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Abstract

Background—Mild cognitive impairment (MCI) is a heterogeneous condition with high 

individual variabilities in clinical outcomes driven by patient demographics, genetics, brain 

structure features, blood biomarkers, and comorbidities. Multi-modality data-driven approaches 

have been used to discover MCI subtypes, however disease comorbidities have not been included 

as a modality though multiple diseases including hypertension are well-known risk factors for 

Alzheimer’s disease (AD). The aim of this study was to examine MCI heterogeneity in the context 

of AD-related comorbidities along with other AD-relevant features and biomarkers.

Methods—A total of 325 MCI subjects with 32 AD-relevant comorbidities and features were 

considered. Mixed-data clustering is applied to discover and compare MCI subtypes with and 

without including AD-related comorbidities. Finally, the relevance of each comorbidity-driven 

subtype was determined by examining their MCI to AD disease prognosis, descriptive statistics, 

and conversion rates.

Results—We identified four (five) MCI subtypes: poor-, average-, good- and best-AD prognosis 

by including comorbidities (without including comorbidities). We demonstrated that comorbidity-

driven MCI subtypes differed from those identified without comorbidity information. We 

further demonstrated the clinical relevance of comorbidity-driven MCI subtypes. Among the 

four comorbidity-driven MCI subtypes there were substantial differences in the proportions 

of participants who reverted to normal function, remained stable, or converted to AD. The 

groups showed different behaviors, having significantly different MCI to AD prognosis, 

significantly different means for cognitive test-related & plasma features, and by the proportion of 

comorbidities.

Conclusions—Our study indicates that AD comorbidities should be considered along with other 

diverse AD-relevant characteristics to better understand MCI heterogeneity.
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1 Introduction

Mild cognitive impairment (MCI) is characterized by cognitive impairment that does not 

significantly interfere with independent living [1]. However, it may be a transitional phase 

between normal cognitive aging and Alzheimer’s disease (AD). The annual conversion rate 

from MCI to dementia varies from 5 to 10% and around 33.6% of subjects with MCI are at 

risk of having early-stage AD [2,3]. Some individuals with MCI stay stable after 10-years’ 

follow-up or even return to normal cognitive status by timely interventions [4], whereas 

others progress to AD and die within three years after diagnosis [5]. Understanding which 

persons with MCI will progress rapidly to AD would allow physicians to advise patients and 

families to plan appropriately for financial matters and living arrangements, and to redouble 

interventions to slow progression, such as lifestyle changes or medication compliance, or 

to initiate therapeutics intended to delay cognitive decline. Moreover, there are currently 

no cures for AD and current treatments are limited even in slowing the progression of the 

disease [3,6,7]. Many attempts have been made to discover new therapeutics, but more than 

100 new drugs for AD have either been abandoned in development or failed in clinical trials 

[8]. Clinical trials in MCI or AD are difficult not only because of outcomes which have 

high variability, but also because of the substantial heterogeneity of the patient population. 

The ability to stratify patients according to expected progression of disease may allow 

better focused clinical trials that require less time and fewer subjects, and thereby accelerate 

progress toward effective control of the disease.

Patients with MCI and AD often live with multiple comorbid medical conditions, including 

cardiovascular conditions, obesity, diabetes, and depression, some of which may accelerate 

clinical development of AD and complicate the management [9–11]. Indeed, hypertension 

is associated with AD and MCI and increases conversion from MCI to AD, and better 

control of hypertension delays progression to AD [12,13]. Diabetes and depression in 

MCI are associated with increased incidence of dementia [14–16]. Obesity indices were 

associated with poorer performance in memory, and verbal fluency tasks [17]. One study 

[18] showed a significant association between total cholesterol and cognitive measures. 

Also, active smoking and excessive alcohol consumption confer significantly increased risk 

for AD [19,20]. Therefore, the comorbidities may represent modifiable risk factors for 

disease progression. For these reasons, an investigation of MCI heterogeneity in the context 

of AD-related comorbidities is important for better understanding AD mechanisms and for 

personalized prevention, treatment, and long-term care for AD patients.

Several investigators have undertaken subtyping approaches to sort out the heterogeneity 

of MCI [21,22]. Data-driven subtyping approaches have been proposed to understand 

heterogeneity of MCI [22,23], using single modality data like neuropsychological features 

[24,25], measures of atrophy derived from structural magnetic resonance imaging (MRI) 
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[26,27] or use multi-modal data with invasive, high-cost biomarkers such as cerebrospinal 

fluid [28,29,30]. In [31], genetic polymorphism and gene expression data have been 

integrated to identify the subtypes of MCI patients. In another [29], multiple baseline 

and prognostic characteristics were used to discover two homogenous clusters of the MCI 

cohort. The identified clusters were with different prognostic cognitive trajectories, but 

the MCI subjects who converted to AD were present in both clusters, and some MCI 

patients did not fit into either cluster. In two studies [30,32], multidimensional features were 

considered to discover latent classes among MCI subjects. Patients with MCI who converted 

to AD were present in all groups, even in the low-risk group, and persons who reverted 

from MCI to normal cognitive function were present even in at-risk groups. Thus, there 

remains a need for better discriminants to classify patients with MCI and predict progression 

to AD. We undertook such a study, using clinically relevant, readily available features of the 

disease, including comorbidities, to find classifications of patients with MCI that are highly 

predictive of disease progression to AD.

In this study, we classified MCI patients into clinically relevant subtypes based on features 

including AD-related comorbidities, life-styles, demographics, imaging, genetics, cognitive 

scores, blood biomarkers derived from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [33]. The ADNI data set has been widely used in many research studies on subtype 

analysis [26,29,32], however, none of these published studies incorporated AD-related 

comorbidities in studying MCI heterogeneity. We compared the differences in MCI subtypes 

before and after including comorbidity information and demonstrated the importance of 

incorporating disease comorbidity data in stratifying MCI patients.

2 Data and Methods

Data used in this study was obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) study (adni.loni.usc.edu). The primary goal of ADNI has been to test whether 

serial MRI, positron emission tomography, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. In this study, all ADNI-1, ADNI-2/ADNI-GO MCI subjects with at least one 

post-baseline visit data were included. ADNI3 research data was not included as it does not 

include detailed data of smoking history, alcohol use, and medical history of participants. 

For each subject, a total of 32 features were included for MCI subtype analysis, including 

AD-related comorbidities, life-styles, and other AD-relevant data modalities at baseline have 

been considered and described below.

A total of 8 AD-related comorbidities [9,10] were extracted from patient medical and 

medication history. The details of search terms and drugs used for AD-related comorbidities 

are provided below.

1. Hypertension –

• search terms (hypertension, high blood pressure, and HTN).

• treatment with antihypertensive medication.

2. Diabetes –
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• search terms (diabetes, type2 diabetes)

• the use of glucose-lowering medication.

3. High cholesterol –

• search terms (Hypercholesterolemia, high cholesterol, elevated 

cholesterol, Hyperlipidemia)

• treatment with lipid-lowering medication.

4. Depression –

• geriatric depression scale (GDS-15) of 10.

• treatment with an antidepressant.

5. Obesity – It was defined as body mass index (BMI) >30. BMI was calculated 

from measured body weight (in kilograms) divided by measured height (in 

meters) squared.

6. Cardiovascular disease –

• search terms (stroke, coronary artery disease, congestive heart failure, 

cerebrovascular disease, carotid artery stenosis, peripheral vascular 

disease, or Atrial fibrillation).

7. Hearing Loss –

• search terms hearing, auditory, ear, deaf, presbycusis.

8. TBI –

• search terms (concussion and/or head injury).

In addition to AD-related comorbidities, additional 6 data modalities were selected for each 

subject to study MCI heterogeneity. These features were selected based on their reported 

associations with the risk for MCI to AD conversion: Demographic factors like age, gender, 

and education can influence the progression to AD [1,34], APOE ɛ4 has been shown to 

be associated with age at onset of AD and to be a strong predictor of clinical progression 

in patients with MCI [35], MRI volumes such as hippocampal and entorhinal volumes 

have also been associated with the MCI to AD conversion process [29,36,37,38], cognitive 

evaluations have strong predictive power of MCI to AD conversion [29,39,40], and plasma 

Nfl and p-tau181 shown to have good ability to predict progression to AD [41,42].

• Demographic data (Age, Sex), Education in years, Family history.

• APOE gene status: Apolipoprotein E (APOE) ɛ4 allele frequency was included 

as a genetic marker of AD.

• The MRI volumetric features: Total ventricular volume, hippocampal volume 

(left plus right), middle temporal gyral volume (left plus right), total entorhinal 

and fusiform volume. These MRI volumes were normalized by total intracranial 

volume (ICV).
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• Cognitive tests: The 11-item score and 13-item score from the Alzheimer’s 

Disease Assessment Scale (ADAS); total score from the Clinical Dementia 

Rating scale Sum of Boxes (CDRSB); total score from the Functional 

Assessment Questionnaire (FAQ); total score from the Mini-Mental State 

Examination (MMSE); and immediate score, learning score, forgetting score, 

and percentage forgetting score from the Rey’s Auditory Verbal Learning Test 

(RAVLT).

• plasma Nfl and p-tau181.

• Lifestyle factors: status of alcohol drinking, smoking.

Method

The MCI subtype analysis was outlined in Figure 1 and described as follows. First, a 

total of 32 patient attributes (AD-comorbidities and other features) were extracted, and all 

the continuous features were z-score normalized (except for the integer and categorical 

data). Next, mixed-data clustering [43,44] was applied to discover the MCI clusters. MCI 

clusters identified using combined features of comorbidity and non-comorbidity vs. using 

non-comorbidity features only were compared, and the importance of including comorbidity 

information for MCI subtype analysis was demonstrated. Finally, the clinical relevance 

of each comorbidity-driven cluster was determined by examining the MCI to AD disease 

prognosis of subjects in the cluster based on the Kaplan-Meier survival analysis [45]. 

Log-rank test [46] was used to test for statistical differences between survivals of different 

clusters, where survival indicates that patients maintain a diagnosis of MCI rather than 

progress to AD. Furthermore, statistical differences between features of the subtypes were 

computed using the Chi-square test for categorical variables and ANOVA for continuous 

variables. Post hoc analysis was performed for multiple comparisons using Bonferroni 

method. P values lower than .05 were considered significant.

Model-based clustering in the presence of mixed types of data has been used to identify the 

clusters of MCI subjects [43,44]. This method assumes a specific distribution to define each 

cluster and effectively models the distribution of each variable separately depending on the 

type of data being used [44]. Model-based clustering models the distribution of a continuous 

(integer and categorical) variable, using Gaussian (Poisson and multinomial respectively) 

distribution. Finally, the method models the distribution of the observed variables with a 

mixture of these parametric distributions. The maximum penalized likelihood estimates for 

the model was computed using the EM algorithm [47] and the optimal number of clusters 

was identified by evaluating the Bayesian Information Criterion (BIC) [48]. BIC introduces 

a penalty term for the number of parameters in the model thus selecting models with a better 

fit. The optimal number of clusters is determined by the model with the lowest absolute 

value of the BIC. Clustering was performed using the VarSelLCM R package [49], and the 

number of clusters tried and varied between 2 and 10.

3 Results

A total of 325 MCI subjects from the ADNI study were included in the current analysis. 

A total of 32 AD-relevant characteristics (8 AD-related comorbidities, 20 AD-relevant 
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features, 2 lifestyle factors) were considered (Table 1). To demonstrate the importance 

of comorbidities in MCI subtyping, we developed two strategies using both comorbidity 

and non-comorbidity features (stratification-A subtype/subtype solution-A) or using only 

non-comorbidity features (stratification-B subtype/subtype solution-B). The survival plots 

for MCI subjects in subtypes identified by stratification-A and stratification-B are provided 

in Figures 2 and 3, respectively. In survival analysis, there were patients who progressed 

to AD; patients who maintained a diagnosis of MCI or those who were censored during 

the same time interval. Here, the censored data are information from subjects who were 

lost to follow-up before conversion was detected. Stratification-A identified four MCI 

subtypes: 1,2,3,4 (ordered as poor-prognosis to better-prognosis). Stratification-B identified 

five subtypes: 1,2,3,4,5 (ordered from poor to better prognosis). In both figures, the numbers 

below the plot represent the number of subjects who are at risk at given time point. 

Subtype-4 in Figure 2 (Subtype-5 in Figure 3) is having the constant probability, and the 

change in the number of patients at risk at different time points is because of the censored 

subjects. Subtype 4 initially had 63 subjects; in the time interval of 500 days, 9 subjects 

were censored (they had follow-up times below 500 days); and so, at 500 days’ time point, 

54 (63–9) subjects were there at risk, and so on. The stratification-A subtyping strategy 

produced statistically significant survivals for all 4 subtypes or clusters of MCI subjects (P < 

.001). The stratification-B subtype produces statistically significant survival (P < .001), but 

between Subtype-3 and Subtype-4, there is no significant difference, with P = .45.

The variations and subject flow between subtypes or clusters that generated by stratification-

A and stratification-B were provided in Figure 4. The number of subjects in each cluster, 

and the number of subjects flow between clusters generated by two stratification strategies is 

also provided. The sizes of the clusters in the survival plots (Figures 2,3) and in Figure 4 are 

not the same, as the survivals were plotted using MCI subjects who remain stable and who 

converted to AD, but not the subjects who reverted to normal cognition, but the clusters in 

Figure 4 show all MCI subjects who remain stable, who converted to AD, and who reverted 

to normal cognition. As shown in Figure 4, the flow of the subjects was mostly between 

the same level prognosis clusters or poor-prognosis cluster of stratification-A to better-

prognosis cluster of stratification-B (for example, Subtype-1 to Subtype-1,2; Subtype-3 

to Subtype-3,4). Only in one case, we observed subject flow from poor-prognosis cluster 

of stratification-A to better-prognosis cluster of stratification-B (Subtype 4 to Subtype-3). 

This indicates that without considering comorbidities, MCI subject with poor prognosis 

could be mis-classified as having a better prognosis, even though comorbidities such as 

cardiovascular diseases and type 2 diabetes are well known to affect the cognitive decline 

and risk for AD. In summary, the above analysis demonstrates that it would be important to 

include comorbidity information along with AD biomarkers to analyze MCI heterogeneity 

and identify clinically relevant subtypes.

We then examined how each data modality contributed to MCI subtypes. The comorbidity-

driven Stratification-A subtypes 1 through 4 represent the AD poor-, average-, good- and 

best-prognosis (PP, AP, GP, BP) subtypes, respectively. The descriptive statistics of the 

biomarkers for these four subtypes was provided in Table 2. As shown in the table, subtypes 

differed significantly in age and frequency of females. Post hoc testing further indicated 

that the subjects in PP and AP subtypes were significantly older than those in GP and BP 
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subtypes. PP subtype members had less education and higher frequency of the APOE ε4 

allele compared with other subtypes. These results are consistent with the fact that age 

and APOE ε4 are two strong risk-factors for AD prognosis. BP subtype had the highest 

frequency of females. All 4 MCI subtypes showed significantly different plasma Nfl. PP 

and AP had significantly more plasma Nfl levels than the other two subtypes. Six of the 

nine cognitive tests significantly differed among the four MCI subtypes. On these tests, 

mostly PP subtype had the most severe impairment, AP and GP were in the middle, 

and BP subtype had the best cognitive scores. Two of the five MRI volumetric features, 

hippocampus, entorhinal volumes, were differed among subtypes. Lifestyle factors did not 

show statistical differences among the four subtypes. Among 8 comorbidities examined, four 

(hypertension, cardiovascular, hearing problems, and obesity) showed significant differences 

among identified MCI subtypes, with higher prevalence in the PP, AP (poorer prognosis of 

MCI to AD conversion) subtypes.

Table 3 provided the percentage of MCI subjects who reverted to normal (“reverters”) who 

stayed at MCI stage (“stablers”) and who progressed to AD (“converters”) for each of 

the four MCI subtypes. For PP subtype, no reverter from MCI to normal was observed. 

For BP subtype, no MCI converter to AD was observed. In the table, conversion times 

(average conversion time, first conversion time to AD) per subtype provided. Average AD-

conversion time for PP subtype is much smaller than the other two AP, GP subtypes. First 

AD-conversion time among the subjects in PP group was 343 days, less than 1 year and for 

the other two groups, it was over 1 year. These results demonstrate that comorbidity-driven 

subtyping provided clinically relevant stratification of MCI subjects.

4 Discussion

Our study investigated comorbidity-driven multi-modal analysis of heterogeneities of MCI 

patients and classified MCI patients into clinically relevant subtypes based on the ADNI 

database. We utilized 8 AD-related comorbidities along with 24 other features from 

demographics, APOE genotype, brain volumetric data, cognitive measurements, plasma 

biomarkers, and behavioral factors to understand the variability in progression from MCI 

to AD. Using the mixed multi-modal data, we stratified MCI subjects into four subtypes, 

with poor-, average-, good- and best- AD prognosis. We showed that the subtyping strategy 

based on both AD-related comorbid conditions and other relevant data modalities was 

better in clustering MCI subjects with differing prognosis than the subtyping strategy only 

considering AD-relevant (non-comorbidity) data. From the analysis of the MCI groups 

identified, we observe that no MCI subject in the BP subtype progressed to AD during the 

observation period, and conversely, none of MCI subjects in the PP subtype reverted to 

normal. This clean separation between the best and the poorest prognosis subtypes gives 

confidence that the comorbidity-driven mixed-data subtyping strategy is able to separate 

MCI patients into groups with different clinical outcomes or prognosis with both high 

sensitivity and high specificity.

In a study in Mexico [32] using ADNI multimodal biomarker data without using 

comorbidity features, MCI subjects were classified into three groups, at-risk groups showed 

a different trajectory from the low-risk subtype. Patients with MCI who converted to AD 
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were present in all groups, even in the low-risk group, and persons who reverted from MCI 

to normal cognitive function were present even in at-risk groups. The rate of conversion of 

the low-risk group was five times larger than that of the at-risk group. In our work, MCI 

subjects were classified into four groups, with zero conversions from MCI to AD in the BP 

group and zero participants who reverted to normal in the PP group. The rate of conversion 

of the PP subtype is six times larger than the rate of conversion of the BP subtype. In a 

different study [30], MCI subjects were classified into four groups (MCI 1,2, 3, and 4) using 

ADNI MRI and CSF biomarkers. MCI 2, 3, and 4 all differ significantly from MCI 1 but do 

not differ significantly from each other in time to conversion. MCI patients who converted to 

AD were present in all groups. Gamberger et al. [29] proposed to use a multilayer clustering 

algorithm based on MCI biomarker data and identified two homogenous clusters of MCI 

subjects with different prognostic cognitive trajectories. MCI converters to AD were present 

in both clusters, and a cluster of rapid decliners had a five times larger rate of conversion 

than that of a cluster of slow decliners. However, some MCI patients did not fit into either 

cluster. In our work, all patients were assigned to a specific subtype, and we were able to 

discover four subtypes with significantly different trajectories, and with better conversion 

rate differences between PP and BP groups.

Identifying MCI patients based on pre-existing and often actionable comorbidities who 

will have distinct clinical outcomes later on is important for designing clinical trials. The 

power of a clinical trial to detect a significant drug effect depends on the degree to which 

change in status occurs in the untreated group compared to the treated group (size of 

the treatment effect) as well as the variability of the change in status in each group, 

both factors that determine the number of participants required and the study duration 

needed to demonstrate a desired effect. In trials of AD or MCI, variability is a problem in 

conducting clinical trials, for clinical tests of cognition are themselves inherently variable, 

and the study participants represent an extremely heterogeneous group with respect to 

disease progression. Trials that include MCI patients with slow decline of cognitive function 

will need to enroll large numbers of patients to detect an effect, whereas trials that enroll 

patients who suffer rapid decline have the potential to demonstrate a treatment effect more 

rapidly with smaller number of participants, if the treatment is effective. Moreover, the 

mechanisms governing the decline of cognitive function may differ among MCI participants. 

Our proposed comorbidity-driven multi-modality method in clustering patients into subtypes 

with distinct future clinical outcomes has high potential for designing and conducting 

effective clinical trials and improve the ability to detect a real effect if it exists, especially if 

the effect is greatest in one of the study groups.

In studies of MCI, progression/conversion to AD is a frequent outcome of interest. Our 

methodology successfully separated the patients who converted to AD (PP, AP, BP subtypes) 

with higher percentage of converters being in PP subtype. Analysis of the subgroups 

indicates that both hypertension and hearing loss are significantly more frequent in the 

PP subgroup and the frequency progresses across subgroups with increasing probability of 

progression, so special effort should be made to modify these risk factors in any patient 

with MCI, but especially in those in the PP subgroup. Recent data from SPRINT-MIND 

shows that very tight control of blood pressure is superior to moderate control in limiting 

the probability of dementia. Although obesity, diabetes and cardiovascular conditions 
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also differed among the subgroups, the progression from BP to PP was not consistent. 

Nevertheless, best practice would include control of comorbid conditions of any type. Other 

baseline features suggestive of AD in poorer prognosis subtypes are MRI hippocampus, 

entorhinal volumes, and cognitive tests, so activities shown to improve cognition such as 

exercise [50], may be recommended to improve their cognitive function abilities. Risk 

factors such as age or APOE status currently cannot be modified but may be helpful in 

further stratifying participants for clinical trials.

Some limitations of the current study are recognized, which can be addressed in future 

work. First, the comorbidity information in our study was based on the self-reported medical 

history and medication usage of participants captured in the ADNI database, which may 

be incomplete. In the future, we plan to apply this strategy using patient electronic health 

records that contains more comprehensive data of patient medical diagnoses, medication, lab 

test, and demographics. Second, in the current study, only the status (presence/absence), 

but not the severity of concurrent medical conditions, is considered. The severity of 

comorbidities (e.g., stage 1 vs stage 2 hypertension) is important for clustering MCI 

subjects into groups with distinct clinical outcomes. For example, the SPRINT MIND 

study found that there was significantly less cognitive impairment in patients whose blood 

pressure was reduced more aggressively than in those whose blood pressure was subjected 

to looser control. In addition, the risk associations with MCI/AD may vary among the 

8 comorbidities. In our study, we treated them the same (1 if they are present). In the 

future, we will further improve the comorbidity-driven subtyping algorithm by treating 

comorbidities as continuous instead of binary variables. Third, as chronic inflammation 

is a central mechanism of AD, in future work we will add another dimension based 

on inflammatory status, to include inflammatory biomarkers like CRP [51], other serum 

biomarkers related to inflammation, systemic inflammatory diseases including rheumatoid 

arthritis, psoriasis, ulcerative colitis, inflammatory bowel disease that are related to AD risk, 

and anti- or pro-inflammation medications such as TNF alpha inhibitors that our previous 

studies [52,53] have shown to be associated with significantly decreased risk for AD and 

dementia. Fourth, as our study used multi-level features and different level of features often 

partially correlate with each other, for example, age with cognitive functions and brain 

images, genotypes with biomarkers and brain images, and age with comorbidities. In future, 

we will consider such relations while stratifying the patients. Fifth, our current study is 

based on the ADNI database. Although ADNI is designed to develop clinical, imaging, 

genetic, and biochemical biomarkers for the early detection and tracking of AD and is one 

of the largest databases for AD research and contains multiple types of AD-related data, 

including MRI, PET, APOE, age, gender, and blood biomarkers, it is not a population-based 

study. Our findings need to be validated in other independent cohorts but the availability 

of such multi-modality databases with both MCI and AD subjects are limited. Finally, 

longitudinal follow-up changes in the comorbidity and non-comorbidity features were not 

considered, but the longitudinal changes may yield different results, especially given that the 

co-existing diseases may progress – or be treated – which may impact the subtypes in MCI. 

In the future, we will include such longitudinal data for MCI subtype analysis, and study 

conversion rates and patterns for each of the MCI subtypes.
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5 Conclusion

We performed a multi-modal subtype analysis of the MCI population from the ADNI 

database utilizing comorbidity information along with other AD-relevant biomarkers. These 

results highlight the importance of considering the comorbidity information along with 

other AD-relevant data modalities for the stratification analysis of MCI with distinct disease 

prognosis. Based on both comorbidities and other AD-related features, MCI population 

has been stratified into four different subtypes with significantly different trajectories. 

These subtypes are characterized by substantial differences in patient characteristics and 

patient outcomes (in the proportions of participants who revert to normal cognition, remain 

stable, or convert to AD). Both comorbidity profiles/signatures and biomarkers could 

become helpful for patient stratification in clinical trials, monitoring of patients, and for 

personalizing therapies. Since many of these comorbidities are modifiable risk factors for 

AD such as hypertension, obesity and depression, clusters identified by the comorbidity-

driven subtyping strategy can offer actionable strategies for both preventing and treating AD, 

for example, by managing comorbidities in Subtype 4 (BP). Appropriate management of 

these profiles/signatures might increase the possibility of delaying or even converting MCI 

to normal cognitive.
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RESEARCH IN CONTEXT

Systematic review:

We reviewed the literature using traditional methods and sources (e.g., Google 

Scholar, PubMed). Research suggests that the mild cognitive impairment (MCI) is a 

heterogeneous condition with high individual variability and several comorbidities co-

existing with MCI have been associated with poorer cognitive decline and development 

of dementia. None of these published studies incorporated AD-related comorbidities in 

studying MCI heterogeneity and subtypes.

Interpretation:

Our findings highlight the need to consider the comorbidity information along with other 

AD-relevant biomarkers for the subtype analysis of MCI.

Futuredirections:

Further study including longitudinal follow up changes will be required as it may yield 

different results, especially given that the co-existing diseases may progress – or be 

treated – which may impact the subtypes in MCI. Our findings need to be validated in 

other independent cohorts.

Katabathula et al. Page 14

Alzheimers Dement. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The overall methodology of stratification of MCI subjects.
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Figure 2: 
Kaplan-Meier plots for the stratification-A subtype. Tick marks represent censored patients.
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Figure 3: 
Kaplan-Meier plots for the stratification-B subtype. Tick marks represent censored patients.
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Figure 4: 
Subjects flow between two stratification subtypes (stratification-A subtype vs. stratification-

B subtype).

* Footnote: The number of MCI subjects in each subtype are provided with in the brackets. 

Each subtype consists of all MCI subjects who remain stable, who converted to AD, and 

who reverted to normal cognition.
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Table 1:

Statistics of the MCI population.

Feature MCI
(N=325)

 Female (%) 44.9

 Age (years, mean±SD) 71.08 ± 7.30

 Education in years (years, mean±SD) 16.18 ± 2.68

 Family History (%) 65.23

 APOE ɛ4 (% of >=1 allele) 47.38

The MRI volumetric features (volumes in mm3, mean±SD)

 Ventricles 0.024 ± 0.012

 Hippocampus 0.005 ± 8e-04

 Middle temporal gyrus 0.013 ± 0.0016

 Entorhinal 0.002 ± 4e-04

 Fusiform 0.012 ± 0.0014

Cognitive tests (scores, mean±SD)

 ADAS11 9.08 ± 4.22

 ADAS13 14.55 ± 6.41

 CDRSB 1.48 (0.89)

 FAQ 2.73 (3.77)

 MMSE 28.11 (1.67)

 RAVLT immediate 37.10 (10.85)

 RAVLT learning 4.71 (2.52)

 RAVLT forgetting 4.63 (2.54)

 RAVLT % forgetting 54.94 (31.48)

Plasma biomarkers (pg/mL, mean±SD)

 Nfl 37.17 (18.20)

 P-tau181 18.00 (12.24)

Lifestyle factors

 Alcoholic (%) 4.0

 Smoking (%) 37.23

Comorbidities

 Hypertension (%) 45.84

 Diabetes (%) 11.07

 Cholesterol (%) 51.07

 Depression (%) 28.61

 Obesity (%) 24.30

 Cardiovascular (%) 67.07

 Hearing Problems (%) 17.53

 TBI (%) 4.62
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NOTE: Mean and standard deviation (SD) for continuous variables and percentages for categorical variables were computed.

Abbreviations: N-number of subjects. ADAS - Alzheimer’s Disease Assessment Scale; CDRSB - Clinical Dementia Rating scale Sum of Boxes. 
FAQ - Functional Assessment Questionnaire. MMSE - Mini-Mental State Examination. RAVLT - Rey’s Auditory Verbal Learning Test.
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Table 2:

Subtype-wise distribution of biomarkers.

Feature PP (Subtype 1)
N=74

AP (Subtype 2)
N=85

GP (Subtype 3)
N=87

BP (Subtype 4)
N=79 P-val

Female (%) 27.03 37.65 42.53 72.15 <.0013,5,6

Age (years, mean±SD) 76.25 (6.87) 73.11 (5.90) 68.27 (6.49) 66.71 (5.77) <.051,2,3,4,5

Education (years, mean±SD) 15.70 (2.89) 16.37 (2.82) 16.28 (2.50) 16.30 (2.49) .14

Family History (%) 62.16 55.29 67.81 75.94 <.055

APOE ɛ4 (% of >=1 allele) 54.05 51.77 47.13 36.71 .13

The MRI volumetric features (volumes in mm3, mean±SD)

Ventricles 0.03 (0.013) 0.031 (0.0131) 0.017 (0.0064) 0.018 (0.0092) .44

Hippocampus 0.004 (7e-04) 0.004 (6e-04) 0.005 (5e-04) 0.005 (4e-04) <.052,3,4,5

Middle temporal gyrus 0.012 (0.001) 0.013 (0.0014) 0.014 (0.0012) 0.014 (0.0013) .14

Entorhinal 0.002 (5e-04) 0.002 (4e-04) 0.003 (4e-04) 0.003 (3e-04) <.052,3,4,5

Fusiform 0.011 (0.0013) 0.012 (0.0011) 0.013 (0.0013) 0.013 (0.0011) .17

Cognitive tests (scores, mean±SD)

ADAS11 13.37 (4.52) 9.55 (2.98) 8.49 (2.56) 5.22 (2.25) <.0011,2,3,5,6

ADAS13 21.27 (6.08) 15.69 (4.88) 13.60 (3.68) 8.08 (2.83) <.0011,2,3,4,5,6

CDRSB 2.40 (0.94) 1.18 (0.60) 1.26 (0.73) 1.18 (0.65) <.0011,2,3

FAQ 7.95 (4.26) 1.14 (1.28) 1.54 (2.05) 0.88 (1.44) <.0011,2,3

MMSE 27.17 (1.79) 27.89 (1.75) 28.37 (1.46) 28.94 (1.13) .1

RAVLT forgetting 5.01 (2.09) 5.29 (2.45) 5.31 (2.47) 2.82 (2.24) <.0011,2,3,5,6

RAVLT immediate 27.82 (6.63) 34.1 (7.42) 35.27 (6.34) 50.98 (7.35) .9

RAVLT learning 2.77 (1.96) 4.54 (2.41) 4.51 (1.97) 6.92 (1.92) <.051,2,3,5,6

RAVLT % forgetting 76.76 (27.41) 61.87 (25.98) 59.15 (26.09) 22.40 (18.40) .91

Plasma (pg/mL, mean±SD)

Nfl 47.64 (18.60) 42.78 (21.63) 31.50 (11.93) 26.86 (9.84) <.052,3,4,5

P-tau181 22.60 (16.96) 22.30 (12.49) 15.89 (7.82) 11.41 (5.30) .4

Lifestyle factors

Smoking (%) 32.43 38.82 32.18 45.57 .24

Alcoholic (%) 6.75 4.7 2.29 2.53 .44

Comorbidities

Hypertension (%) 67.05 54.05 34.48 27.84 <.0012,3,5

Diabetes (%) 10.81 14.11 11.49 7.595 .61

Cholesterol (%) 51.35 61.17 47.12 44.30 .14

Depression (%) 29.73 20 36.78 27.84 .11

Obesity (%) 27.02 15.29 24.13 31.64 <.055

Cardiovascular (%) 67.56 83.52 63.21 53.16 <.0014,5

Hearing Problems (%) 22.97 28.23 14.94 3.79 <.0013,5
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Feature PP (Subtype 1)
N=74

AP (Subtype 2)
N=85

GP (Subtype 3)
N=87

BP (Subtype 4)
N=79 P-val

TBI (%) 5.40 5.88 4.59 2.53 .75

NOTE: The Mean, Standard Deviation (Mean (SD)) for continuous features and percentages for categorical variables were computed in each 
subtype. MRI volumes presented as a fraction of intracranial volume.

Post hoc Differences between PP and AP1; PP and GP2; PP and BP3; AP and GP4; AP and BP5; GP and BP6.

Abbreviations: N- number of subjects. PP - Poor Prognosis, AP - Average Prognosis, GP - Good Prognosis, BP -Best Prognosis. ADAS - 
Alzheimer’s Disease Assessment Scale; CDRSB - Clinical Dementia Rating scale Sum of Boxes. FAQ - Functional Assessment Questionnaire. 
MMSE - Mini-Mental State Examination. RAVLT - Rey’s Auditory Verbal Learning Test.
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Table 3:

Distribution of Reverters to Normal, MCI stable, and Converters to AD for each of the four subtypes generated 

by comorbidity-driven Stratification-A strategy.

PP (Subtype 1) AP (Subtype 2) GP (Subtype 3) BP (Subtype 4)

Reverters (%) 0 3.53 11.2 18.25

Stablers (%) 40.54 68.24 79.6 81.75

Converters (%) 59.46 28.24 9.2 0

Mean conversion time to AD (Days) 1191.5 1320.58 1328.5 -

First conversion time to AD (Days) 343 371 636 -

PP – Poor Prognosis, AP Average Prognosis, GP - Good Prognosis, BP -Best Prognosis.
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