

Minimally invasive *versus* open pancreatic surgery: meta-analysis of randomized clinical trials

Matthias Pfister^{1,2}, Pascal Probst^{1,*}, Philip C. Müller², Pia Antony¹, Rosa Klotz³ D, Eva Kalkum³, Daniela Merz³, Pietro Renzulli⁴, Fabian Hauswirth⁴ and Markus K. Muller^{1,4}

This paper was presented at the BJS session of the 109th Annual Swiss Congress of Surgery, June 2022, Bern, Switzerland (citation ID: znac178.005).

Abstract

Background: Widespread implementation of the minimally invasive technique in pancreatic surgery has proven to be challenging. The aim of this study was to compare the perioperative outcomes of minimally invasive (laparoscopic and robotic) pancreatic surgery with open pancreatic surgery using data obtained from RCTs.

Methods: A literature search was done using Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Web of Science; all available RCTs comparing minimally invasive pancreatic surgery and open pancreatic surgery in adults requiring elective distal pancreatectomy or partial pancreatoduodenectomy were included. Outcomes were mortality rate, general and pancreatic surgery specific morbidity rate, and length of hospital stay.

Results: Six RCTs with 984 patients were included; 99.0 per cent (486) of minimally invasive procedures were performed laparoscopically and 1.0 per cent (five) robotically. In minimally invasive pancreatic surgery, length of hospital stay (-1.3 days, -2 to -0.5, P=0.001) and intraoperative blood loss (-137 ml, -182 to -92, P<0.001) were reduced. In the subgroup analysis, reduction in length of hospital stay was only present for minimally invasive distal pancreatectomy (-2 days, -2.3 to -1.7, P<0.001). A minimally invasive approach showed reductions in surgical site infections (OR 0.4, 0.1 to 0.96, P=0.040) and intraoperative blood loss (-131 ml, -173 to -89, P<0.001) with a 75 min longer duration of surgery (42 to 108 min, P<0.001) only in partial pancreateduodenectomy. No significant differences were found with regards to mortality rate and postoperative complications.

Conclusion: This meta-analysis presents level 1 evidence of reduced length of hospital stay and intraoperative blood loss in minimally invasive pancreatic surgery compared with open pancreatic surgery. Morbidity rate and mortality rate were comparable, but longer duration of surgery in minimally invasive partial pancreatoduodenectomy hints that this technique in partial pancreatoduodenectomy is technically more challenging than in distal pancreatectomy.

Introduction

Beginning with the first laparoscopic appendectomy and cholecystectomy performed in the 1980s, the minimally invasive technique has become increasingly common in abdominal surgery over the past decades. Today, the laparoscopic approach represents the standard of care in many basic surgical procedures^{1,2}. Recognizing the advantages of minimally invasive surgery, such as reduced postoperative pain, reduction in length of hospital stay (LOS), and faster return to daily activities, the indications for the laparoscopic approach have extended to increasingly complex procedures. Meanwhile, enhanced recovery after surgery protocols broadly incorporated laparoscopic technique as an essential part in bariatric, colorectal and upper gastrointestinal surgery^{3–5} and focus of research has shifted to the implementation of robotic surgery

However, widespread implementation of the laparoscopic and robotic technique in pancreatic surgery has proven to be more challenging. Despite considerable improvements in operative techniques and perioperative care, the rate of postoperative complications and subsequent impairment in patients' quality of life remain high in open pancreatic surgery. For increased comparability of postoperative results and improved complication monitoring, several attempts to define benchmark outcomes have been made. The benchmark for mortality rate is reported as 2 per cent for partial pancreatoduodenectomy (PD) and less than 1 per cent for distal pancreatectomy (DP) by the Evidence Map of Pancreatic Surgery⁶, with an overall complication rate of 53 per cent for PD and 59 per cent for DP. The benefit of a minimally invasive approach in pancreatic surgery remains unclear; however, an increasing amount of high-level evidence in the form of RCTs

¹Department of Surgery, Cantonal Hospital Thurgau, Frauenfeld, Switzerland

²Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland

³The Study Centre of the German Surgical Society (SDGC), University of Heidelberg, Heidelberg, Germany

⁴Department of Surgery, Cantonal Hospital Thurgau, Münsterlingen, Switzerland

^{*}Correspondence to: Pascal Probst, Department of Surgery, Cantonal Hospital Thurgau, Pfaffenholzstrasse 4, 8501 Frauenfeld, Switzerland (e-mail: pascal.probst@stgag.ch)

comparing laparoscopic with open pancreatic resection is available.

The aim of this systematic review and meta-analysis was to compare the perioperative outcomes of minimally invasive (laparoscopic and robotic) pancreatic surgery with open pancreatic surgery using data obtained from RCTs only. Furthermore, subgroup analysis of open versus minimally invasive PD and DP was performed.

Methods

This systematic review and meta-analysis was conducted according to an a priori-developed review protocol predefined by Probst et al. and is in line with the PRISMA statement Study selection, data extraction, and critical appraisal were performed according to Evidence Map of Pancreatic Surgery protocols. A detailed methodological description has been published by Probst et al.^{6,7}.

Systematic literature search

A systematic literature search was done using Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (via PubMed), and Web of Science for all RCTs on pancreatic surgery. The detailed search strategy of Probst et al.7 was applied and is displayed in Table S1. The last database search was performed on 24 April 2022. No date or language restrictions were applied.

Study selection

RCTs comparing minimally invasive (laparoscopic or robotic) versus open pancreatic resection for benign, premalignant, or malignant pancreatic disease that met the following PICOS criteria were considered eligible for inclusion: P (patients) patients over 18 years of age with benign, premalignant, or malignant disease, who required elective PD or DP; I (intervention) - minimally invasive (laparoscopic or robotic) PD or DP; C (control) - open PD or DP; O (outcome) - predefined outcome parameters as described in the 'Data extraction' section; and S (study design) - RCTs only.

Study selection was performed according to the recommendations of The Cochrane Collaboration⁹. Further, the World Health Organization trial registry was systematically searched for ongoing RCTs and unpublished terminated RCTs, which were regularly incorporated in the analysis as results became available.

Data extraction

The screening of titles, abstracts, and full texts was performed by two independent reviewers. Disagreements were resolved by consensus or a third party. Outcomes of interest were mortality rate, complications greater than or equal to grade III according to Clavien-Dindo classification¹¹, postoperative pancreatic fistula (POPF)¹², post-pancreatectomy haemorrhage (PPH)¹³, delayed gastric emptying (DGE)14, bile leakage15, surgical site infection (SSI), reoperations, readmissions, R0 resection, lymph node yield (LNY), and LOS. Safety outcomes were examined 90 days after surgery. Definitions of the International Study Group of Pancreatic Surgery for pancreatic surgery specific complications were applied.

Critical appraisal

The assessment of methodological quality of included trials was done according to The Cochrane Collaboration tool for assessing risk of bias 2.09. In summary, five different domains were

assessed for all types of bias that are currently understood: bias arising from the randomization process; bias due to deviations from intended interventions; bias due to missing outcome data; bias in measurement of the outcome; and bias in selection of the reported result.

Each domain was assigned one of three levels of risk of bias ('low-risk', 'some concern', and 'high-risk'), determined by an algorithm based on answers to signalling questions. In conclusion, an overall risk-of-bias assessment was achieved. For assessment of certainty in the body of evidence, the GRADE approach was used16.

Statistical analysis

Data pooling and statistical analysis were performed using review manager software (Review Manager (RevMan) (computer program), Version 5.4, The Cochrane Collaboration, 2020). All categorical data were analysed using the Mantel-Haenszel model and are presented as odds ratio (OR) and 95 per cent c.i. For all continuous data, the mean difference (MD) and 95 per cent c.i. were calculated using the inverse variance model. Non-normally distributed data were converted to mean and standard deviation (s.d.) according to Hozo et al. 17. Heterogeneity among trials was assessed using the I² test and random-effects model was used. All reported P-values are two-sided.

Results

Study selection

In a systematic literature search, a total of 32 388 studies were found and screened for eligibility. After title, abstract, and full-text screening, six RCTs were included for further analysis 18-23. Reasons for exclusion included wrong study type, wrong intervention, and wrong organ investigated. Two studies were excluded due to data duplication^{24,25}. The flow chart in Fig. 1 depicts the process of study selection according to PRISMA^{6,7}. An overview of study characteristics is displayed in

Qualitative analysis—bias

An overview of risk-of-bias assessment according to bias domains and overall assessment is displayed in Fig. 2. None of the studies was considered at high overall risk of bias. In three of six studies the overall risk of bias was considered of some concern, whereas three showed a low overall risk of bias. 'Deviations from intended intervention' and 'outcome measurement' represented the main sources of bias and received an assessment of some concern in three out of six studies. In one study²⁵, the randomization process revealed some concern for bias.

Quantitative analysis

A summary of quantitative outcomes is shown in Table 2. A total of 166 patients for DP (80 minimally invasive pancreatic surgery versus 86 open pancreatic surgery) in two RCTs and 818 patients for PD (411 minimally invasive pancreatic surgery versus 407 open pancreatic surgery) in four RCTs were analysed.

Intraoperative outcomes

Intraoperative blood loss was decreased by 137 ml (-182 to -92, P < 0.001, $I^2 = 96$ per cent, GRADE: low) in minimally invasive surgery. Duration of surgery increased in minimally invasive

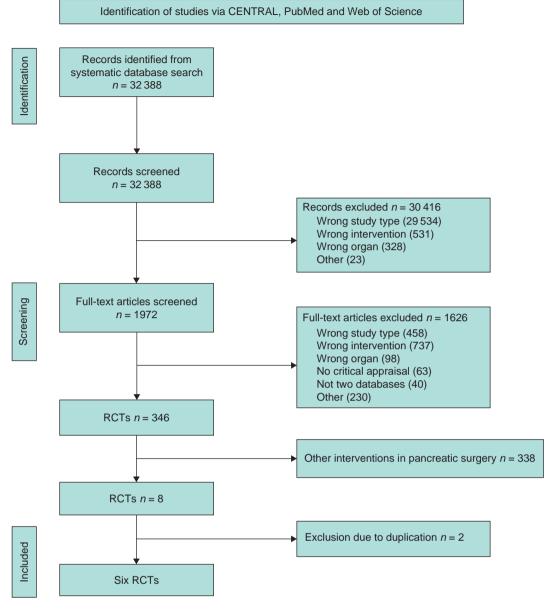


Fig. 1 PRISMA flow chart

pancreatic surgery by 54 min (32 to 76, P < 0.001, $I^2 = 98$ per cent, GRADE: low) compared with open pancreatic surgery.

Postoperative outcomes

An overall 90-day mortality rate of 2.6 per cent (13) for minimally invasive pancreatic surgery and 2.4 per cent (12) for open pancreatic surgery without a significant difference between the two groups was reported (OR (95 per cent c.i.) 0.94 (0.34 to 2.56), P = 0.900). Neither overall nor pancreatic surgery specific complications differed between the two groups. The incidence of complications of greater than or equal to grade III according to the Clavien-Dindo classification was 32.8 per cent (161) in the minimally invasive group and 26.8 per cent (132) in the open group (OR (95 per cent c.i.) 1.15 (0.55 to 2.39), P = 0.710). Overall, readmissions and reoperations were necessary in 9.0 per cent (89; minimally invasive pancreatic surgery 9.4 per cent, 46; and open pancreatic surgery 8.7 per cent, 43) and 5.2 per cent (48; minimally invasive pancreatic surgery 5.4 per cent, 25; and open pancreatic surgery 5.0 per cent, 23) of patients respectively. No significant difference between minimally invasive pancreatic surgery and open pancreatic surgery was seen (OR (95 per cent c.i.) 1.11 (0.70 to 1.77) (P = 0.660) and OR (95 per cent c.i.) 0.93 (0.30 to 2.87) (P = 0.890) respectively). Meta-analysis showed a reduction in LOS of 1.3 days (-2 to -0.5, P < 0.001) in the minimally invasive group compared with the open group.

Oncologic outcomes

Surgical oncologic outcomes did not differ between the two groups. R0 resection was achieved in 91.2 per cent (392) in the minimally invasive pancreatic surgery group and 89.7 per cent (374) in the open pancreatic surgery group (OR (95 per cent c.i.) 1.44 (0.85 to 2.45), P = 0.180, $I^2 = 0$ per cent, GRADE: low); no difference in LNY was seen (MD (95 per cent c.i.) 0.0 (-2 to 1), P = 0.690, $I^2 = 95$ per cent, GRADE: low). Overall, the mean (s.d.) number of lymph nodes resected was 13 (3) in the minimally

Table 1 Study characteristics

First author	Year published	Country	Design	Primary endpoint	Sample size	Method of analysis	Centre experience	Surgeon experience
DP								
Björnsson	2020	Sweden	RCT	Length of postoperative hospital stay	58	ITT	ns	≥37 lap. DP
de Rooij	2019	Netherlands	RCT	Time to functional recovery	108	ITT	≥20 PDs/year	≥50 advanced MI procedures ≥20 DP (MI or open) ≥5 MI DP
PD								
Palanivelu	2017	India	RCT	Length of hospital stay	64	ITT	≥40 PDs/year	≥25 open PD ≥25 lap. PD
Poves	2018	Spain	RCT	Length of hospital stay	61	ITT	Expert surgeon	Expert surgeon
van Hilst	2019	Netherlands	RCT	Time to functional recovery	99	ITT	≥20 PDs/year (of which ≥10 lap.)	≥50 advanced lap. procedures ≥50 PD (lap. or open) ≥20 lap. PD
Wang	2021	China	RCT	Length of postoperative stay	594	mITT	≥50 PDs/year (of which ≥20 lap.)	≥104 lap. PD ≥104 open PD

DP, distal pancreatectomy; ITT, intention to treat; lap., laparoscopic; PD, partial pancreateduodenectomy; MI, minimally invasive; mITT, modified intention to treat; ns, not specified.

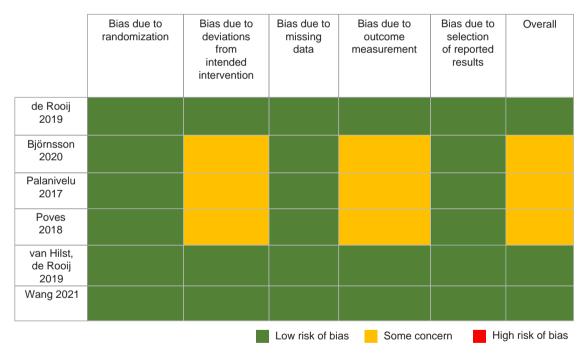
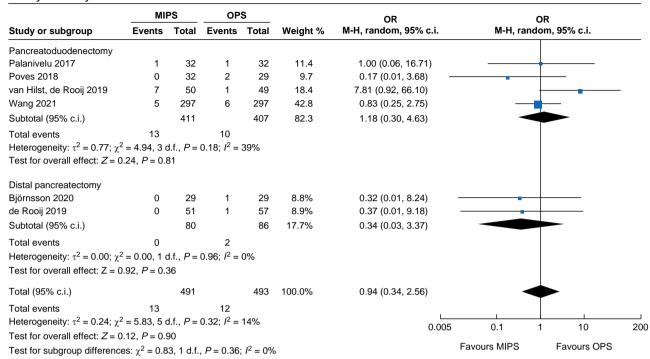


Fig. 2 Risk-of-bias assessment

invasive pancreatic surgery group and 14 (4) in the open pancreatic surgery group.

Subgroup analysis

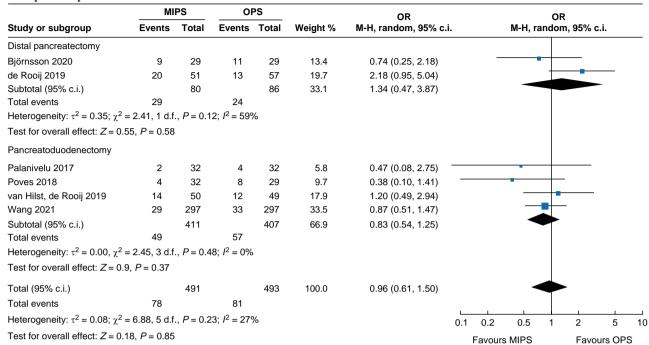

An overview of the main outcomes and procedural subgroup analysis is shown in *Table 3* and *Table 4*. In the subgroup analysis, reduction in LOS was only present in minimally invasive DP (–2 days, –2.3 to –1.7, P < 0.01, $I^2 = 0$ per cent, GRADE: low). A minimally invasive approach showed reductions in SSI (OR 0.4 (0.1 to 0.96), P = 0.04, $I^2 = 0$ per cent, GRADE: low) and intraoperative blood loss (–131 ml, –173 to –89, P < 0.01, $I^2 = 93$ per cent, GRADE:

low) only in PD. However, the duration of surgery was about 75 min longer in minimally invasive PD (42 to 108 min, P < 0.01, $I^2 = 99$ per cent, GRADE: low), but not in DP. Analysis showed no further significant differences between subgroups with regards to mortality rate, general and pancreatic surgery specific complications, and intraoperative and oncologic outcomes.

Further subgroup analysis was performed stratifying for studies assessed with a low risk of bias and some concern for bias. In *Table 5*, detailed results after risk-of-bias stratification are displayed. A separate analysis of studies with a low risk of bias showed no differences between minimally invasive

Table 2 Quantitative outcomes

90-day mortality rate



Certainty of evidence: low

Clavien-Dindo >grade III

	MIF	rs	OP	s		OR			OR			
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c.i.		M-H, rar		95% c.i.		
Distal pancreatectomy												
Björnsson 2020	4	29	8	29	13.5	0.42 (0.11, 1.59)		-		-		
de Rooij 2019	39	51	21	57	18.5	5.57 (2.40, 12.93)						_
Subtotal (95% c.i.)		80		86	32.0	1.61 (0.13, 20.37)						
Total events	43		29									
Heterogeneity: $\tau^2 = 3.03$; χ^2	2 = 10.36, 1	d.f., P=	0.001; <i>I</i> ² =	= 90%								
Test for overall effect: $Z = 0$	0.37, <i>P</i> = 0.7	' 1										
Pancreatoduodenectomy												
Palanivelu 2017	3	32	4	32	11.4	0.72 (0.15, 3.53)			•	<u> </u>		
Poves 2018	5	32	11	29	14.6	0.30 (0.09, 1.02)	-	-	_			
van Hilst, de Rooij 2019	25	50	19	49	18.9	1.58 (0.71, 3.51)			\neg			
Wang 2021	85	297	69	297	23.0	1.32 (0.92, 1.92)						
Subtotal (95% c.i.)		411		407	68.0	1.01 (0.55, 1.86)		~	lacksquare	-		
Total events	118		103									
Heterogeneity: $\tau^2 = 0.19$; χ^2	$^2 = 6.06, 3 d$	I.f., $P = 0$	$1.11; I^2 = 5$	51%								
Test for overall effect: $Z = 0$	0.03, P = 0.9	8										
Total (95% c.i.)		491		493	100.0	1.15 (0.55, 2.39)		-		>		
Total events	161		132									
Heterogeneity: $\tau^2 = 0.57$; χ^2	2 = 20.41, 5	d.f., P=	0.001; <i>I</i> ² :	= 75%		0.05		0.2	1	5	-	 20
Test for overall effect: $Z = 0$	0.37, <i>P</i> = 0.7	'1				0.05)	0.2	1	5)	20
Test for subgroup difference	es: $\chi^2 = 0.12$	2, 1 d.f.,	P = 0.72;	$I^2 = 0\%$			F	Favours MIPS		Favours	OPS	
				Ce	ertainty of e	vidence: low						

Posto	perative	pancreatic	fistula

Test for subgroup differences: $\chi^2 = 0.70$, 1 d.f., P = 0.40; $I^2 = 0\%$

Certainty of evidence: moderate

Post-pancreatectomy haemorrhage

	MII	PS	OF	PS .		OR		OR		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c.i.	М-Н,	random, 9	5% c.i.	
Distal pancreatectomy										
Björnsson 2020	1	29	0	29	1.6	3.11 (0.12, 79.43)	-			
de Rooij 2019	2	51	2	57	4.3	1.12 (0.15, 8.27)				
Subtotal (95% c.i.)		80		86	5.9	1.49 (0.27, 8.13)	-	$\overline{}$		
Total events	3		2							
Heterogeneity: $\tau^2 = 0.00$; χ^2	= 0.28, 1 d.	f., $P = 0$.	.60; $I^2 = 0^\circ$	%						
Test for overall effect: $Z = 0$.	.46, <i>P</i> = 0.6	5								
Pancreatoduodenectomy										
Palanivelu 2017	3	32	4	32	6.8	0.72 (0.15, 3.53)		-	-	
Poves 2018	3	32	6	29	7.7	0.40 (0.09, 1.76)				
van Hilst, de Rooij 2019	5	50	7	49	11.4	0.67 (0.20, 2.26)				
Wang 2021	37	297	33	297	68.3	1.14 (0.69, 1.88)				
Subtotal (95% c.i.)		411		407	94.1	0.95 (0.62, 1.45)				
Total events	48		50							
Heterogeneity: $\tau^2 = 0.00$; χ^2	= 2.26, 3 d.	f., $P = 0$.	.52; $I^2 = 0^\circ$	%						
Test for overall effect: $Z = 0$.	.25, $P = 0.8$	0								
Total (95% c.i.)		491		493	100.0	0.97 (0.64, 1.47)		*		
Total events	51		52							
Heterogeneity: $\tau^2 = 0.00$; χ^2	= 2.79, 5 d.	f., <i>P</i> = 0.	.73; $I^2 = 0^\circ$	%		0.02	2 0.1	1	10	 50
Test for overall effect: $Z = 0$.	.13, <i>P</i> = 0.9	0					E MIDO		F 0F	
Test for subgroup difference	es: $\chi^2 = 0.25$	i, 1 d.f., <i>l</i>	P = 0.62; <i>I</i>	$^{2} = 0\%$			Favours MIPS		Favours OF	' S
				Certai	nty of eviden	ice: moderate				

Bile leakage

	MIF	PS	OF	PS		OR			OF	,	
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c.i.		M-		n, 95% c.i.	
Distal pancreatectomy											
Björnsson 2020	0	0	0	0		Not estimable					
de Rooij 2019	0	0	0	0		Not estimable					
Subtotal (95% c.i.)		0		0		Not estimable					
Total events	0		0								
Heterogeneity: Not applicab	ole										
Test for overall effect: Not a	pplicable										
Pancreatoduodenectomy											
Palanivelu 2017	3	32	2	32	5.1	1.55 (0.24, 9.97)			-		_
Poves 2018	1	32	3	29	3.3	0.28 (0.03, 2.85)		•			
van Hilst, de Rooij 2019	6	50	5	49	11.2	1.20 (0.34, 4.22)		_			
Wang 2021	39	297	42	297	80.4	0.92 (0.57, 1.47)					
Subtotal (95% c.i.)		411		407	100.0	0.93 (0.61, 1.42)					
Total events	49		52								
Heterogeneity: $\tau^2 = 0.00$; χ^2	2 = 1.48, 3 d	.f., P = 0.	.69; $I^2 = 0$	%							
Test for overall effect: $Z = 0$.32, P = 0.75	5									
Total (95% c.i.)		411		407	100.0	0.93 (0.61, 1.42)					
Total events	49		52								
Heterogeneity: $\tau^2 = 0.00$; χ^2	2 = 1.48, 3 d.	f., <i>P</i> = 0.0	69; $I^2 = 0\%$, 0			0.05	0.2	1	 5	 20
Test for overall effect: $Z = 0$.32, P = 0.75	5							•		
Test for subgroup difference	es: Not appli	cable					Fa	vours MIP	5	Favours	OPS

Certainty of evidence: moderate

Delayed gastric emptying

	MIP	S	OP	S		OR		OR		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c.i.	М-Н,	random, 95	% c.i.	
Distal pancreatectomy										
Björnsson 2020	1	29	5	29	6.2	0.17 (0.02, 1.57)	•			
de Rooij 2019	3	51	1	57	5.8	3.50 (0.35, 34.76)	-		•	_
Subtotal (95% c.i.)		80		86	12.1	0.76 (0.04, 14.69)				
Total events	4		6							
Heterogeneity: $\tau^2 = 3.23$; χ^2	2 = 3.44, 1 d	l.f., <i>P</i> = 0	0.06; $I^2 = 7$	1%						
Test for overall effect: $Z = 0$.18, $I^2 = 0.8$	6								
Pancreatoduodenectomy										
Palanivelu 2017	5	32	7	32	14.8	0.66 (0.19, 2.36)		-		
Poves 2018	3	32	7	29	12.1	0.33 (0.08, 1.40)				
van Hilst, de Rooij 2019	17	50	10	49	22.0	2.01 (0.81, 4.98)		+	_	
Wang 2021	90	297	96	297	39.1	0.91 (0.64, 1.29)		+		
Subtotal (95% c.i.)		411		407	87.9	0.93 (0.53, 1.63)				
Total events	115		120							
Heterogeneity: $\tau^2 = 0.14$; χ^2	= 5.04, 3 d	l.f., <i>P</i> = 0	$1.17; I^2 = 4$	0%						
Test for overall effect: $Z = 0$.27, P = 0.7	9								
Total (95% c.i.)		491		493	100.0	0.89 (0.49, 1.61)				
Total events	119		126							
Heterogeneity: $\tau^2 = 0.20$; χ^2	= 8.56, 5 d.	f., <i>P</i> = 0	.13; $I^2 = 42$	2%		0.02	0.1	1	10	 50
Test for overall effect: $Z = 0$.39, <i>P</i> = 0.7	0					avours MIPS		Favours OP	99
Test for subgroup difference	es: $\chi^2 = 0.02$	2, 1 d.f.,	P = 0.90; I	$^{2} = 0\%$		1.	avouis MIFS		i avouis Or	5
3	,,	, ,	,		ainty of evid	ence: low				

Surgical site infection

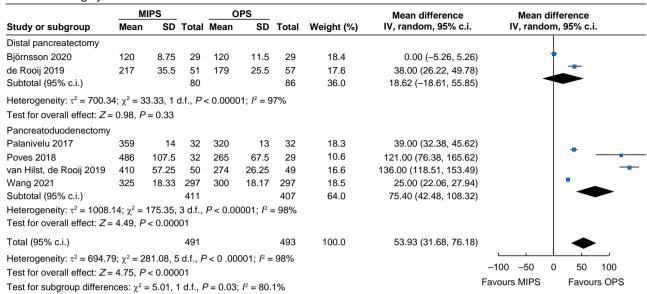
	MIF	rs	OP	s		OR			OR		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% o	c.i.	M-H, rar		5% c.i.	
Distal pancreatectomy											
Björnsson 2020	0	0	0	0		Not estimable					
de Rooij 2019	2	51	3	57	23.8	0.73 (0.12, 4.58)		-	•		
Subtotal (95% c.i.)		51		57	23.8	0.73 (0.12, 4.58)					
Total events	2		3								
Heterogeneity: Not applica	able										
Test for overall effect: Z=	0.33, P = 0).74									
Pancreatoduodenectomy											
Palanivelu 2017	4	32	8	32	45.9	0.43 (0.11, 1.60)			\top		
Poves 2018	0	0	0	0		Not estimable		_			
van Hilst, de Rooij 2019	2	50	7	49	30.2	0.25 (0.05, 1.27)		-			
Wang 2021	0	0	0	0		Not estimable					
Subtotal (95% c.i.)		82		81	76.2	0.35 (0.12, 0.96)			_		
Total events	6		15								
Heterogeneity: $\tau^2 = 0.00$;	$\chi^2 = 0.26, 1$	d.f., P=	: 0.61; <i>I</i> ² =	0%							
Test for overall effect: $Z =$	2.03, P = 0	0.04									
Total (95% c.i.)		133		138	100.0	0.41 (0.17, 1.01)			_		
Total events	8		18								
Heterogeneity: $\tau^2 = 0.00$;	$\chi^2 = 0.75, 2$	d.f., P=	0.69; $I^2 =$	0%		(0.05	0.2	1	5	20
Test for overall effect: Z=	1.93, <i>P</i> = 0	0.05						Favoure MIDC		Favoura OD	c
Test for subgroup differen	ices: $\chi^2 = 0$.50, 1 d.f	., P = 0.48	$I^2 = 0\%$				Favours MIPS		Favours OP	5
.											

Certainty of evidence: low

Reoperation

	MII	PS	OF	rs		OR			OR		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% o	c.i.	М-Н,	random,	95% c.i.	
Distal pancreatectomy											
Björnsson 2020	0	0	0	0		Not estimable					
de Rooij 2019	1	51	3	57	15.1	0.36 [0.04, 3.58)					
Subtotal (95% c.i.)		51		57	15.1	0.36 [0.04, 3.58)					
Total events	1		3								
Heterogeneity: Not applicable	le										
Test for overall effect: $Z = 0$.	87, <i>P</i> = 0.3	8									
Pancreatoduodenectomy											
Palanivelu 2017	1	32	1	32	11.5	1.00 (0.06, 16.71)			+		
Poves 2018	1	32	5	29	15.8	0.15 (0.02, 1.41)		•			
van Hilst, de Rooij 2019	12	50	3	49	25.6	4.84 (1.27, 18.42)			-		
Wang 2021	10	297	11	297	32.1	0.91 (0.38, 2.17)				_	
Subtotal (95% c.i.)		411		407	84.9	1.08 (0.29, 3.97)		-			
Total events	24		20								
Heterogeneity: τ^2 = 1.02; χ^2	= 7.89, 3 d.	f., $P = 0$.05; $I^2 = 6$	2%							
Test for overall effect: $Z = 0$.	11, <i>P</i> = 0.9	1									
Total (95% c.i.)		462		464	100.0	0.93 (0.30, 2.87)		-		>	
Total events	25		23								
Heterogeneity: τ^2 = 0.84; χ^2	= 8.84, 4 d.	f., $P = 0$.07; $I^2 = 5$	5%			0.02	0.1	1	10	 5
Test for overall effect: $Z = 0$.	13, <i>P</i> = 0.8	9							_	F 05	
Test for subgroup difference	s: $\chi^2 = 0.66$	s, 1 d.f.,	$I^2 = 0.42$,	$I^2 = 0\%$				Favours MIPS	5	Favours OF	3
					rtainty of ev	ridence: low					

Readmission

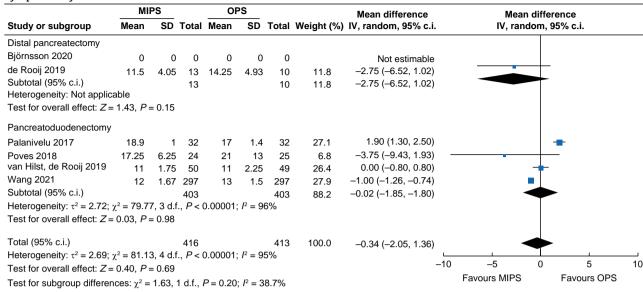

	MII	PS	OF	rs		OR		OR	
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c.i	. M-H, ra	andom, 95% c.i	<u>-</u>
Distal pancreatectomy									
Björnsson 2020	4	29	6	29	11.2	0.61 (0.15, 2.45)	-		
de Rooij 2019	15	51	14	57	29.7	1.28 (0.55, 3.00)			
Subtotal (95% c.i.)		80		86	40.9	1.05 (0.51, 2.16)	•		
Total events	19		20						
Heterogeneity: $\tau^2 = 0.00$; χ^2	$^2 = 0.78, 1 d$.f., P < 0	.38; $I^2 = 0$	%					
Test for overall effect: $Z = 0$	0.12, <i>P</i> = 0.9	00							
Pancreatoduodenectomy									
Palanivelu 2017	2	32	3	32	6.2	0.64 (0.10, 4.14)	-		
Poves 2018	7	32	4	29	11.9	1.75 (0.45, 6.74)		-	_
van Hilst, de Rooij 2019	8	50	10	49	20.5	0.74 (0.27, 2.07)		 	
Wang 2021	10	297	6	297	20.5	1.69 (0.61, 4.71)	_	 	
Subtotal (95% c.i.)		411		407	59.1	1.16 (0.63, 2.12)	•		
Total events	27		23						
Heterogeneity: $\tau^2 = 0.00$; χ^2	$^2 = 1.98, 3 d$.f., P < 0	.58; $I^2 = 0$	%					
Test for overall effect: $Z = 0$	0.47, P = 0.6	64							
Total (95% c.i.)		491		493	100.0	1.11 (0.70, 1.77)	-		
Total events	46		43						
Heterogeneity: $\tau^2 = 0.00$; χ^2	2 = 2.81, 5 d	.f., P < 0	.73; $I^2 = 0$	%		0.05	0.2	1 !	5 2
Test for overall effect: $Z = 0$).44, <i>P</i> = 0.6	6				0.05	0.2	1) 2
Test for subgroup difference	•		D = 0.83·	12 _ 00/			Favours MIPS	Favou	s OPS

Certainty of evidence: low

Blood loss

	М	IIPS		C	PS			Mean difference	Mean diffe	erence
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight (%		IV, random,	
Distal pancreatectomy										
Björnsson 2020	50	31.25	29	100	50	29	21.0	-50.00 (-71.46, -28.54)	-	
de Rooij 2019	150	75	51	400	143.75	57	18.5	-250.00 (-292.62, -207.38)	-	
Subtotal (95% c.i.)			80			86	39.5	-149.12 (-345.11, 46.87) ⁻		-
Heterogeneity: $\tau^2 = 19703$	3.65; χ^2	= 67.49	, 1 d.f.,	P < 0.0	00001; <i>l</i> ²	² = 99%	, 0			
Test for overall effect: Z=	1.49, <i>F</i>	P = 0.14								
Pancreatoduodenectomy										
Palanivelu 2017	250	22	32	401	46	32	21.4	-151.00 (-168.67, -133.33)	-	
Poves 2018	0	0	0	0	0	0		Not estimable		
van Hilst, de Rooij 2019	300	59.5	50	450	175	49	17.1	-150.00 (-201.70, -98.30)		
Wang 2021	200	50	297	300	38.33	297	22.0	-100.00 (-107.17, -92.83)	•	
Subtotal (95% c.i.)			379			378	60.5	-131.02 (-173.29, -88.75)		
Heterogeneity: τ^2 = 1188. Test for overall effect: Z =				P < 0.00	0001; <i>I</i> ²	= 93%				
Total (95% c.i.)			459			464	100.0	-136.64 (-181.77, -91.51)	•	
Heterogeneity: $\tau^2 = 2398$.	.96; χ ² =	: 100.41	, 4 d.f.,	P < 0.0	00001; <i>l</i> ²	² = 96%	, 0		-200 -100 0	100 200
Test for overall effect: $Z =$	5.93, <i>F</i>	P = 0.000	001							
Test for subgroup differer	nces: τ ²	= 0.03,	1 d.f.,	P = 0.8	6; $I^2 = 0$	%			Favours MIPS	Favours OPS
· .						Certair	nty of evide	ence: low		

Duration of surgery


Certainty of evidence: low

R0 resection

	MI	PS	OF	'S		OR		OR		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c.i.	M-H	l, randon	n, 95% c.i.	
Distal pancreatectomy										
Björnsson 2020	4	6	0	0		Not estimable				
de Rooij 2019	7	13	4	10	10.1	1.75 (0.33, 9.30)				
Subtotal (95% c.i.)		19		10	10.1	1.75 (0.33, 9.30)				
Total events	11		4							
Heterogeneity: Not applicab	ole									
Test for overall effect: $Z = 0$	0.66, P = 0.5	1								
Pancreatoduodenectomy										
Palanivelu 2017	31	32	30	32	4.7	2.07 (0.18, 24.01)				
Poves 2018	19	32	15	29	27.4	1.36 (0.49, 3.76)	_			
van Hilst, de Rooij 2019	41	50	37	49	29.8	1.48 (0.56, 3.90)	_			
Wang 2021	290	297	288	297	28.1	1.29 (0.48, 3.52)			-	
Subtotal (95% c.i.)		411		407	89.9	1.41 (0.80, 2.46)				
Total events	381		370							
Heterogeneity: $\tau^2 = 0.00$; χ^2	= 0.13, 3 d.	f., P = 0.9	99; $I^2 = 0\%$)						
Test for overall effect: $Z = 1$.20, $P = 0.23$	3								
Total (95% c.i.)		430		417	100.0	1.44 (0.85, 2.45)			•	
Total events	392		374							
Heterogeneity: τ^2 = 0.00; χ^2	= 0.19, 4 d.	f., <i>P</i> = 1.0	$00; I^2 = 0\%$)		0.05	0.2	1	5	20
Test for overall effect: $Z = 1$.35, P = 0.18	В				F	avours MIPS		Favours OP	S
Test for subgroup difference	es: $\chi^2 = 0.06$, 1 d.f., <i>F</i>	$P = 0.81; I^2$	= 0%		•	aroulo Mili O		i avouis oi	_
				Cert	ainty of evider	nce: low				

Table 2 (continued)

Certainty of evidence: low

Length of hospital stay

	MI	IPS		OF	PS			Mean difference		Mea	n diff	erence	
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight (%)	IV, random, 95% c.i.		IV, rar	ndom	, 95% c.i.	
Distal pancreatectomy													
Björnsson 2020	6	0.75	29	8	1	29	26.1	-2.00 (-2.45, -1.55)					
de Rooij 2019	6	0.75	51	8	1.5	57	26.2	-2.00 (-2.44, -1.56)					
Subtotal (95% c.i.)			80			86	52.3	-2.00 (-2.32, -1.68)			•		
Heterogeneity: $\tau^2 = 0.00$; χ^2	$^{2} = 0.00,$	1 d.f., F	P = 1.00	$I^2 = 0$	6								
Test for overall effect: $Z = \frac{1}{2}$	12.39, <i>P</i>	< 0.000	01										
Pancreatoduodenectomy													
Palanivelu 2017	7	11.75	32	13	6	32	2.9	-6.00 (-10.57, -1.43)			-		
Poves 2018	13.5	12.25	32	17	36	29	0.3	-3.50 (-17.27, 10.27)	-		-		
van Hilst, de Rooij 2019	11	3.25	50	10	3.25	49	16.7	1.00 (-0.28, 2,28)			-	-	
Wang 2021	15	1.67	297	16	1.33	297	27.7	-1.00 (-1.24, -0.76)					
Subtotal (95% c.i.)			411			407	47.7	-0.94 (-2.93, 1.04)		•			
Heterogeneity: $\tau^2 = 2.21$; χ^2	$^{2} = 13.89$, 3 d.f.,	P = 0.0	03; /2 =	78%								
Test for overall effect: $Z = 0$	0.93, <i>P</i> =	0.35											
Total (95% c.i.)			491			493	100.0	-1.34 (-2.16, -0.52)			•		
Heterogeneity: $\tau^2 = 0.61$; χ^2	² = 41.14	, 5 d.f.,	P < 0.0	0001; <i>I</i> ²	= 88	%		_	 -20	 	0	10	 2(
Test for overall effect: $Z = 3$	3.22, <i>P</i> =	0.001								Favours MIPS	3	Favours OPS	
Test for subgroup difference	es: χ² = '	1.06, 1	d.f., P=	0.30; /2	= 6.0)%				i avoais iviii o		1 410413 01 0	
						ertair	ntv of evide	ence: low					

MIPS, minimally invasive pancreatic surgery; OPS, open pancreatic surgery; OR, odds ratio.

pancreatic surgery and open pancreatic surgery regarding general and pancreatic surgery specific morbidity rate, as well as oncologic outcomes. Reduction in blood loss in minimally invasive pancreatic surgery compared with open pancreatic surgery could be confirmed in low-risk studies by a mean of -165 ml (-262 to -69, P<0.001, $I^2 = 96 \text{ per cent}$, GRADE: low), with longer operative time by a mean of 66 min (14 to 117, P= 0.010, GRADE: low). The reduction in LOS previously reported in the minimally invasive group compared with the open group could not be confirmed in the low-risk subgroup (-0.9 days, -1.9 to 0.2, P = 0.100, $I^2 = 92$ per cent, GRADE: low).

Ongoing trials

A total of 12 ongoing RCTs comparing minimally invasive with open PD and eight ongoing RCTs comparing minimally invasive

with open DP were found in a systematic search in the World Health Organization trial registry. An overview of trials and their expected termination is shown in Table 6.

Discussion

The present systematic review and meta-analysis of all currently available RCTs comparing minimally invasive (laparoscopic and robotic) and open pancreatic surgery showed no significant difference between the minimally invasive and open approaches regarding 90-day mortality rate, as well as general and pancreatic surgery specific morbidity rate. However, overall reductions in intraoperative blood loss and LOS using the minimally invasive approach were seen. On the other hand, a longer duration of surgery was reported for minimally invasive

Table 3 Subgroup analysis of categorical outcomes

Outcomes			PD				DP				Overall	
	n	MIPS	OPS	OR (95% c.i.)	n	MIPS	OPS	OR (95% c.i.)	n	MIPS	OPS	OR (95% c.i.)
Mortality rate	818	13 (3.2)	10 (2.5)	1.18 (0.30 to 4.63)	166	0 (0)	2 (2.3)	0.34 (0.03 to 3.37)	984	13 (2.6)	12 (2.4)	0.94 (0.34 to 2.56)
Clavien–Dindo ≥grade III	818	118 (28.7)	103 (25.3)	1.01 (0.55 to 1.86)	166	43 (53.8)	29 (33.7)	1.61 (0.13 to 20.37)	984	161 (32.8)	132 (26.8)	1.15 (0.55 to 2.39)
POPF	818	49 (11.9)	57 (14.0)	0.83 (0.54 to 1.25)	166	29 (36.3)	24 (27.9)	1.34 (0.47 to 3.87)	984	78 (15.9)	81 (16.4)	0.96 (0.61 to 1.50)
PPH	818	48 (11.7)	50 (12.3)	0.95 (0.62 to 1.45)	166	3 (3.8)	2 (2.3)	1.49 (0.27 to 8.13)	984	51 (10.4)	52 (10.5)	0.97 (0.64 to 1.47)
DGE	818	115 (27.9)	120 (29.5)	0.93 (0.53 to 1.63)	166	4 (5.0)	6 (7.0)	0.76 (0.04 to 14.69)	984	119 (24.2)	126 (25.6)	0.89 (0.49 to 1.61)
Bile leakage	818	49 (11.9)	52 (12.8)	0.93 (0.61 to 1.42)	ns	ns	ns	ns	818	49 (11.9)	52 (12.8)	0.93 (0.61 to 1.42)
SSI	163	6 (7.3)	15 (18.5)	0.35 (0.12 to 0.96)	108	2 (3.9)	3 (5.3)	0.73 (0.12 to 4.58)	271	8 (6)	18 (13.0)	0.41 (0.17 to 1.01)
Readmission	818	27 (6.6)	23 (5.7)	1.16 (0.63 to 2.12)	166	19 (23.8)	20 (23.3)	1.05 (0.51 to 2.16)	984	46 (9.4)	43 (8.7)	1.11 (0.70 to 1.77)
Reoperation	818	24 (5.8)	20 (4.9)	1.08 (0.29 to 3.97)	108	1 (2.0)	3 (5.3)	0.36 (0.04 to 3.58)	926	25 (5.4)	23 (5.0)	0.93 (0.30 to 2.87)
R0 resection	818	381 (92.7)	370 (90.9)	1.41 (0.80 to 2.46)	29	11 (57.9)	4 (40.0)	1.75 (0.33 to 9.30)	847	392 (91.2)	374 (89.7)	1.44 (0.85 to 2.45)

Values are n (%) unless otherwise indicated. PD, partial pancreatoduodenectomy; DP, distal pancreatectomy; MIPS, minimally invasive pancreatic surgery; OPS, open pancreatic surgery; OR, odds ratio; POPF, postoperative pancreatic fistula; PPH, post-pancreatectomy haemorrhage; DGE, delayed gastric emptying; SSI, surgical site infection; ns, not specified.

Table 4 Subgroup analysis of continuous outcomes

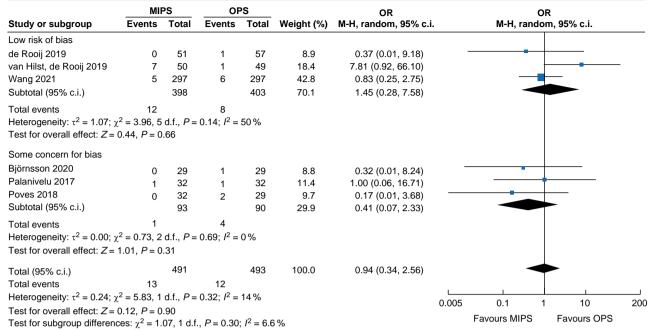
Outcomes		PD			DP		Overall			
	n	MD (95% c.i.)	P	n	MD (95% c.i.)	P	n	MD (95% c.i.)	P	
Duration of surgery (min) Blood loss (ml) LNY (n)	818 757 806	75 (42 to 108) -131 (-173 to -89) 0.0 (-2.0 to 2.0)	<0.001 <0.001 0.980	166 166 23	19 (-19 to 56) -149 (-345 to 47) -3 (-7 to 1)	0.330 0.140 0.150	984 923 829	54 (32 to 76) -137 (-182 to -92) 0.0 (-2 to 1)	<0.001 <0.001 0.20	
LOS (days)	818	-0.9 (-2.9 to 1.0)	0.610	166	-2.0 (-2.3 to -1.7)	< 0.001	984	-1.3 (-2.0 to -0.5)	< 0.001	

PD, partial pancreatoduodenectomy; DP, distal pancreatectomy; MD, mean difference; LNY, lymph node yield; LOS, length of hospital stay.

pancreatic surgery. Taking the subgroup analysis into account, decreased intraoperative blood loss, reduction in SSI, and longer duration of surgery were only present in PD. Similarly, reduction in LOS was reported only in DP, not PD. Apart from reduced LOS using the minimally invasive approach, these results were confirmed in a subgroup of studies with a low risk of bias.

None of the studies was considered to be at high overall risk of bias. Some concern for bias was present in the domains 'deviations from intended intervention' and 'outcome measurement' in half of the studies. In the other half of the studies, the overall risk of bias was considered low. After critical appraisal, the certainty of evidence of outcomes was only low to moderate.

In the past, safety concerns, especially regarding minimally invasive PD, have been expressed in line with the results of early observational studies^{26,27}. The highly complex surgical technique and consecutive long learning curves were regarded as presumable reasons²⁸. On the other hand, higher mortality rate in minimally invasive PD was considered the result of a surmountable learning curve with supposedly comparable safety outcomes after its completion²⁹. Meanwhile, centre volume and surgeon experience remain crucial for favourable postoperative safety and efficacy outcomes in high-risk and pancreatic surgery^{30–33}. In a study performed by Sharpe et al.²⁹ reporting data from a nationwide database in the USA comparing laparoscopic with open pancreatoduodenectomy, a more than two-fold increased risk of mortality rate was found for the laparoscopic approach compared with the open approach in centres performing fewer than ten laparoscopic PDs/2 years. In larger-volume centres (greater than or equal to ten laparoscopic PDs/2 years) no difference in 30-day mortality rate between the laparoscopic and open approaches was reported²⁹. All studies in this meta-analysis subjectively reported high levels of surgeon experience in pancreatic and minimally invasive surgery. The minimal number of laparoscopic DPs required was 37¹⁸ and five¹⁹.

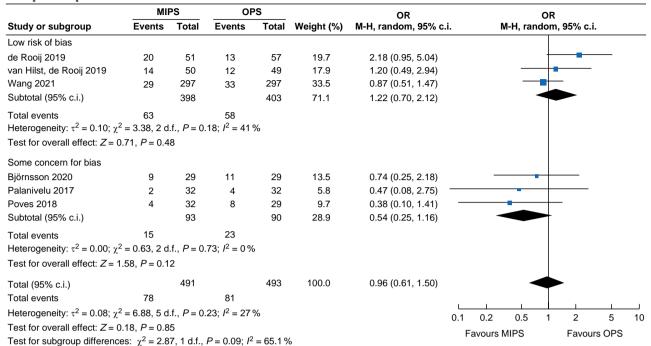

In PD, at least 25²⁰, 20²² and 104²³ minimally invasive procedures per participating surgeon were required before the start of the study. Further, several authors described standardized training programmes as eligibility criteria^{34,35}. A centre volume of at least 20-50 PDs annually was reported, with a minimum of 10-20 being done laparoscopically.

Whereas the importance of centre and surgeon volume is already undebated in successful open pancreatic surgery, its role in minimally invasive surgery appears to be at least as essential in achieving acceptable postoperative results²⁹. Further, data on the standardized assessment of a learning curve are still missing. An attempt to define median learning curves for minimally invasive pancreatic surgery was recently done in a systematic review by Fung et al., 36 reporting a median learning curve in DP of 17 (10-30) and 23.5 (7-40) cases for laparoscopic and robotic procedures respectively. The median learning curve for PD was reported to have been achieved at 30 (4-60) cases for the laparoscopic approach and 36.5 (20-80) cases for the robotic approach³⁶. Comparing surgeon experience reported in the included studies with extrapolated learning curves from the literature^{28,36}, it becomes evident that not all surgeons reached sufficient expertise in minimally invasive pancreatic surgery before the start of the investigation. Nevertheless, postoperative mortality rate and morbidity rate between minimally invasive and open pancreatic surgery seem to be comparable. Taking surrogate outcomes into account, a minimally invasive approach even seems to be beneficial compared with open surgery, with regard to intraoperative blood loss, SSI, and LOS. A word of caution is necessary with regards to intraoperative blood loss, as inconsistency between different evaluation methods has been reported in pancreatic surgery³⁷.

However, data on compelling benefits of a minimally invasive approach known from other fields of surgery, such as in general,

Table 5 Subgroup analysis of risk-of-bias stratification

90-day mortality rate



Certainty of evidence: low

Clavien-Dindo ≥3 grade III

	MII	PS	OF	PS		OR	OF	₹	
Study or subgroup	Events	Total	Events	Total	Weight %	M-H, random, 95% c.i.	M-H, randor	n, 95% c.i.	
Low risk of bias									
de Rooij 2019	39	51	21	57	18.5	5.57 (2.40, 12.93)		-	_
van Hilst, de Rooij 2019	25	50	19	49	18.9	1.58 (0.71, 3.51)	-		
Wang 2021	85	297	69	297	23.0	1.32 (0.92, 1.92)	+	-	
Subtotal (95% c.i.)		398		403	60.4	2.14 (0.94, 4.89)	+		
Total events	149		109						
Heterogeneity: $\tau^2 = 0.41$; $\tau^2 = 0.41$;	$\chi^2 = 9.41, 2$	d.f., P=	: 0.009; <i>I</i> ² :	= 79 %					
Test for overall effect: $Z =$	1.81, <i>P</i> = 0	0.07							
Some concern for bias									
Björnsson 2020	4	29	8	29	13.5	0.42 (0.11, 1.59)			
Palanivelu 2017	3	32	4	32	11.4	0.72 (0.15, 3.53)	-		
Poves 2018	5	32	11	29	14.6	0.30 (0.09, 1.02)	-		
Subtotal (95% c.i.)		93		90	39.6	0.42 (0.19, 0.91)			
Total events	12		23						
Heterogeneity: $\tau^2 = 0.00$;	$\chi^2 = 0.73, 2$	d.f., P=	: 0.69; <i>I</i> ² =	0%					
Test for overall effect: $Z =$	2.18, <i>P</i> = 0	0.03							
Total (95% c.i.)		491		493	100.0	1.15 (0.55, 2.39)			
Total events	161		132						
Heterogeneity: $\tau^2 = 0.57$;	$c^2 = 20.41$.	5 d.f P		= 75 %					—_
Test for overall effect: $Z =$	•		, .			0.05	0.2 1	5	20
Test for subgroup difference			., P = 0.00	5; $I^2 = 87$.4%		Favours MIPS	Favours OPS	
	/v	- ,	,		rtainty of ev	idence: low			

Postoperative pancreatic fistul	perative pancreatic	fistula
---------------------------------	---------------------	---------

Post-pancreatectomy haemorrhage

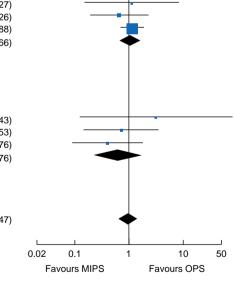
MIPS OPS OR OR Study or subgroup Events Total Events Total Weight (%) M-H, random, 95% c.i. M-H, random, 95% c.i. Low risk of bias de Rooii 2019 2 2 1.12 (0.15, 8.27) 51 57 4.3 van Hilst, de Rooij 2019 49 11.4 0.67 (0.20, 2.26) 5 50 7 Wang 2021 297 297 68.3 1.14 (0.69, 1.88) 37 33 83.9 1.06 (0.67, 1.66) Subtotal (95% c.i.) 398 403 44 42 Total events Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 0.63$, 2 d.f., P = 0.73; $I^2 = 0$ %

Certainty of evidence: moderate

Test for overall effect: Z = 0.24, P = 0.81

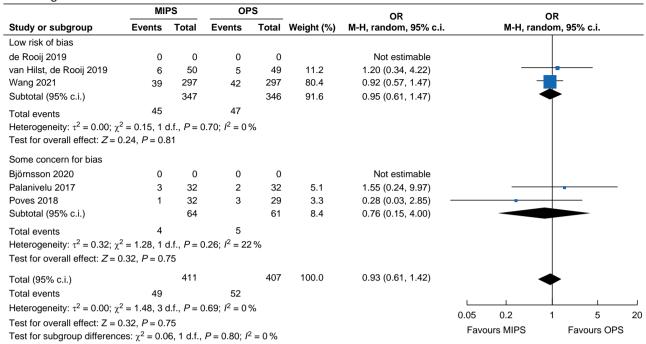
Some concern for bias Björnsson 2020 1 29 0 29 1.6 3.11 (0.12, 79.43) Palanivelu 2017 32 32 6.8 0.72 (0.15, 3.53) 3 4 Poves 2018 3 32 6 29 7.7 0.40 (0.09, 1.76) Subtotal (95% c.i.) 93 90 16.1 0.63 (0.22, 1.76) 7 Total events 10

Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 1.33$, 2 d.f., P = 0.51; $I^2 = 0$ %


Test for overall effect: Z = 0.88, P = 0.38

491 493 100.0 0.97 (0.64, 1.47) Total (95% c.i.) Total events 51 52

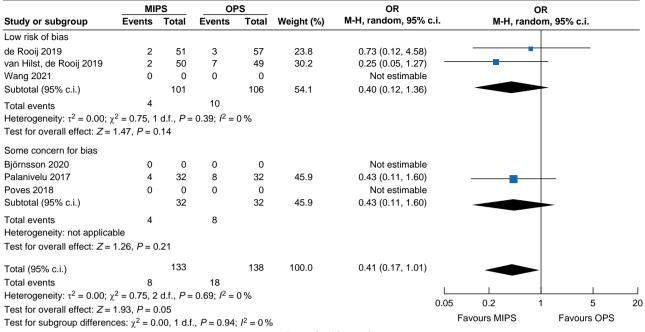
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 2.79$, 5 d.f., P = 0.73; $I^2 = 0$ %


Test for overall effect: Z = 0.13, P = 0.90

Test for subgroup differences: $\chi^2 = 0.82$, 1 d.f., P = 0.36; $I^2 = 0\%$

Certainty of evidence: moderate

Bile leakage



Certainty of evidence: moderate

Delayed gastric emptying

	MIF	PS	OF	PS		OR			OR		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c.	i.	M-H, r	andom, 95%	% c.i.	
Low risk of bias											
de Rooij 2019	3	51	1	57	5.8	3.50 (0.35, 34.76)		_		•	
van Hilst, de Rooij 2019	17	50	10	49	22.0	2.01 (0.81, 4.98)			+	_	
Wang 2021	90	297	96	297	39.1	0.91 (0.64, 1.29)			-		
Subtotal (95% c.i.)		398		403	66.9	1.31 (0.65, 2.61)					
Total events	110		107								
Heterogeneity: $\tau^2 = 0.18$; χ	$\chi^2 = 3.66, 2$	d.f., P=	$0.16; I^2 = 4$	15 %							
Test for overall effect: $Z=$	0.76, P = 0.	.45									
Some concern for bias											
Björnsson 2020	1	29	5	29	6.2	0.17 (0.02, 1.57)		•			
Palanivelu 2017	5	32	7	32	14.8	0.66 (0.19, 2.36)			-		
Poves 2018	3	32	7	29	12.1	0.33 (0.08, 1.40)					
Subtotal (95% c.i.)		93		90	33.1	0.41 (0.17, 1.00)		•			
Total events	9		19								
Heterogeneity: $\tau^2 = 0.00$; χ	$\chi^2 = 1.24, 2$	d.f., P=	0.54 ; $I^2 = 0$)%							
Test for overall effect: $Z =$	1.97, <i>P</i> = 0.	.05									
Total (95% c.i.)		491		493	100.0	0.89 (0.49, 1.61)			*		
Total events	119		126								
Heterogeneity: $\tau^2 = 0.20$; χ	$\chi^2 = 8.56, 5$	d.f., P=	$0.13; I^2 = 4$	12 %			0.02	0.1	1	10	 50
Test for overall effect: $Z=$	0.39, <i>P</i> = 0.	.70						avours MIPS	Favour		30
Test for subgroup difference			P = 0.04	$I^2 = 75.4$	1 %		Г	avouis iviirs	ravoui	5 UF 3	
				Ce	rtainty of e	vidence: low					

Surgical site infection

Certainty of evidence: low

Reoperation

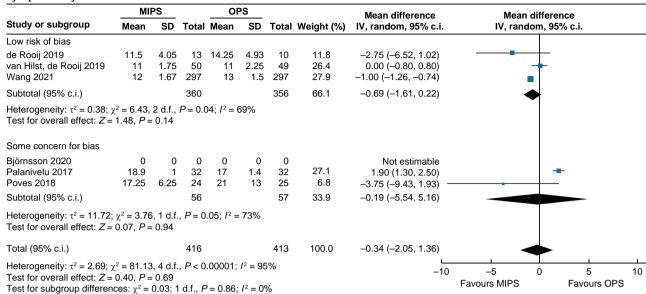
	MI	PS	OF	PS		OR	OR
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c.i.	. M-H, random, 95% c.i.
Low risk of bias							
de Rooij 2019	1	51	3	57	15.1	0.36 (0.04, 3.58)	-
van Hilst, de Rooij 2019	12	50	3	49	25.6	4.84 (1.27, 18.42)	
Wang 2021	10	297	11	297	32.1	0.91 (0.38, 2.17)	
Subtotal (95% c.i.)		398		403	72.8	1.34 (0.35, 5.19)	
Total events	23		17				
Heterogeneity: $\tau^2 = 0.89$;	$\chi^2 = 5.61, 2$	2 d.f., P =	$= 0.06; I^2 =$	64%			
Test for overall effect: Z =	0.43, P = 0	0.67					
Some concern for bias							
Björnsson 2020	0	0	0	0		Not estimable	
Palanivelu 2017	1	32	1	32	11.5	1.00 (0.06, 16.71)	
Poves 2018	1	32	5	29	15.8	0.15 (0.02, 1.41)	
Subtotal (95% c.i.)		64		61	27.2	0.32 (0.05, 1.91)	
Total events	2		6				
Heterogeneity: $\tau^2 = 0.09$;	$\chi^2 = 1.05, 1$	d.f., P=	= 0.31; <i>I</i> ² =	5%			
Test for overall effect: $Z =$	1.25, <i>P</i> = 0).21					
Total (95% c.i.)		462		464	100.0	0.93 (0.30, 2.87)	
Total events	25		23			, , ,	T
Heterogeneity: $\tau^2 = 0.84$;	$\chi^2 = 8.84, 4$	l d.f., P =	= 0.07; <i>I</i> ² =	55%			
Test for overall effect: $Z =$	•						0.02 0.1 1 10 5
Test for subgroup differen	,		f <i>P</i> = 0.21	$I^2 = 36$.8 %		Favours MIPS Favours OPS
J	/	,	,			vidence: low	

Readmission

	MIF	'S	OP	S		OR			OR		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c	.i.	M-I	H, random,	95% c.i.	
Low risk of bias de Rooij 2019 van Hilst, de Rooij 2019 Wang 2021	15 8 10	51 50 297	14 10 6	57 49 297	29.7 20.5 20.5	1.28 (0.55, 3.00) 0.74 (0.27, 2.07) 1.69 (0.61, 4.71)			-		
Subtotal 95% c.i.		398		403	70.7	1.19 (0.68, 2.06)				-	
Total events	33		30								
Heterogeneity: $\tau^2 = 0.00$, $\tau^2 = 0.00$			< 0.53; 12 =	= 0%							
Some concern for bias											
Björnsson 2020 Palanivelu 2017 Poves 2018	4 2 7	29 32 32	6 3 4	29 32 29		0.61 (0.15, 2.45) 0.64 (0.10, 4.14) 1.75 (0.45, 6.74)	_		•		_
Subtotal 95% c.i.		93		90	29.3	0.95 (0.40, 2.23)				_	
Total events	13		13								
Heterogeneity: $\tau^2 = 0.00$, χ Test for overall effect: $Z =$: 0.51; <i>I</i> ² =	0%							
Total 95% c.i.		491		493	100.0	1.11 (0.70, 1.77)				-	
Total events Heterogeneity: $\tau^2 = 0.00$, γ	46 ² = 2.81.5	df Pa	43 - 0.73: <i>I</i> ² =	- 0%				ı		1	
Test for overall effect: $Z = 0.00$, , _	370			0.05	0.2	1	5	20
Test for subgroup difference	$ces: \chi^2 = 0$.18, 1 d.	f., $P = 0.6$	7; <i>I</i> ² =		f and day as lare	F	avours MIPS	3	Favours	OPS

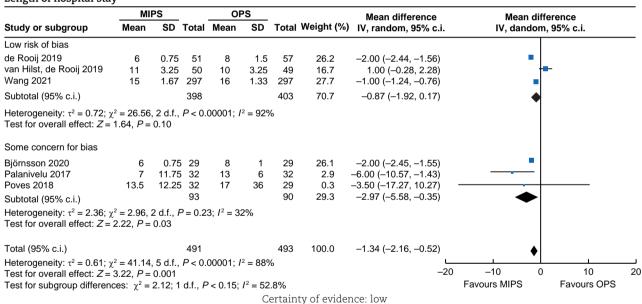
Certainty of evidence: low

Blood loss


	M	IPS		()PS			Mean difference	Mean dif	ference
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight (%	b) IV, random, 95% c.i.	IV, random	ı, 95% c.i.
Low risk of bias de Rooij 2019 van Hilst, de Rooij 2019 Wang 2021	150 300 200	75 59.5 50	51 50 297	400 450 300	143.75 175 38.33	57 49 297	18.5 17.1 22.0	-250.00 (-292.62, -207.38) -150.00 (-201.70, -98.30) -100.00 (-107.17, -92.83)		
Subtotal 95% c.i.			398			403	57.6	-165.37 (-261.85, -68.88)		
Heterogeneity: $\tau^2 = 6887$. Test for overall effect: $Z =$				< 0.0000	01; <i>I</i> ² = 9	6%				
Björnsson 2020 Palanivelu 2017 Poves 2018	50 250 0	31.25 22 0	29 32 0	100 401 0	50 46 0	29 32 0	21.0 21.4	-50.00 (-71.46, -28.54) -151.00 (-168.67, -133.33) Not estimable		
Subtotal 95% c.i.			61			61	42.4	-100.69 (-199.67, -1.71)		
Heterogeneity: $\tau^2 = 4.999$. Test for overall effect: $Z =$			d.f., <i>P</i>	< 0.000	01; <i>I</i> ² = 9	8%				
Total 95% c.i.			459			464	100.0	-136.64 (-181.77, -91.51)	•	
Heterogeneity: $\tau^2 = 2398.9$ Test for overall effect: $Z =$				< 0.000	001; <i>I</i> ² = 9	96%			-200 -100 0	100
Test for subgroup differen	ices: χ² =	0.84, 1	d.f., <i>P</i>	= 0.36;	$I^2 = 0\%$				Favours MIPS	Favours
					Cer	tainty	of evidenc	e: low		

	MI	PS		O	PS			Mean difference	Mean diff	ference	
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight (%)	IV, random, 95% c.i.	IV, random	, 95% c.i.	
ow risk of bias											
le Rooij 2019	217	35.5	51	179	25.5	57	17.6	-38.00 (26.22, 49.78)			
an Hilst, de Rooij 2019	410	57.25	50	274	26.25	49	16.6	136.00 (118.51, 153.49)			
Vang 2021	325	18.33	297	300	18.17	297	18.5	25.00 (22.06, 27.94)			
ubtotal (95% c.i.)			398			403	52.8	65.62 (14.42, 116.81)			-
Heterogeneity: $\tau^2 = 2007.8$ Test for overall effect: $Z =$.ī., P<	0.00001	; <i>1</i> - = 99'	%					
Some concern for bias											
Björnsson 2020	120	8.75	29	120	11.5	29	18.4	0.00 (-5.26, 5.26)	+		
Palanivelu 2017	359	14	32	320	13	32	18.3	39.00 (32.38, 45.62)		-	
Poves 2018	486	107.5	32	365	67.5	29	10.6	121.00 (76.38, 165.62)		-	-
Subtotal (95% c.i.)			93			90	47.2	44.23 (7.56, 80.90)		~	
Heterogeneity: $\tau^2 = 916.69$ Fest for overall effect: $Z =$.f., P <	0.00001	$I^2 = 98$	%					
Гotal (95% с.i.)			491			493	100.0	53.93 (31.68, 76.18)		•	
Heterogeneity: $\tau^2 = 694.79$ Test for overall effect: $Z =$				0.00001	$I^2 = 98$	%		-1	00 -50 0	50	100
est for subgroup differen	,			= 0.51; <i>I</i> ²	= 0%			Fa	avours MIPS	Favours	OPS
· · · · · ·					Cort		of evidence: l				

R0 resection


	MIF	PS	OF	'S		OR			OR		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95% c	.i.	M-H, ran	ndom,	95% c.i.	
Low risk of bias											
de Rooij 2019 van Hilst, de Rooij 2019 Wang 2021 Subtotal (95% c.i.)	7 41 290	13 50 297 360	4 37 288	10 49 297 356	10.1 29.8 28.1 68.0	1.75 (0.33, 9.30) 1.48 (0.56, 3.90) 1.29 (0.48, 3.52) 1.43 (0.75, 2.73)					
Total events Heterogeneity: $\tau^2 = 0.00$; χ^2 Test for overall effect: $Z = 1$			329 0.95; <i>I</i> ² = 0)%		, ,					
Some concern for bias											
Björnsson 2020 Palanivelu 2017 Poves 2018	4 31 19	6 32 32 70	0 30 15	0 32 29 61	4.7 27.4	Not estimable 2.07 (0.18, 24.01) 1.36 (0.49, 3.76) 1.45 (0.57, 3.70)					
Subtotal (95% c.i.)		70		01	32.0	1.43 (0.37, 3.70)		-			
Total events Heterogeneity: $\tau^2 = 0.00$; χ^2 Test for overall effect: $Z = 0$			45 0.76; <i>I</i> ² = 0)%							
Total (95% c.i.)		430		417	100.0	1.44 (0.85, 2.45)				>	
Total events	392		374								
Heterogeneity: $\tau^2 = 0.00$; χ^2 Test for overall effect: $Z = 1$ Test for subgroup difference	.35, $P = 0.1$	18)		0.05	0.2 Favours MIPS	1	5 Favours OPS	20
				Ce	ertainty of ev	ridence: low					

Lymph node yield

Certainty of evidence: low

Length of hospital stay

MIPS, minimally invasive pancreatic surgery; OPS, open pancreatic surgery; OR, odds ratio.

bariatric, and lower and upper gastrointestinal surgery, are still missing in pancreatic surgery. Meanwhile, the question of safe implementation of the minimally invasive technique in pancreatic surgery remains a matter of debate. Müller et al.²⁸ suggested a stepwise introduction of different pancreatic resections according to the procedural complexity and standardized reporting of learning curves to reduce learning curve-related bias. Adequate assessment of baseline surgeon experience and skill level, and standardized reporting of learning curves within a three-phase model (competency, proficiency, and mastery) was suggested. Meanwhile, adequate case selection with regards to favourable anatomical (low BMI) and disease specific (no vessel involvement) features in a first learning phase under supervision to reach competency level seems of paramount importance. With increasing experience, proficiency and mastery levels are reached and more complex procedures may be introduced with the goal to achieve benchmark outcomes^{28,38}. Furthermore, several initiatives for collaborative research on safe implementation of the minimally invasive technique in pancreatic surgery, such as the European Consortium of Minimally Invasive Pancreatic Surgery (E-MIPS), have emerged^{39,40}. Additionally, efforts to provide international evidence-based guidelines for minimally invasive pancreatic resections and the implementation of the minimally invasive approach to obtain optimal patient outcomes and safety have been made⁴¹.

Additionally, in comparison with benchmark criteria in open pancreatic surgery defined by Sánchez-Velázquez et al.42 and Probst et al.⁶, postoperative safety outcomes from the current

Table 6 Ongoing RCTs and unpublished terminated RCTs

Identifier	Title	Expected end of trial
Partial pancreatoduode	nectomy	
NCT03785743	Comparing laparoscopic and open surgery for pancreatic carcinoma	1 March 2026
NCT04171440	Comparison of perioperative outcomes between minimally invasive and open pancreaticoduodenectomy	1 July 2024
ChiCTR1900024788	Robotic pancreaticoduodenectomy (RPD) versus open pancreaticoduodenectomy (OPD) in the long-term oncologic outcomes (LR301PD1): a randomized controlled trial	1 September 2021
NCT03870698	Comparison of functional recovery between laparoscopic and open pancreaticoduodenectomy	1 July 2021
NCT03747588	The comparison of laparoscopic and open pancreaticoduodenectomy for pancreatic cancer (LOPA)	30 December 2020
NCT03138213	Comparing total laparoscopic versus open pancreaticoduodenectomy	1 September 2020
NCT03722732	Comparison of blood loss in laparoscopic <i>versus</i> open pancreaticoduodenectomy in patients with periampullary carcinoma	1 December 2019
DRKS00020407	Evaluation of robotic versus open partial pancreaticoduodenectomy of a randomized controlled trial (EUROPA)	Not reported
NCT04400357	Robotic <i>versus</i> open pancreaticoduodenectomy for pancreatic and periampullary tumours (PORTAL)	Not reported
ChiCTR1900028686	A prospective randomized controlled trial for the effects of laparoscopic and non-laparoscopic surgery on pancreas islet function	Not reported
ChiCTR2000038932	Robotic versus open pancreatoduodenectomy for pancreatic or periampullary tumours: a multicentre, patient-blinded, randomized controlled trial	Not reported
Distal pancreatectomy		
NCT03957135	Laparoscopic versus open distal pancreatectomy for pancreatic cancer: a multicentre randomized controlled trial	30 November 2025
NCT04483726	Distal pancreatectomy, minimally invasive or open, for malignancy (DIPLOMA)	9 July 2025
ISRCTN44897265	Distal pancreatectomy, minimally invasive or open, for malignancy	1 May 2024
KCT0004176	Multicentre prospective randomized controlled clinical trial for comparison between laparoscopic and open distal pancreatectomy for ductal adenocarcinoma of the pancreatic body and tail	30 November 2023
NCT03792932	Laparoscopic versus open pancreatectomy for body and tail pancreatic cancer	31 January 2022
ChiCTR1900024648	A randomized controlled study for the short-term oncologic outcomes of robot-assisted radical and open anterograde modular pancreaticosplenectomy	30 November 2020
DRKS00014011	Distal pancreatectomy of a randomized controlled trial to compare open versus laparoscopic resection (DISPACT 2-TRIAL)	Not reported
ChiCTR2000038933	Robotic versus open radical antegrade modular pancreatosplenectomy for pancreatic cancer of the body and tail: a multicentre, randomized controlled trial	Not reported

meta-analysis appear within benchmark cut-offs. Recently published analyses further report benchmark criteria for minimally invasive and open DP38,43,44. Benchmark cut-off values for mortality rate in PD were set at less than or equal to 1.6 per cent and 2 per cent by Sánchez-Velázquez et al. 42 and Probst et al.6 respectively. In DP, Probst et al.6 reported a benchmark cut-off of 1 per cent. A slightly elevated overall 90-day mortality rate in minimally invasive PD (3.2 per cent), as well as in the open procedure (2.5 per cent), was found in the current study. On the other hand, reduced mortality rate compared with the benchmark cut-off was reported in minimally invasive DP (0 per cent), though without a significant difference compared with open DP in the current study. The discrepancy can most likely be explained by insufficient surgeon and centre experience, as described above. Interestingly, when examining only the two studies with completed learning curves before study start 18,23, postoperative safety outcomes even undercut benchmark cut-offs. Furthermore, 90-day mortality rate cannot be directly compared with in-hospital mortality rate, as presented by Sánchez-Velázquez et al. 42 Other general and pancreatic surgery specific morbidity rate outcomes met the predefined benchmark cut-offs. In the current study, a POPF incidence of 11.9 per cent was seen in minimally invasive PD. The benchmark cut-off is defined as less than or equal to 19 per cent by Sánchez-Velázquez et al. 42 and 14 per cent by Probst et al.6 In DP, an elevated POPF incidence of 36.3 per cent compared with the benchmark outcome (less than or equal to 8.3 per cent to less than or equal to 32 per cent) without a significant difference compared with open DP was reported. Björnsson et al. 18 postulated that this difference derives from the multicentre nature of the study with the inclusion of low-volume centres. de Rooij et al¹⁹. included a subgroup of patients with prolonged percutaneous drainage due to biochemical leakage, leading to an increased POPF incidence.

Focusing on data comparing different minimally invasive techniques (laparoscopic versus robotic), superior results in terms of spleen preservation rate, conversion rate, blood loss, and LOS, at the price of higher economic burden, have been reported in DP^{45–48}. However, no RCTs on this topic are available and high-quality data are still missing. Data are even more scarce on robotic versus laparoscopic PD. In low-quality evidence no difference in clinically relevant outcomes has been seen so far^{49–51}. Even though no definite conclusion can be drawn from low-quality evidence, robotic surgery might represent a valid alternative minimally invasive approach to laparoscopy in DP in experienced hands. However, head-to-head comparison in RCTs is required in the future to further address this question.

The current study has some limitations. First, data from only two RCTs with a small sample size in DP were available. Additionally, not all outcomes were investigated in all the studies, leading to a further decrease in reported events for certain outcome parameters (SSI and oncologic outcomes). Inconsistent definitions of RO resection in the different RCTs further limit a conclusive statement on oncologic outcome

parameters. Moreover, the high grade of heterogeneity between the RCTs needs to be considered when interpreting the results. As minimally invasive data of the current meta-analysis mainly related to the laparoscopic approach (99 per cent, 491), possible benefits resulting from robotic surgery are not displayed.

In summary, data from the current meta-analysis support the assumption that a minimally invasive (laparoscopic and robotic) approach in pancreatic surgery seems feasible and safe. Even though high-quality data after surgeons have surmounted the learning curve are still missing, one might expect superior postoperative outcomes in minimally invasive pancreatic surgery compared with open pancreatic surgery, like in other fields of surgery. However, a tailored approach regarding surgical technique might represent the preferred strategy in the future. Whereas for procedures of high complexity, including multi-visceral resections and vascular reconstructions, the open approach may appear favourable, low-risk patients might benefit from the advantages of minimally invasive surgery in less complex cases. The spectrum of the minimally invasive approach is increasing and, as evidence from mainly retrospective analyses suggests, robotic surgery with its benefits compared with laparoscopy may play a fundamental role in pancreatic resections in the future, tackling the technical issues brought forward in early laparoscopic experience in pancreatic surgery. Furthermore, despite comparable oncologic outcomes between minimally invasive pancreatic surgery and open pancreatic surgery, such as R0 resection and LNY, the minimally invasive technique might be able to improve the oncologic big picture in the future. When projecting improved recovery after surgery on patients undergoing pancreatic procedures for malignant disease, more patients might be able to benefit from adjuvant therapy. Nevertheless, the certainty of evidence remains low to moderate and more RCTs after the learning curve are needed to clarify the role of a minimally invasive approach in pancreatic surgery.

Funding

The authors have no funding to declare.

Disclosure

The authors declare no conflict of interest.

Supplementary material

Supplementary material is available at BJS Open online.

Data availability

The data that support the findings of this study are openly available in CENTRAL, MEDLINE, and Web of Science.

References

- 1. Jaschinski T, Mosch C, Eikermann M, Neugebauer EA. Laparoscopic versus open appendectomy in patients with suspected appendicitis: a systematic review of meta-analyses of randomised controlled trials. BMC Gastroenterol 2015;15:48
- 2. Keus F, de Jong JA, Gooszen HG, van Laarhoven CJ. Laparoscopic versus open cholecystectomy for patients with symptomatic cholecystolithiasis. Cochrane Database Syst Rev 2006;8:CD006231

- 3. Ohtani H, Tamamori Y, Arimoto Y, Nishiguchi Y, Maeda K, Hirakawa K. A meta-analysis of the short- and long-term results of randomized controlled trials that compared laparoscopy-assisted and open colectomy for colon cancer. J Cancer 2012:3:49-57
- Mariette C, Markar SR, Dabakuyo-Yonli TS, Meunier B, Pezet D, Collet D et al. Hybrid minimally invasive esophagectomy for esophageal cancer. N Engl J Med 2019;380:152-162
- Biere SS, van Berge Henegouwen MI, Maas KW, Bonavina L, Rosman C, Garcia JR et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. Lancet 2012;379:1887-1892
- Probst P, Hüttner FJ, Meydan Ö, Abu Hilal M, Adham M, Barreto SG et al. Evidence Map of Pancreatic Surgery-A living systematic review with meta-analyses by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2021;170:1517-1524
- Probst P, Hüttner FJ, Meydan Ö, Kalkum E, Kretschmer R, Jensen K et al. Evidence map of pancreatic surgery: protocol for a living systematic review and meta-analysis. BMJ Open 2019;**9**:e032353
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71
- Higgins JPT, Green SP, Cochrane C. Cochrane Handbook for Systematic Reviews of Interventions. London: The Cochrane Collaboration, 2021
- 10. World Health Organization. International Clinical Trials Registry Platform (ICTRP). https://www.who.int/clinical-trials-registryplatform (accessed 29 April 2022)
- 11. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240:205-213
- 12. Bassi C, Marchegiani G, Dervenis C, Sarr M, Abu Hilal M, Adham Met al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 years after. Surgery 2017;161:584-591
- 13. Wente MN, Veit JA, Bassi C, Dervenis C, Fingerhut A, Gouma DJ et al. Postpancreatectomy hemorrhage (PPH): an International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007;142:20-25
- 14. Wente MN, Bassi C, Dervenis C, Fingerhut A, Gouma DJ, Izbicki JR et al. Delayed gastric emptying (DGE) after pancreatic surgery: a suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007;142:761–768
- 15. Koch M, Garden OJ, Padbury R, Rahbari NN, Adam R, Capussotti L et al. Bile leakage after hepatobiliary and pancreatic surgery: a definition and grading of severity by the International Study Group of Liver Surgery. Surgery 2011;149:680-688
- 16. Kirmayr M, Quilodrán C, Valente B, Loezar C, Garegnani L, Franco JVA. The GRADE approach, Part 1: how to assess the certainty of the evidence. Medwave 2021;21:e8109
- 17. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005;5:13
- 18. Björnsson B, Larsson AL, Hjalmarsson C, Gasslander T, Sandström P. Comparison of the duration of hospital stay after laparoscopic or open distal pancreatectomy: randomized controlled trial. Br J Surg 2020;107:1281-1288
- 19. de Rooij T, van Hilst J, van Santvoort H, Boerma D, van den Boezem P, Daams F et al. Minimally invasive versus open distal pancreatectomy (LEOPARD): a multicenter patient-blinded randomized controlled trial. Ann Surg 2019;269:2-9

- 20. Palanivelu C, Senthilnathan P, Sabnis SC, Babu NS, Srivatsan Gurumurthy S, Anand Vijai N et al. Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br J Surg 2017;104:1443-1450
- 21. Poves I, Burdío F, Morató O, Iglesias M, Radosevic A, Ilzarbe L et al. Comparison of perioperative outcomes between laparoscopic and open approach for pancreatoduodenectomy: the PADULAP randomized controlled trial. Ann Surg 2018;268: 731-739
- 22. van Hilst J, de Rooij T, Bosscha K, Brinkman DJ, van Dieren S, MG al. Laparoscopic versus Dijkgraaf ρt pancreatoduodenectomy for pancreatic or periampullary (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 2019;4:199-207
- 23. Wang M, Li D, Chen R, Huang X, Li J, Liu Y et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours: a multicentre, open-label, randomised controlled trial. Lancet Gastroenterol Hepatol 2021;6:438-447
- 24. Korrel M, Roelofs A, van Hilst J, Busch OR, Daams F, Festen S et al. Long-term quality of life after minimally invasive vs open distal pancreatectomy in the LEOPARD randomized trial. J Am Coll Surg 2021;**233**:730-739.e9
- 25. van Hilst J, Brinkman DJ, de Rooij T, van Dieren S, Gerhards MF, de Hingh IH et al. The inflammatory response after laparoscopic and open pancreatoduodenectomy and the association with complications in a multicenter randomized controlled trial. HPB (Oxford) 2019;21:1453-1461
- 26. Dokmak S, Ftériche FS, Aussilhou B, Bensafta Y, Lévy P, Ruszniewski P et al. Laparoscopic pancreaticoduodenectomy should not be routine for resection of periampullary tumors. J Am Coll Surg 2015;220:831-838
- 27. Fong ZV, Chang DC, Ferrone CR, Lillemoe KD, Fernandez Del Castillo C. Early national experience with laparoscopic pancreaticoduodenectomy for ductal adenocarcinoma: is this really a short learning curve? J Am Coll Surg 2016;
- 28. Müller PC, Kuemmerli C, Cizmic A, Sinz S, Probst P, de Santibanes M et al. Learning curves in open, laparoscopic, and robotic pancreatic surgery: a systematic review and proposal of a standardization. Ann Surg Open 2022;3:e111
- 29. Sharpe SM, Talamonti MS, Wang CE, Prinz RA, Roggin KK, Bentrem DJ et al. Early national experience with laparoscopic pancreaticoduodenectomy for ductal adenocarcinoma: a comparison of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy from the National Cancer Data Base. J Am Coll Surg 2015;221:175-184
- 30. Lidsky ME, Sun Z, Nussbaum DP, Adam MA, Speicher PJ, Blazer DG. Going the extra mile: improved survival for pancreatic cancer patients traveling to high-volume centers. Ann Surg 2017;**266**:333-338
- 31. Birkmeyer JD, Finlayson SR, Tosteson AN, Sharp SM, Warshaw AL, Fisher ES. Effect of hospital volume on in-hospital mortality with pancreaticoduodenectomy. Surgery 1999;125: 250-256
- 32. Gooiker GA, van Gijn W, Wouters MW, Post PN, van de Velde CJ, Tollenaar RA et al. Systematic review and meta-analysis of the volume-outcome relationship in pancreatic surgery. Br J Surg 2011;98:485-494
- 33. Macedo FIB, Jayanthi P, Mowzoon M, Yakoub D, Dudeja V, Merchant N. The impact of surgeon volume on outcomes after pancreaticoduodenectomy: a meta-analysis. J Gastrointest Surg 2017;**21**:1723–1731

- 34. de Rooij T, van Hilst J, Boerma D, Bonsing BA, Daams F, van Dam RM et al. Impact of a nationwide training program in minimally invasive distal pancreatectomy (LAELAPS). Ann Surg 2016;264: 754-762
- 35. de Rooij T, van Hilst J, Topal B, Bosscha K, Brinkman DJ, Gerhards MF et al. Outcomes of a multicenter training program in laparoscopic pancreatoduodenectomy (LAELAPS-2). Ann Surg 2019;269:344-350
- 36. Fung G, Sha M, Kunduzi B, Froghi F, Rehman S, Froghi S. Learning curves in minimally invasive pancreatic surgery: a systematic review. Langenbecks Arch Surg 2022;407:2217–2232
- 37. Perri G, Marchegiani G, Reich F, Casetti L, Fontana M, Esposito A Intraoperative blood loss estimation in hepato-pancreato-biliary surgery-relevant, not reported, not standardized: results from a systematic review and a worldwide snapshot survey. Ann Surg 2022; DOI: 10.1097/SLA. 000000000005536 [Epub ahead of print]
- 38. Müller PC, Breuer E, Nickel F, Zani S, Kauffmann E, De Franco L et al. Robotic distal pancreatectomy, a novel standard of care? Benchmark values for surgical outcomes from 16 international expert centers. Ann Surg 2022; DOI: 10.1097/ SLA.0000000000005601 [Epub ahead of print]
- 39. van Hilst J, de Rooij T, Klompmaker S, Rawashdeh M, Aleotti F, Al-Sarireh B et al. Minimally invasive versus open distal pancreatectomy for ductal adenocarcinoma (DIPLOMA): a pan-European propensity score matched study. Ann Surg 2019; **269**:10-17
- 40. Klompmaker S, van Hilst J, Wellner UF, Busch OR, Coratti A, D'Hondt M et al. Outcomes after minimally-invasive versus open pancreatoduodenectomy: a pan-European propensity score matched study. Ann Surg 2020;271:356-363
- 41. Asbun HJ, Moekotte AL, Vissers FL, Kunzler F, Cipriani F, Alseidi A et al. The Miami international evidence-based guidelines on minimally invasive pancreas resection. Ann Surg 2020;271:1-14
- 42. Sánchez-Velázquez P, Muller X, Malleo G, Park JS, Hwang HK, Napoli N et al. Benchmarks in pancreatic surgery: a novel tool for unbiased outcome comparisons. Ann Surg 2019;270: 211-218
- 43. Giani A, van Ramshorst T, Mazzola M, Bassi C, Esposito A, de Pastena M et al. Benchmarking of minimally invasive distal pancreatectomy with splenectomy: European multicentre study. Br J Surg 2022;109:1124-1130
- 44. Durin T, Marchese U, Sauvanet A, Dokmak S, Cherkaoui Z, Fuks D et al. Defining benchmark outcomes for distal pancreatectomy: results of a French multicentric study. Ann Surg 2022; DOI: 10.1097/SLA.00000000005539 [Epub ahead of
- 45. Lyu Y, Cheng Y, Wang B, Zhao S, Chen L. Assessment of laparoscopic versus open distal pancreatectomy: a systematic review and meta-analysis. Minim Invasive Ther Allied Technol 2022:31:350-358
- 46. Rompianesi G, Montalti R, Ambrosio L, Troisi RI. Robotic versus laparoscopic surgery for spleen-preserving distal pancreatectomies: systematic review and meta-analysis. J Pers Med 2021;11:552
- 47. Hu YH, Qin YF, Yu DD, Li X, Zhao YM, Kong DJ et al. Meta-analysis of short-term outcomes comparing robot-assisted and laparoscopic distal pancreatectomy. J Comp Eff Res 2020;9:201-218
- 48. Mavrovounis G, Diamantis A, Perivoliotis K, Symeonidis D, Volakakis G, Tepetes K. Laparoscopic versus robotic peripheral pancreatectomy: a systematic review and meta-analysis. J BUON 2020;25:2456-2475

- 49. Kamarajah SK, Bundred J, Marc OS, Jiao LR, Manas D, Abu Hilal M et al. Robotic versus conventional laparoscopic pancreaticoduodenectomy a systematic review and metaanalysis. Eur J Surg Oncol 2020;46:6-14
- 50. Kamarajah SK, Bundred JR, Marc OS, Jiao LR, Hilal MA, Manas DM et al. A systematic review and network meta-analysis of
- different surgical approaches for pancreaticoduodenectomy. HPB (Oxford) 2020;22:329-339
- 51. Aiolfi A, Lombardo F, Bonitta G, Danelli P, Bona D. Systematic review and updated network meta-analysis comparing open, laparoscopic, and robotic pancreaticoduodenectomy. Updates Surg 2021;**73**:909–922