ice and disrupted and 
mixed using a razor blade. Spermatocyte suspension was 
resuspended in 1X PBS and left on ice to settle for 10 min. 
The supernatant was centrifuged at 2000 rpm for 5 min. 
The pellet was resuspended in 1X PBS and then 1% for-
maldehyde was added to the resuspension of the cells and 
incubated for 10 min at RT. The crosslinking reaction was 
stopped using 0.125 M Glycine (SERVA, 23391.02) for 
5 min at RT. Cell resuspension was washed twice with cold 
1X PBS and centrifuged at 2000 rpm for 5 min. The super-
natant was removed and the pellet was sonicated or stored 
at − 80 °C after freezing in liquid nitrogen.

Immunoprecipitation

The pellet was resuspended with nuclear extraction buffer 
(5 mM Pipes pH 8; 85 mM KCl; 0.5% NP-40, mM dithi-
othreitol, 10 mM β-glycerophosphate, 0.5 mM Na3VO4, 
and protease inhibitor cocktail–Sigma Aldrich), incubated 
on ice for 10 min and centrifuged at 1000×g for 10 min at 
4 °C. The pellet was resuspended in 250 μl Lysis buffer (1% 
SDS, 10 mM EDTA pH 8, 50 mM Tris HCl pH 8, mM dithi-
othreitol, 10 mM β-glycerophosphate, 0.5 mM Na3VO4 and 
protease inhibitor cocktail) and incubated on ice for 10 min. 
The samples were sonicated with Bioruptor (Dyagenode) 
2 × 5 min (30-s sonication and 30-s pause) and centrifuged 
at 10,000×g for 10 min at 4 °C. The DNA was quantified 
using Nanodrop and checked with electrophoresis run using 
a 1% agarose gel. The samples were pre-cleared for 2 h with 
protein A/agarose/salmon sperm DNA (Millipore) and then 
immunoprecipitated ON using 1 µg of anti-H3K4me3 and 
anti-FUS antibody (table S1) in constant rotation. The beads 
were washed four times with the low salt buffer A (0.1% 
SDS, 1% Triton X-100, 2 mM EDTA pH 8, 20 mM Tris 
HCl pH 8, 150 mM NaCl, with protease inhibitors) and 
three times with the high salt buffer B (01% SDS, 1% Triton 
X-100, 2 mM EDTA pH 8, 20 mM Tris HCl pH 8, 500 mM 
NaCl, with protease inhibitors) on ice. The last wash was 
performed using Tris–EDTA buffer (10 mM Tris–HCl and 
1 mM EDTA pH 8) and the samples were incubated for 
5 min at RT. The supernatant was then discarded and the 
beads were eluted twice using elution buffer (1% SDS and 
0.1 M NaHCO3) and incubated for 15 min at RT. Finally, in 
each sample, we added NaCl to 0.2 M and incubated them 
at 65 °C ON. The next day, the Proteinase K solution (0.5 M 
EDTA, 1 M Tris HCl pH 6.8, PK 0.025 µg/ml) had been 
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added to each sample and incubated and stirred for 1 h at 
45 °C.

DNA extraction

Each sample was treated with an equal volume of phe-
nol–chloroform-isoamyl alcohol (Thermo Fisher Scientific) 
and centrifuged at 13,000 rpm for 10 min at 4 °C. Sodium 
acetate (3 M, pH 5.2), glycogen (Thermo Fisher Scientific) 
(100 µg/µl), and EtOH 100% were added to the supernatant, 
and it has been left to precipitate ON at − 80 °C. Then it was 
centrifuged at 13,000 rpm for 40 min at 4 °C. The pellet was 
washed with EtOH 75% and, after rapid centrifugation, dried 
at 50 °C for 3 min and resuspended with dH2O at 50 °C for 
5 min. The DNA obtained was analyzed by qPCR. The prim-
ers are listed in Table S2.

Statistical analysis

Statistical analysis was performed with GraphPad Prism 9 
for Macintosh (GraphPad Software, San Diego, CA). Data 
were expressed as mean ± SD or mean ± SEM, as detailed 
in the figure captions.

Artwork

The artwork was done with Adobe Photoshop and Illustra-
tor 2022.
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