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A hippocampal mossy fiber synapse implicated in learning
and memory is a complex structure in which a presynaptic
bouton attaches to the dendritic trunk by puncta adherentia
junctions (PAJs) and wraps multiply branched spines. The
postsynaptic densities (PSDs) are localized at the heads of each
of these spines and faces to the presynaptic active zones. We
previously showed that the scaffolding protein afadin regulates
the formation of the PAJs, PSDs, and active zones in the mossy
fiber synapse. Afadin has two splice variants: l-afadin and
s-afadin. l-Afadin, but not s-afadin, regulates the formation of
the PAJs but the roles of s-afadin in synaptogenesis remain
unknown. We found here that s-afadin more preferentially
bound to MAGUIN (a product of the Cnksr2 gene) than
l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the
causative genes for nonsyndromic X-linked intellectual
disability accompanied by epilepsy and aphasia. Genetic abla-
tion ofMAGUIN impaired PSD-95 localization and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor
surface accumulation in cultured hippocampal neurons. Our
electrophysiological analysis revealed that the postsynaptic
response to glutamate, but not its release from the presynapse,
was impaired in the MAGUIN-deficient cultured hippocampal
neurons. Furthermore, disruption of MAGUIN did not increase
the seizure susceptibility to flurothyl, a GABAA receptor
antagonist. These results indicate that s-afadin binds to
MAGUIN and regulates the PSD-95-dependent cell surface
localization of the AMPA receptor and glutamatergic synaptic
responses in the hippocampal neurons and that MAGUIN is
not involved in the induction of epileptic seizure by flurothyl in
our mouse model.
* For correspondence: Kenji Mandai, mandai@med.kitasato-u.ac.jp; Yoshimi
Takai, ytakai@med.kobe-u.ac.jp.

© 2023 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
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Synapses are structures through which neurons transmit
impulses to other neurons or cells. A synapse is composed of
multiple cell adhesion sites, including synaptic junctions (SJs)
and puncta adherentia junctions (PAJs) that are similar to
epithelial adherens junctions. A prominent example of a syn-
apse is the hippocampal mossy fiber synapse, a large and
complex structure formed between the axon terminal of
dentate granule cell and the proximal dendrite of CA3 pyra-
midal cell (1, 2). At the mossy fiber synapse, presynaptic
boutons attach to a dendritic shaft by multiple PAJs and wrap
around a highly branched dendritic spine, where multiple SJs
are formed (3). The postsynaptic densities (PSDs) are located
at the heads of the spine branches and face toward the active
zones (AZs). In mice, there are approximately twenty AZs in a
single mossy fiber bouton.

Afadin (a product of the Afdn gene) was originally purified
from rat brains as an actin filament (F-actin)-binding protein
and displayed a primary sequence similar to that of the human
ALL-1 fused gene from chromosome 6 (AF-6) gene product (4).
It was purified as the larger and smaller variants with molec-
ular masses of 205 kDa and 190 kDa, named l-afadin and
s-afadin, respectively. From the N-terminus, l-afadin has
multiple domains, including two Ras-associating (RA) do-
mains, a forkhead-associated domain, a dilute domain, a PDZ
domain, three proline-rich regions, and an F-actin-binding
(FAB) domain, whereas s-afadin lacks the C-terminal FAB
domain and the third proline-rich region (5). l-Afadin is
broadly expressed in all tissues examined, whereas s-afadin is
only expressed in the brain (4).

Both l-afadin and s-afadin bind to cell adhesion molecule
nectin, which constitutes a family of four members (nectin-1,
nectin-2, nectin-3, and nectin-4) (5). In the hippocampal
mossy fiber synapse PAJs, l-afadin as well as N-cadherin and
αN-catenin is symmetrically localized at the presynaptic and
postsynaptic sides, whereas nectin-1 and nectin-3 are
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asymmetrically localized at the presynaptic and postsynaptic
sides, respectively (6, 7). In addition to this localization,
l-afadin and presumably s-afadin are localized partly at the
SJs in the dendritic spines (8–10). Our recent studies on the
in vivo and in vitro roles of afadin in the structural and
functional differentiations of the hippocampal synapses
showed that the localization of nectin-1, nectin-3, and N-
cadherin is impaired in the afadin-deficient synapses.
Further, the studies by serial block face-scanning electron
microscopy showed that the complexity of postsynaptic
spines and mossy fiber boutons, the number of spine heads,
the area of the PSDs, and the density of the synaptic vesicles
docked to the AZs are decreased in the afadin-deficient
synapses (11). These results indicate that afadin plays mul-
tiple roles in the complex ultrastructural morphogenesis of
the hippocampal mossy fiber synapses. Consistent with these
morphological results, the electrophysiological studies
revealed that both the release probability of glutamate and
the postsynaptic responsiveness to glutamate are significantly
reduced in the afadin-deficient mossy fiber synapses and in
the synapses in cultured afadin-deficient hippocampal neu-
rons (12). These results indicate that afadin plays multiple
roles in the presynaptic and postsynaptic functions of the
hippocampal synapses. However, it remains unknown which
splice variant of afadin, l-afadin or s-afadin, is involved in the
structural and functional differentiations of the mossy fiber
synapses.

Using the afadin-deficient cultured hippocampal neurons
in which the PAJ-like structure was poorly formed, we sub-
sequently showed that l-afadin, but not s-afadin, is involved
in the formation of the PAJs through the binding to F-actin
and α-catenin (13). Thus, the roles of s-afadin in the struc-
tural and functional differentiations of the hippocampal
synapses including the mossy fiber synapses remain
unknown.

Extending these earlier findings, we attempted here to
elucidate the roles of s-afadin in the formation of the hippo-
campal synapses and found that s-afadin more preferentially
bound to MAGUIN than l-afadin in vivo and in vitro and
regulated the structural and functional differentiations of the
PSDs through the binding to MAGUIN. MAGUIN was orig-
inally identified as an S-SCAM-binding protein (14). There
are two splice variants for MAGUIN; a longer isoform
MAGUIN-1 and a shorter isoform MAGUIN-2 that lacks the
C-terminal 137 amino acids (aa) of MAGUIN-1. MAGUIN is
a mammalian homologue of the Drosophila Cnk gene product,
which regulates the Ras-Raf–MAPK signaling pathway (15).
MAGUIN was further shown to bind to Raf-1 and PSD-95
(14, 16). Clinically, the partial deletion or deficiency of
MAGUIN/CNKSR2 can be a cause of nonsyndromic X-linked
intellectual disability and seizure (17–20). We also found here
that s-afadin regulated the clustering of PSD-95 and cell
surface localization of the α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic (AMPA) receptor, that MAGUIN regu-
lated glutamatergic synaptic responses in the hippocampal
neurons and that disruption of MAGUIN did not increase the
seizure susceptibility to flurothyl in our mouse model.
2 J. Biol. Chem. (2023) 299(4) 103040
Results

Identification of MAGUIN as an s-afadin-binding protein

To elucidate the mechanism for the formation of the PSDs
by l-afadin and s-afadin, we attempted to identify afadin-
binding proteins using an immunoprecipitation assay with
the l-afadin polyclonal antibody (pAb) and the l/s-afadin pAb
recognizing both l-afadin and s-afadin in the crude membrane
fraction prepared from the mouse brains. The immunopre-
cipitates were subjected to SDS-PAGE, followed by Western
blotting. l-Afadin was immunoprecipitated with both the
pAbs, whereas s-afadin was immunoprecipitated by an l/s-
afadin pAb but not an l-afadin pAb (Fig. 1A). We found that
MAGUIN-1 and MAGUIN-2 were coimmunoprecipitated
with afadin. The amounts of MAGUIN-1 and MAGUIN-2
immunoprecipitated by the l/s-afadin pAb were higher than
those immunoprecipitated by the l-afadin pAb (Fig. 1, A−C).
This more preferential binding of MAGUIN to s-afadin than to
l-afadin was confirmed by immunoprecipitation assays in
which each of enhanced GFP (EGFP)-tagged afadin splice
variants and V5-tagged MAGUIN-1 were coexpressed in hu-
man embryonic kidney (HEK) 293 cells (Fig. 1, D and E).
V5-tagged MAGUIN-1 was immunoprecipitated with EGFP-
tagged s-afadin, while V5-tagged MAGUIN-1 was hardly
immunoprecipitated with EGFP-tagged l-afadin. These results
indicate that s-afadin binds to MAGUIN-1 more preferentially
than l-afadin in vivo and in vitro.

Binding regions of s-afadin and MAGUIN and requirement of
the binding of s-afadin to MAGUIN for the localization of
PSD-95 in cultured hippocampal neurons

Because MAGUIN-1 is known to interact with the PSD
components S-SCAM and PSD-95 (14), we examined whether
the binding of s-afadin to MAGUIN-1 is required for the
formation of the PSDs in cultured hippocampal neurons. For
this purpose, we first determined the s-afadin-binding region
of MAGUIN. The V5-tagged full-length and N-terminal and
C-terminal fragments of MAGUIN-2, a shorter splice variant
of MAGUIN, shown in Figure 1F were coexpressed with
EGFP-s-afadin in HEK293 cells and EGFP-s-afadin was
immunoprecipitated from these cell lysates with a GFP pAb.
MAGUIN-2 was used because the PDZ-binding motif in
MAGUIN-1 was not essential for the binding of afadin to
MAGUIN-1/-2 (Fig. 1, A and C). The C-terminal fragment of
MAGUIN-2 containing the pleckstrin homology (PH) domain
was coimmunoprecipitated with EGFP-s-afadin but not with
the N-terminal fragment (Fig. 1, G and H), indicating that s-
afadin binds to the C-terminal region of MAGUIN-2, which
contains a PH domain. Next, we determined the MAGUIN-
binding region of s-afadin. Because the PH domain of
another afadin-binding protein, PLEKHA7, binds to the RA
domains of afadin (21), we further examined the possibility of
the binding of the RA domains of afadin to MAGUIN-2. The
cell lysate obtained from HEK293 cells expressing V5-tagged
MAGUIN-2 was subjected to a pull-down assay using gluta-
thione S-transferase (GST)-afadin-NN fragment (aa 2–500)
containing the RA domains of afadin. MAGUIN-2 bound to
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Figure 1. Binding of MAGUIN to s-afadin. A–E, preferential binding of MAGUIN to s-afadin over l-afadin. A–C, in vivo immunoprecipitation assay for the
binding of MAGUIN to s-afadin. The lysate of the light membrane fraction of the mouse brains was immunoprecipitated by rabbit IgG, the l-afadin pAb, or
the l/s-afadin pAb. The lysate and the immunoprecipitated samples were subjected to SDS-PAGE, followed by Western blotting with the l/s-afadin pAb and
the MAGUIN pAb recognizing both of MAGUIN-1 and MAGUIN-2. A, Western blot. Arrow, l-afadin; arrowhead, s-afadin; open arrow, MAGUIN-1; open
arrowhead, MAGUIN-2. B and C, quantification of band intensities in three independent experiments. B, the average ratio of MAGUIN-1 immunoprecipitated
with each indicated Ab to MAGUIN-1 immunoprecipitated with the l/s-afadin pAb. p = 0.0006 (one way ANOVA). C, the average ratio of MAGUIN-2
immunoprecipitated with each indicated Ab to MAGUIN-2 immunoprecipitated with the l/s-afadin pAb. p = 0.0001 (one way ANOVA). D and E, in vitro
immunoprecipitation assay for the binding of MAGUIN to s-afadin. The lysates from HEK293 cells expressing EGFP, EGFP-tagged s-afadin, or EGFP-tagged
l-afadin with V5-tagged MAGUIN-1 were immunoprecipitated with the GFP pAb. The cell lysates and immunoprecipitated samples were subjected to
Western blotting with the GFP pAb and the MAGUIN pAb. D, Western blot. E, quantification of band intensities in three independent experiments. The
average ratio of V5-tagged MAGUIN-1 immunoprecipitated with each indicated recombinant protein to V5-tagged MAGUIN-1 immunoprecipitated with
EGFP-s-afadin. p = 0.0101 (one way ANOVA). F–H, binding of the C-terminal portion of MAGUIN-2 to s-afadin. F, schematic drawings for the full length and
deletion mutants of MAGUIN used in the experiments. SAM, the sterile alpha motif domain; CRIC, the conserved region in CNK domain; PDZ, the PDZ
domain; DUF1170, the domain of unknown function 1170; PH, the pleckstrin homology domain; PDZ-BM, the PDZ binding motif. Note that MAGUIN-2 lacks
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the GST-afadin-NN fragment (Fig. 1, I and J). Consistently, the
mutant of s-afadin lacking the RA domains was not coim-
munoprecipitated with GFP-MAGUIN-1 (Fig. 1, K and L).
Collectively, these results indicate that the binding of s-afadin
to MAGUIN is mediated through the first and/or second RA
domain(s) of s-afadin and the C-terminal region of MAGUIN
(aa 567–897) containing the PH domain.

We then examined whether reexpression of l-afadin,
s-afadin, or the s-afadin mutant lacking the RA domains
restore the formation of the PSD-like structures in the
cultured afadin-deficient hippocampal neurons obtained
from Afdnf/f;nestin-cre embryos. Reexpression of l-afadin or
s-afadin significantly increased the signals for PSD-95,
compared with those of the adjacent untransfected neurons
(Fig. 2, A−F). In contrast, reexpression of the s-afadin mutant
lacking the RA domains did not restore the immunofluo-
rescence signals for PSD-95 at synapses, compared with
those of the adjacent untransfected neurons (Fig. 2, G and
H). These results indicate that the binding of MAGUIN-1 to
s-afadin regulates the localization of PSD-95 in cultured
hippocampal neurons.
Requirement of MAGUIN-1 for the localization of PSD-95 in
cultured hippocampal neurons

To determine whether MAGUIN is required for the local-
ization of PSD-95 in cultured neurons, we generated a
MAGUIN null allele by homologous recombination (Fig. 3,
A–C). The MAGUIN gene locus is on the X chromosome in
the mouse. The male and female MAGUIN-deficient mice
were born in the expected Mendelian ratios, grew up into
adult, and were fertile. The general appearance of the male
hemizygous and female heterozygous and homozygous mice
was indistinguishable from those of the control WT mice. In
Western blot analysis of the brain homogenate prepared from
the MAGUIN-deficient mouse, no bands corresponding to
MAGUIN were detected (Fig. 3D).

Because a MAGUIN Ab applicable to immunostaining is
not available, we determined whether MAGUIN is expressed
in the hippocampus in vivo. For this purpose, the expression of
MAGUIN in the various mouse brain regions was examined by
Western blotting. MAGUIN was found to be most highly
expressed in the hippocampus, next highly expressed in the
the C-terminal 137 aa of MAGUIN-1 including the PDZ binding motif (ETHV). G
portion of MAGUIN-2 to s-afadin. The lysates from HEK293 cells expressing V5-
EGFP-tagged s-afadin were immunoprecipitated with the GFP pAb. The cell ly
with the GFP pAb and the V5 mAb. G, Western blot. Open arrowhead, nonsp
periments. The average ratio of each V5-tagged MAGUIN-2 variant immunopr
with EGFP-s-afadin. p = 0.0100 (one-way ANOVA). I–L, binding of MAGUIN to the
HEK293 cells expressing V5-tagged MAGUIN-2 was subjected to GST pull-down
the samples pulled down were analyzed by Western blotting with the V5 mA
staining. J, quantification of band intensities in three independent experimen
tagged MAGUIN-2 pulled down by GST-NN. Statistical difference was deter
assay for the binding of MAGUIN to the RA domains of s-afadin. The lysates fr
afadinΔRA with V5-tagged MAGUIN-1 were immunoprecipitated with the GF
immunoprecipitated samples were subjected to Western blotting with the GFP
three independent experiments. The average ratio of V5-tagged MAGUIN-1 im
MAGUIN-1 immunoprecipitated with EGFP-s-afadin. p = 0.0001 (one-way AN
domain. Images are a representative of three independent experiments in A
paired differences by post hoc Scheffe tests are shown in B, C, E, H, and L. E
polyclonal antibody; PH, pleckstrin homology; RA, Ras-associating.
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striatum and cerebral cortex, and moderately expressed in the
olfactory bulb and cerebellum (Fig. 4A).

To investigate the role of MAGUIN in the localization of
PSD-95 at synapses in vitro, hippocampal neuron cultures
were prepared from control WT embryos and MAGUIN-
deficient embryos. Afadin expression was not affected by the
deletion of MAGUIN in the hippocampal neuron culture
prepared from the MAGUIN-deficient embryos (Fig. 4B). In
the control WT neurons, the signal for PSD-95 was indeed
observed as dots along the dendrites (Fig. 4C). However, in the
MAGUIN-deficient neurons, the signal for PSD-95 was
decreased significantly (100.0 ± 6.1% in WT neurons and
70.8 ± 6.1% in MAGUIN-deficient neurons) (Fig. 4, C and D).
Whereas there was no reduction in the PSD-95 cluster density
in the MAGUIN-deficient neurons (number of clusters per
10 μm along dendrites: 8.0 ± 0.5 in WT neurons and 7.7 ± 0.4
in MAGUIN-deficient neurons) (Fig. 4, C and E). These re-
sults are consistent with the previous report using shRNA-
mediated knockdown of MAGUIN in cultured hippocampal
neurons (22) and are similar to the phenotypes observed in
the afadin-deficient mossy fiber synapse (11). These results
indicate that MAGUIN as well as afadin is required for the
localization of PSD-95 at the synapses in cultured hippo-
campal neurons.
Attenuation of postsynaptic response to glutamate and the
cell surface localization of the AMPA receptor in
MAGUIN-deficient cultured hippocampal neurons

The properties of the postsynapses were next examined by
electrophysiological recordings of cultured hippocampal
neurons. Recordings were performed from typical pyramidal-
shaped neurons identified based on the morphological
features of the cells with flattened cell bodies and radially
projecting dendrites. The amplitude of the miniature excit-
atory postsynaptic currents (mEPSC) was significantly smaller
in the MAGUIN-deficient neurons, compared with that of the
control WT neurons (10.4 ± 0.3 pA in WT neurons and 9.4 ±
0.3 pA in MAGUIN-deficient neurons), suggesting that the
postsynaptic responsiveness to glutamate is reduced in the
MAGUIN-deficient hippocampal neurons (Fig. 5, A–C).
However, the inter-event interval of mEPSCs recorded in the
cultured MAGUIN-deficient hippocampal neurons was not
and H, in vitro immunoprecipitation assay for the binding of the C-terminal
tagged MAGUIN-2, V5-tagged MAGUIN-2-C, or V5-tagged MAGUIN-2-N with
sates and immunoprecipitated samples were subjected to Western blotting
ecific signals. H, quantification of band intensities in four independent ex-
ecipitated with EGFP-s-afadin to V5-tagged MAGUIN-2 immunoprecipitated
N-terminal RA domains of afadin. I and J, GST pull-down assay. The lysate of
assay using GST or GST-NN (the RA domains of afadin). The cell lysate and
b and followed by amido black staining. I, Western blot and amido black
ts. The average ratio of V5-tagged MAGUIN-2 pulled down by GST to V5-
mined by two-tailed paired t test. K and L, in vitro immunoprecipitation
om HEK293 cells expressing EGFP, EGFP-tagged s-afadin, or EGFP-tagged s-
P pAb. s-AfadinΔRA, s-afadin lacking the RA domains. The cell lysates and
pAb and the V5 mAb. K, Western blot. L, quantification of band intensities in
munoprecipitated with each indicated recombinant protein to V5-tagged

OVA). IB, immunoblotting; IP, immunoprecipitation; RA, the Ras-associating
, D, I, and K, or four independent experiments in G. The p-values of the
rror bars, SEM. EGFP, enhanced GFP; HEK, human embryonic kidney; pAb,
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Figure 2. Requirement of the RA domains of s-afadin for the localization of PSD-95 in cultured hippocampal neurons. A, C, E, and G, restoration of the
accumulation of PSD-95 by expression of l-afadin or s-afadin but not by s-afadin lacking RA domains. Cultured hippocampal neurons were stained with the
PSD-95 mAb and GFP pAb. The neurons were obtained from the afadin-deficient embryos (Afdnf/f;nestin-cre) at embryonic day 18.5 and were transfected
with the constructs to express the indicated recombinant proteins. The scale bars represent 5 μm. B, D, F, and H, the average ratio of the intensity of signals
for PSD-95 in the neurons transfected with the constructs expressing the indicated recombinant proteins, relative to that of the adjacent untransfected
neurons in the afadin-deficient hippocampal neuron culture. Each data point represents the mean signal intensity of 15 PSD-95 clusters. Five or six neuron
pairs were measured to examine the effect of reexpressions of each EGFP-afadin variant in afadin-deficient neurons in primary cultures prepared twice. RA,
the Ras-associating domain. Statistical difference was determined against EGFP transfected control neurons by two-tailed paired t test. Error bars, SEM.
EGFP, enhanced GFP; pAb, polyclonal antibody; PSD, postsynaptic density.

s-Afadin−MAGUIN interaction regulates synaptic functions
significantly different from that of the control WT
hippocampal neurons (0.46 ± 0.10 s inWT neurons and 0.61 ±
0.12 s in MAGUIN-deficient neurons), suggesting that
MAGUIN is not involved in the regulation of the number of
glutamatergic excitatory synapses functioning in cultured
hippocampal neurons (Fig. 5, D and E).

Postsynaptic properties were further examined by the
assessment of the expression of the AMPA-type ionotropic
glutamate receptor subunit 1 (GluA1) and subunit 2 (GluA2)
on the surface of the cultured hippocampal neurons, which
mediate EPSCs and indirectly interact with PSD-95 to accu-
mulate at synapses (23). The total amounts of surface ex-
pressions of GluA1 and GluA2, as well as N-methyl-D-
aspartate (NMDA) receptor subunits, were not different be-
tween the control WT and MAGUIN-deficient neurons
(Fig. 6A). The AMPA receptor subunit, GluA2, exists not only
at the PSDs but also on the external surfaces of the neuronal
somas, dendrites, and spines (24). Thus, even though the
Western blot bands for the surface AMPA receptor subunits
were not changed in the MAGUIN-deficient neurons, the
accumulation of these proteins at synapses could be changed.
Therefore, we examined the immunofluorescence signals of
the GluA1 and GluA2 clusters on the cell surface and found
that they were reduced by 49.0% and 28.4%, respectively, in the
MAGUIN-deficient neurons, compared with those of the
control WT neurons (Fig. 6, B and C). These observations are
similar to the finding that the signal intensity of the GluA1
clusters on the cell surface is reduced in afadin-deficient
hippocampal neurons (12). These results indicate that
MAGUIN as well as afadin is involved in the postsynaptic
functions in the hippocampal synapses by facilitating the cell
surface localization of the AMPA receptor.
J. Biol. Chem. (2023) 299(4) 103040 5
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No increase of the GABAA receptor antagonist-induced seizure
susceptibility by MAGUIN deficiency

Mutations in MAGUIN/CNKSR2 were implicated in spon-
taneous seizure in both human patients and knockout mice
(25). However, in the MAGUIN-deficient mice used in this
study, no spontaneous seizures were observed under normal
breeding conditions. Therefore, we examined whether a
GABAA receptor antagonist, flurothyl, would increase the
seizure susceptibility in theMAGUIN-deficient mice. Test mice
were placed in an airtight chamber filled with air containing
volatile flurothyl. The latencies to myoclonic and generalized
seizure were recognized as a reliable index of seizure threshold
(26). The latency period of myoclonic seizure in the MAGUIN-
deficient mice was rather slightly longer than in the controlWT
mice, although the difference was not statistically significant
6 J. Biol. Chem. (2023) 299(4) 103040
(185.5 ± 6.9 s and 211.0 ± 12.5 s inWT andMAGUIN-deficient,
respectively) (Fig. 7A). The latency period of generalized seizure
in the MAGUIN-deficient mice was almost the same as that in
control WT mice (220.1 ± 7.7 s and 233.0 ± 15.7 s in WT and
MAGUIN-deficient, respectively) (Fig. 7B). These results sug-
gest that seizure susceptibility to flurothyl is not increased in
the MAGUIN-deficient mice generated by us.

Discussion

We previously showed that l-afadin, but not s-afadin, is
involved in the formation of the PAJs of the mouse hippo-
campal mossy fiber synapse (13). In addition, it was previously
shown that the longer isoform of AF-6 (synonym for l-afadin)
regulates the spine morphogenesis through its PDZ and N-
terminal RA domains (10). However, it remained unknown
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s-Afadin−MAGUIN interaction regulates synaptic functions
whether s-afadin is involved in the spine morphogenesis. In
this study, we elucidated for the first time the role of s-afadin
in the structural and functional differentiations of the PSDs of
the mouse hippocampal synapses. We showed here that both l-
afadin and s-afadin had the ability to form PSD-like structures
in cultured hippocampal neurons and that s-afadin more
preferentially bound to MAGUIN than l-afadin in vivo and
in vitro, resulting in the formation of the PSDs.

The PSDs consist of many components, including PSD-95
and S-SCAM (27). The NMDA and AMPA glutamate re-
ceptors are anchored to the PSDs via binding to PSD-95 and
S-SCAM (27). S-SCAM binds to not only PSD-95 and
MAGUIN but also many other PSD components, such as
SAPAP1, β-catenin, δ-catenin, and the NMDA glutamate re-
ceptor (14, 28–31). Taken together with these previous studies,
the present results demonstrate that s-afadin regulates the
assembly of the PSD components through PSD-95 by binding
to MAGUIN, potentially in cooperation with S-SCAM. The
mechanism for the formation of the PSDs by l-afadin was not
studied here but it is likely that l-afadin binds to a protein(s)
different from MAGUIN and regulates the formation of the
PSDs in a manner different from that of s-afadin. However,
since l-afadin binds to MAGUIN-1 and -2, although to a lesser
extent than s-afadin, a MAGUIN-dependent mechanism
cannot be completely ruled out at present. Future analysis is
required for this issue.

The precise mechanism for the more preferential binding of
s-afadin to MAGUIN than l-afadin is not known but may be
due to the structural difference between s-afadin and l-afadin.
The only difference of the primary structure between them is
that s-afadin lacks the third proline-rich domain and the FAB
domain at the C-terminal region in l-afadin. We identified here
that the MAGUIN-binding domain of s-afadin was the region
containing two RA domains, which is located near its N ter-
minus. Therefore, the intramolecular binding between the
N-terminal RA domains and the FAB domain of l-afadin may
hinder MAGUIN from binding to the RA domains of l-afadin.
To elucidate the mechanisms for the different binding prop-
erties between l-afadin and s-afadin, three-dimensional struc-
tural analysis on them is essential.
J. Biol. Chem. (2023) 299(4) 103040 7
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s-Afadin−MAGUIN interaction regulates synaptic functions
We showed here that the PDZ domain of s-afadin is not
required for the binding of MAGUIN to s-afadin, indicating
that the binding of nectins to the PDZ domain of s-afadin is
not involved in the formation of the PSDs by s-afadin in
cooperation with MAGUIN. This present result is consistent
with the previous finding that nectin-1 and nectin-3, which
bind to the PDZ domain of l- and s-afadin, are not involved in
the formation of the PSDs as well as the AZs by the analysis for
the nectin-1-deficient mice and the nectin-3-deficient mice
using electron microscopy (32).
8 J. Biol. Chem. (2023) 299(4) 103040
We previously showed that l-afadin and s-afadin are mainly
localized at the PAJs and partly at the SJs (8). The three-
dimensional structure of the afadin-deficient hippocampal
mossy fiber synapses showed that afadin was required for the
AZ formation, assembly of the docked synaptic vesicles and
synaptic vesicles in the readily releasable pool, and arboriza-
tion of the postsynaptic spines (11). However, it remains un-
known which splice variant of afadin regulates these processes.
The present study showed that MAGUIN was involved in the
postsynaptic functions of hippocampal synapses but not in the
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presynaptic ones by electrophysiological analysis. MAGUIN
was shown to be localized in the synapses of cultured hippo-
campal neurons (14, 33). However, it is not clear whether
MAGUIN is localized in the presynapses and/or postsynapses,
because the Ab that is applicable to immunohistochemistry
and immunoelectron microscopic analysis is not available
currently. The present study indicates that MAGUIN is
localized and functions, at least, in the postsynapses. On the
other hand, we previously showed that afadin is involved in the
NGL-3-LAR system-induced presynaptic differentiation of
hippocampal neurons cooperatively with β-catenin and
γ-catenin in a nectin-1-independent manner (8). It is unknown
which isoform of afadin is involved in the NGL-3-dependent
presynaptic differentiation. γ-Catenin more preferentially
binds to s-afadin than l-afadin. Thus, s-afadin would play a
more important role in the NGL-3-dependent presynaptic
differentiation than l-afadin. However, further studies are
needed to establish the roles of s-afadin in the presynapses.

We showed here that the postsynaptic responsiveness to
glutamate and the surface expression of the AMPA receptor
are reduced in the MAGUIN-deficient cultured hippocampal
neurons. It was shown that PSD-95 and S-SCAM indirectly
interact with the AMPA receptor through the transmembrane
AMPA receptor regulatory proteins (23, 34). Therefore, it is
possible that s-afadin regulates the localization of the AMPA
receptor through MAGUIN in a PSD-95-dependent and/or a
S-SCAM-dependent manner.

Other notable candidates functioning with the
MAGUIN−afadin molecular complex are Traf2- and Nck-
interacting protein kinase and Vilse/Arhgap39 (22, 35). Both
bind to MAGUIN and regulate PSD morphogenesis in coop-
eration with small G proteins. Afadin is a critical regulator of
several small G proteins, including Rap and Rac (36). By
exploring these molecular linkages consisting of s-afadin,
MAGUIN, Traf2- and Nck-interacting protein kinase, and/or
Vilse, the mechanisms of postsynapse formation will be un-
derstood in more detail.

MAGUIN was identified to be a mammalian homologue of
the Drosophila Cnk gene product, which regulates the Ras-Raf-
MAPK signaling (15). MAGUIN was further shown to bind to
J. Biol. Chem. (2023) 299(4) 103040 9
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Raf-1 (16). In this current study, Raf-1 was not examined in the
MAGUIN-deficient hippocampal neurons. The Ras-Raf-
MAPK signaling is involved in the synaptic plasticity in the
hippocampus and regulates the gene expression of proteins
including the PSD proteins (37). Thus, the possible roles of
MAGUIN in the Ras-Raf-MAPK signaling need to be clarified.
MAGUIN was further shown to be required for the dendritic
spine formation (35). The structural plasticity of dendritic
spines is related to the synaptic efficacy and learning and
memory (38). Therefore, s-afadin might be involved in the
synaptic plasticity through the binding to MAGUIN.

MAGUIN is reported to have association with some
neuropsychiatric diseases. Partial deletion and deficiency of
MAGUIN/CNKSR2 and point mutations in MAGUIN/
CNKSR2 are involved in nonsyndromic X-linked intellectual
disability accompanied with epilepsy and aphasia (17, 18, 20,
39) and MAGUIN/CNKSR2 is associated with schizophrenia
(40). Moreover, the expression of afadin is reduced in the
anterior cingulate cortex of schizophrenia patients (41).
Therefore, if the roles of MAGUIN and afadin in the devel-
opment of the brain and the maintenance of synapses and
neural circuits as well as their mechanisms of action were
made clear, pathogenesis of these diseases would be better
understood.

In this study, apparent epileptic seizures and facilitation of
flurothyl-induced seizures were not observed in theMAGUIN-
deficient mice established here. Therefore, epilepsy in the
human patients with mutations inMAGUIN/CNKSR2may not
be simply caused by the defects in the excitatory synaptic
transmission. In contrast, it was recently reported that Cnksr2-
10 J. Biol. Chem. (2023) 299(4) 103040
deficient mice of a different strain from the one used in this
study display spontaneous seizure, and net increase of cortical
neuronal activity, as well as several behavioral abnormalities
(25), although the targeting strategies of these two strains, in
which exon 2 was deleted, were quite similar. The clear dif-
ference is the genetic background of the mouse strains:
C57BL/6J was used by Erata and colleagues, while C57BL/6N
was used in this study. Importantly, C57BL/6J and C57BL/6N
are known to show different flurothyl-induced seizure sus-
ceptibilities (42). The detailed mechanisms of the difference
need to be clarified in the future.

Experimental procedures

Antibodies

A rabbit l/s-afadin pAb recognizing both of l-afadin and s-
afadin was prepared as described (4). A rabbit antiserum was
raised against a synthetic peptide corresponding to aa 759-777
(RKTASQRRSWQDLIETPLT) of mouse MAGUIN
(NP_808419). The antiserum was affinity-purified with the
antigen and the purified antiserum was used as a MAGUIN
pAb. The Abs listed below were purchased from commercial
sources: rabbit GFP pAb (Thermo Fisher Scientific); mouse
V5 mAb (Thermo Fisher Scientific); mouse actin mAb (BD
Transduction Laboratories); mouse PSD-95 mAb (clone K28/
43) (NeuroMAB); mouse GluA1 mAb (Merck); mouse GluA2
mAb (Merck); and chicken MAP2 pAb (abcam), mouse
GluN1 mAb (BD Transduction Laboratories), rabbit GluN2A
pAb (Frontier Institute), and rabbit GluN2B pAb (Frontier
Institute). Alexa Fluor-conjugated goat or donkey secondary
Abs (Thermo Fisher Scientific and Jackson ImmunoResearch)
were used for immunocytochemistry.

Constructs

The mammalian expression plasmids for EGFP-tagged rat
l-afadin, EGFP-tagged rat s-afadin, and bacterial expression
plasmid for GST-rat afadin NN (aa 2–500) were described (21).
The complementary DNA coding mouse MAGUIN-1 (clone
ID: 6405389) was obtained from the I.M.A.G.E. consortium.
The expression plasmid for an EGFP-tagged s-afadin mutant
lacking the RA domains (aa 350–1663), V5-tagged plasmids for
full-length MAGUIN-1, full-length MAGUIN-2, MAGUIN-2-
N (aa 1–572), and MAGUIN-2-C (aa 567–896) were con-
structed using PCR-based standard molecular biology
techniques.

Immunoprecipitation

All the procedures were conducted at 4 �C or on ice. For the
analysis of endogenous proteins, the brains of male ICR mice
at postnatal day 21 were homogenized in 8-fold brain volumes
of a buffer containing 20 mM Hepes (pH 7.4), 320 mM su-
crose, 5 mM EDTA, and 5 mM EGTA supplemented with
protease inhibitors: 1 mM phenylmethylsulfonyl fluoride,
10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 μg/ml pepstatin, and
500 μM benzamidine. The homogenate was subjected to
centrifugation at 3,000g for 15 min. The supernatant was
further subjected to centrifugation at 38,400g for 15 min. The
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pellet was washed with wash buffer containing 20 mM Hepes
(pH 7.4), 5 mM EDTA, and 5 mM EGTA supplemented with
the protease inhibitors, and then resuspended in 0.25% dodecyl
maltoside (DDM, Dojindo) in buffer A containing 100 mM
NaCl, 20 mM Hepes (pH 7.4), 5 mM EDTA, and 5 mM EGTA
supplemented with the protease inhibitors. After a 3-h incu-
bation on a rocking platform, insoluble aggregates were
removed by centrifugation at 40,000g for 30 min and the
supernatant (light membrane fraction) was obtained. The su-
pernatant was then incubated on a rocking platform with the
control rabbit IgG (Jackson ImmunoResearch Laboratories),
the l-afadin pAb or the l/s-afadin pAb overnight. Each of the
Abs was covalently coupled to protein A magnetic beads (New
England Biolabs). After extensive washes, proteins captured by
the beads were eluted with a buffer containing 0.1 M glycine
(pH 2.5) and 0.25% DDM. The samples were neutralized with
100 mM Tris–HCl (pH 8.8) and boiled in an SDS-sample
buffer and then were subjected to SDS-PAGE followed by
Western blotting. For the analysis of recombinant proteins,
HEK293 cells were transfected with the indicated plasmids
using Lipofectamine 3000 (Thermo Fisher Scientific) or cal-
cium phosphate and were cultured for 2 days. The transfected
cells were washed with ice-cold PBS and were collected by
centrifugation at 8,000g for 2 min. The cell pellets were
resuspended in 0.25% DDM in buffer A. After a 3-h incubation
on a rocking platform, insoluble aggregates were removed by
centrifugation at 40,000g for 30 min and the supernatants were
obtained. The supernatants were incubated with the EGFP
pAb on a rocking platform overnight followed by 2-h incu-
bation with protein-G Sepharose beads. After extensive washes
with 0.25% DDM in buffer A, the beads were boiled in the
SDS-sample buffer and then the bound proteins were sub-
jected to SDS-PAGE followed by Western blotting.

GST pulldown assay

GST and GST-fused afadin-NN were expressed in Escher-
ichia coli and the cells were sonicated in a sonication buffer
containing 50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 0.1%
Triton X-100, 1 mM DTT, 1 mM phenylmethylsulfonyl fluo-
ride, and 10 μg/ml leupeptin. The homogenates were clarified
by centrifugation at 20,380g for 15 min and the supernatants
were obtained. The supernatants were then incubated with
glutathione-Sepharose 4B (GE Healthcare) at 4 �C for 1 h to
immobilize GST-fused proteins. After being washed with
0.25% DDM in buffer A, the beads were incubated with the cell
lysates prepared from HEK293 cells exogenously expressing
V5-MAGUIN-2 in the same buffer. After a 3-h incubation, the
beads were extensively washed with the 0.25% DDM in buffer
A and bound proteins were subjected to SDS-PAGE, followed
by Western blotting with a V5 mAb. The membranes were
stained with Amido Black 10B (Bio-Rad Laboratories) to
confirm protein loading.

Western blotting

The lysates of the light membrane fraction of mouse brain
and the immunoprecipitated samples were mixed with the SDS
sample buffer and boiled for 5 min. The samples were then
separated by SDS-PAGE and transferred to polyvinylidene
difluoride membranes (Merck). After being blocked with 5%
skim milk in Tris buffered saline (TBS), 20 mM Tris–HCl (pH
7.4) and 150 mM NaCl with 0.05% Tween 20 (TBS-T), the
membranes were incubated with the indicated Abs. After be-
ing washed with TBS-T three times, the membranes were
incubated with the horseradish peroxidase-conjugated rabbit
or mouse IgG pAb (Jackson ImmunoResearch Laboratories).
The signals for the proteins were detected using Immobilon
Western Chemiluminescent horseradish peroxidase Substrate
(Merck).
Mice

The afadin-floxed mice and nestin-cre mice were described
(43, 44). They were kept on a C57BL/6J background. The
heterozygous mice carrying the afadin conditional allele are
referred to as Afadin+/f. The mutant and control WT samples
were prepared from the same litters. A MAGUIN/Cnksr2 null
mouse line was generated in this study by using a targeting
vector (PRPGS00027_A_G05) obtained from the trans-NIH
Knockout Mouse Program (45). After electrotransformation of
the targeting vector, C57BL/6N mouse blastocyst-derived
RENKA embryonic stem cells (46) harboring the targeted
allele were selected for G418 resistance. Right clones were
injected into ICR 8-cell stage embryos that were then intro-
duced into pseudopregnant females to yield chimeric mice.
The chimeric mice were bred with C57BL/6N mice to generate
heterozygous mice carrying the mutant allele. Subsequently,
the heterozygous mice were mated with C57BL/6N mice
expressing FlpE recombinase in the germ cell lineage to excise
the lacZ and Neo cassette flanked by flippase recognition
target sites. The heterozygous mice with the targeted allele
after FlpE-mediated recombination were further mated with
C57BL/6N mice expressing Cre recombinase in the germ cell
lineage to excise the exon 2 flanked by loxP sites. The mutant
allele finally generated in this way is referred to as MAGUIN+/

−. Mice carrying the mutant allele were genotyped by PCR
using a primer set: F1, 50-GATTG
AACCTAGCACAGTCTGTAGCCT-30; R1, 50-GCTACCCCT
ACTTTCAGAGTTATGTACATCA-30; and R2, 50-CACAC
TGTGATACACTACAGCTTCCACAA-30. The PCR reaction
consists of 2 min at 95 �C followed by 30 cycles of 30 s at
95 �C, 30 s at 62.5 �C, and 90 s at 72 �C. The primer pair, F1
and R1, gives a 470-bp band for a WT allele and the primer
pair, F1 and R2, gives a 607-bp band for a mutant allele and a
faint 1260-bp band for a WT allele. The MAGUIN+/− mice
used in the present study have been crossed with pure C57BL/
6N mice more than ten times. All animal experiments were
performed in accordance with the guidelines of the institution
and approved by the administrative panel on laboratory animal
care of Kobe University and Kitasato University. This study
was approved by the president of Kobe University after being
reviewed by the Kobe University Animal Care and Use Com-
mittee (Permit Numbers: P130205 and 2-24-03-02) and by the
president of Kitasato University after being reviewed by the
J. Biol. Chem. (2023) 299(4) 103040 11
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Kitasato University Animal Care and Use Committee (Permit
Number: 2020-150).

Dissociated culture of hippocampal neurons and reexpression
of EGFP-afadin in afadin-deficient hippocampal neurons

Dissociated hippocampal neurons were prepared as described
(47). In brief, the hippocampal neurons dissociated with trypsin
were plated at a density of 5.0 to 7.0 × 103 cells/cm2 on poly-L-
lysine-coated coverslips in Neurobasal medium (Thermo Fisher
Scientific) containing B-27 supplement (Thermo Fisher Scien-
tific) and GlutaMAX (Thermo Fisher Scientific) and cultured in
a 5% CO2 incubator. For the reexpression of EGFP-l-afadin or
EGFP-s-afadin in the afadin-deficient hippocampal neurons
prepared from Afdnf/f;nestin-cre mice, pEGFP, pEGFP-l-afadin,
pEGFP-s-afadin, or pEGFP-s-afadinΔRA was introduced with
an Amaxa Nucleofector (Lonza) at the time of seeding ac-
cording to the manufacturer’s protocol. At 14 days in vitro, the
cells were fixed and were immunostained with the indicated
Abs.

For the measurement of the signal intensities of the PSD-95
clusters and the cell surface AMPA receptor subunit clusters
and the electrophysiology in cultured MAGUIN-deficient
neurons, dissociated hippocampal neurons were prepared as
described (47). In brief, the hippocampal neurons dissociated
with trypsin were plated at a density of 5.0 to 7.0 × 103 cells/
cm2 on poly-L-lysine-coated coverslips in minimal essential
medium containing 10% fetal calf serum overnight, followed by
medium switching with Neurobasal medium containing B-27
supplement and GlutaMAX on the next day, and cultured in a
5% CO2 incubator at 37 �C. The cells were subjected to the
experiments at 18 to 24 days in vitro.

Detection of the cell surface AMPA receptor

Neurons were washed twice with ice-cold PBS and incu-
bated with a membrane impermeable biotinylation reagent,
Sulfo-NHS–SS–biotin (Thermo Fisher Scientific; 0.25 mg/ml
in PBS), for 15 min on ice. Neurons were then washed twice
with PBS containing 50 mM NH4Cl and twice with PBS before
being scraped into ice-cold lysis buffer (150 mM NaCl, 20 mM
Hepes (pH 7.4), 1% Triton-X-100, 0.1% SDS, 2 mM EDTA,
and protease inhibitors). After a 2-h incubation on a rocking
platform, insoluble aggregates were removed by centrifugation
at 40,000g for 30 min and the supernatants were obtained and
used as inputs. The inputs were incubated on a rocking plat-
form with streptavidin conjugated Sepharose beads for 2 h.
After extensive washes with the buffer, the beads were boiled
in the SDS-sample buffer and the supernatants were used as
samples. Inputs and samples were subjected to SDS-PAGE
followed by Western blotting.

Immunocytochemical analysis

For immunostaining of cultured hippocampal neurons, the
cells were fixed with a fixative containing 2% para-
formaldehyde, 4% sucrose, 1 mM sodium pyruvate, Hanks’
balanced salt solution containing 1 mM CaCl2 and 1 mM
MgCl2 (Thermo Fisher Scientific) in 10 mM Hepes (pH 7.4) at
12 J. Biol. Chem. (2023) 299(4) 103040
37 �C for 10 min. The fixed cells were permeabilized with
0.25% Triton-X in TBS containing 1 mM CaCl2 and 0.05%
Tween-20 (T-TBS) at room temperature for 5 min and then
blocked in T-TBS containing 10% goat serum at room tem-
perature for 20 min. Then, the cells were incubated with pri-
mary Abs in T-TBS containing 10% goat serum at 4 �C
overnight. After three washes in T-TBS at room temperature
for 5 min each, the cells were incubated with Alexa Fluor-
conjugated secondary Abs (Thermo Fisher Scientific) at
room temperature for 45 min, followed by three washes for
5 min each with T-TBS. The samples were then mounted in a
FluorSave reagent (Merck). To examine the effects of EGFP-
afadin reexpression on the localization of PSD-95 in the afa-
din-deficient hippocampal neuron, the fields, which contained
EGFP-positive and EGFP-negative neuronal dendrites (judged
by the presence of MAP2 immunoreactivities) of the neurons
showing typical pyramidal cell-like morphologies, were chosen
and imaged with an LSM510 META confocal laser scanning
microscope (Carl Zeiss) using identical image acquiring setting
throughout the experiments without saturation of the signals.
Maximum signal intensity projection images were created
from around ten confocal images collected at a 0.3 to 0.4-μm
step along the z-axis.

For the analysis of the reexpressions of EGFP-afadin var-
iants in the afadin-deficient hippocampal neurons, the signal
intensities of the PSD-95 clusters were measured using the
ImageJ software (https://imagej.net) and averaged for the
transfected and untransfected neurons in the same field of
view and the ratio of them was calculated per each image. For
the measurement of the signal intensity of the PSD-95
clusters in MAGUIN-deficient neurons, cells were fixed,
permeabilized, and then stained with the PSD-95 mAb. For
the measurement of the signal intensity of the AMPA re-
ceptor subunit clusters on the cell surface of hippocampal
neurons, cells were labeled alive using the GluA1 mAb or
GluA2 mAb without detergents. The neurons were then fixed
and incubated with fluorescent secondary Abs and imaged
with an LSM710 confocal laser scanning microscope (Carl
Zeiss). In detail, for the measurement of the signal intensity
of the PSD-95, GluA1, or GluA2 clusters, the total signal
intensity in a circle containing a single PSD-95, GluA1, or
GluA2 cluster was measured, and the total signal intensity in
a circle of the same diameter in the vicinity of the clusters,
which did not contain the PSD-95, GluA1, or GluA2 clusters,
was measured to obtain the background signal. Then, the
latter value was subtracted from the former to obtain the net
value of signal intensity. The mean signal intensity of 50
PSD-95 clusters, 25 GluA1 clusters, or 25 GluA2 clusters per
neuron was calculated and represented as each data point in
the graphs.
Electrophysiology

Whole-cell patch-clamp recordings from cultured hippo-
campal neurons were performed as described (48–50). The
extracellular solution contained (in mM) 119 NaCl, 2.5 KCl, 25
Hepes (pH 7.4), 30 D-glucose, 2 CaCl2, and 2 MgCl2. The
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mEPSCs were recorded in the extracellular solution contained
1 μM tetrodotoxin (FUJIFILM Wako Pure Chemical), 10 μM
gabazine (Toronto Research Chemicals), and 1 μM strychinine
(Merck). Currents were recorded at room temperature under
voltage-clamp (−70 mV) conditions. For measurements of
mEPSCs, electrodes were filled with solution containing (in
mM), 125 K-methanesulfonate, 6 KCl, 2 MgCl2, 10 Hepes (pH
7.4), 0.6 EGTA, 3.2 Mg-ATP, and 1.2 Na-GTP, and membrane
potentials were corrected for the liquid junction potential
(9 mV). Recordings were performed with EPC 10 amplifier
(HEKA Elektonik GmbH). Records were filtered at 1 to 2 kHz
and acquired at 10 kHz. Series resistance values were <20 MΩ.
mEPSCs were analyzed using Clampfit 10.2 (Molecular De-
vices), Origin 2015 (OriginLab) and Minianalysis program
6.0.3 (Synaptosoft). Recordings were performed on typical
pyramidal-shaped neurons as described (48, 51). In detail,
these cells were identified from the other neurons, including
inhibitory neurons, based on their morphological features of
the cells with flat cell bodies and radially projecting dendrites.
In addition, under the experimental conditions similar to those
in this study, CNQX, an inhibitor of AMPA-/kainate-type
glutamate receptors, is shown to abolish evoked EPSCs
at −70 mV in cultured hippocampal neurons (48).

Examination of susceptibility to flurothyl-induced seizure

The experiments were conducted in accordance with the
animal experiment protocol as described (26). The experi-
ments were conducted in a validated chemical fume hood to
avoid any flurothyl leak. Mice were individually placed in an
airtight chamber: a 2-l glass beaker with an order-made O-ring
sealed cap and a sealed plastic cup as the room to evaporate
flurothyl (bis(2,2,2-trifluoroethyl) ether) (Merck). The bottom
of the plastic cup had multiple holes through which evaporated
flurothyl reached to mice. Mice were allowed to habituate to
the chamber for 1 min prior to the administration of 10%
flurothyl dissolved in 95% ethanol that were infused through a
5-ml syringe onto gauze pads suspended in the plastic cup at a
rate of 0.2 ml/min. Seizure behaviors were recorded with a
video camera and the following events were scored in a
genotype-blinded way: (1) latency to the first myoclonic jerk
(i.e., brief, but severe, contractions of the neck and body
musculature occurring while the mouse maintains postural
control); and (2) latency to the first generalized seizure (i.e.,
convulsions resulting in a loss of postural control). Upon
observation of a generalized seizure, mice were immediately
removed from the chamber, exposed to a fresh air to facilitate
cessation of the seizure. The chamber was cleaned with 70%
ethanol, well dried up, and the gauze pads were replaced to
new ones between trials.

Statistical analysis

Statistical analysis of the difference in means between two
groups was performed with the two-tailed Student’s t test or
two-tailed paired t test. For the analysis of the difference in
means among three groups, one-way ANOVA and post hoc
Scheffe tests were performed. The criterion for statistical
significance was set at p < 0.05. All values are reported as
mean ± SEM.
Southern blotting

Southern blotting was performed with a standard method
using a Neo probe.
Data availability

All data are included within this article.
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