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The success of immuno-oncology treatments promises long-term cancer remission for an increasing number of pa-
tients. The response to checkpoint inhibitor drugs has shown a correlation with the presence of immune cells in the
tumor and tumormicroenvironment. An in-depth understanding of the spatial localization of immune cells is therefore
critical for understanding the tumor’s immune landscape and predicting drug response. Computer-aided systems are
well suited for efficiently quantifying immune cells in their spatial context. Conventional image analysis approaches
are often based on color features and therefore require a high level of manual interaction. More robust image analysis
methods based on deep learning are expected to decrease this reliance on human interaction and improve the repro-
ducibility of immune cell scoring. However, these methods require sufficient training data and previous work has re-
ported low robustness of these algorithms when they are tested on out-of-distribution data from different pathology
labs or samples from different organs. In this work, we used a new image analysis pipeline to explicitly evaluate the
robustness of marker-labeled lymphocyte quantification algorithms depending on the number of training samples be-
fore and after being transferred to a new tumor indication. For these experiments, we adapted the RetinaNet architec-
ture for the task of T-lymphocyte detection and employed transfer learning to bridge the domain gap between tumor
indications and reduce the annotation costs for unseen domains. On our test set, we achieved human-level perfor-
mance for almost all tumor indications with an average precision of 0.74 in-domain and 0.72–0.74 cross-domain.
From our results, we derive recommendations for model development regarding annotation extent, training sample
selection, and label extraction for the development of robust algorithms for immune cell scoring. By extending the
task ofmarker-labeled lymphocyte quantification to a multi-class detection task, the pre-requisite for subsequent anal-
yses, e.g., distinguishing lymphocytes in the tumor stroma from tumor-infiltrating lymphocytes, is met.
Introduction

Immuno-oncology is a research field that focuses on leveraging the
cancer-immune cell interactions for therapy by, e.g., activating or
strengthening the immune response. The success of these treatments
varies significantly across patients and recent studies have shown that
treatment success is correlated with the presence of tumor-infiltrating
lymphocytes (TILs).1 Therefore, the detection and quantification of
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T-lymphocytes have moved into the focus of ongoing research. Specific
immunohistochemistry (IHC) stainings can simplify T-lymphocyte
quantification. These stainings use target-specific antibodies to bind
color-producing enzymes to the objects of interest and the colored pre-
cipitates (e.g., 3,3’-diaminobenzidine) are then assessed using light
microscopy.2 The visual estimation of T-lymphocytes, however, is
prone to high inter-observer variability and the manual quantification
can be very cumbersome and time-consuming.1
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The introduction of slide scanners into pathology workflows has en-
abled the digitization of histological samples and thereby the use of
computer-aided diagnosis (CAD) tools for image processing and analysis.
These CAD systems can help to speed-up workflows and increase the repro-
ducibility of image analysis results. However, most of these systems are
based on traditional color appearance parameters, e.g., hue and contrast,
and require manual threshold optimization for each slide.3 Color appear-
ance can vary significantly across samples due to sample age, artifacts, sam-
ple composition (e.g., presence of metal ions), or varying staining protocols
of different pathology labs. Therefore, more robust image analysis methods
that allow for a higher level of automation by also taking into account tex-
ture features are highly desirable.

Convolutional neural networks (CNNs) have become increasingly popu-
lar for a wide range of image processing tasks and have been successfully
applied for the task of lymphocyte quantification.4–9 In contrast to tradi-
tional machine learning-based algorithms, CNNs do not require hand-
crafted features for training. Through trainable parameters, they can learn
the extraction of task-relevant features, thereby become end-to-end train-
able, and reduce the bias introduced by manual feature selection. When
using CNNs for the quantification and localization of individual lympho-
cytes, this can be posed as an object-detection task, where the network
is trained with labeled bounding boxes around each cell of interest.
Evangeline et al used the Faster RCNN object detection architecture to de-
tect lymphocytes on whole slide images (WSIs) from 3 organs stained
with 2 IHCmarkers.7 Van Rijthoven et aldeployed the YOLOv2 architecture
on breast, colon, and prostate cancer samples stainedwith IHC.8 In a subse-
quent study,9 the authors deployed this approach on an extended dataset of
83 WSIs from 3 organs, 9 medical centers, and 2 staining types. Previous
work in histopathology has shown that algorithmic performance can con-
siderably degrade when testing the models on out-of-distribution data,10

which can be compensated for by using domain adversarial training11 or
fine-tuning.12 However, previous studies on automated T-lymphocyte de-
tection did not evaluate transfer learning techniques for this task, even
though domain shifts were present in the datasets and cross-domain perfor-
mance degradation was observed for some of these works.9

In this work, we explicitly study the robustness of an object detection al-
gorithm for the task of T-lymphocyte detection under various influence fac-
tors. We train the algorithm with a varying number of IHC images and
thereby evaluate the algorithm performance dependent on the number
and diversity of samples seen during training. Furthermore, we extend
the task of IHC-stained T-lymphocyte detection to a multi-class problem
by including tumor cells and remaining cells in the tumor stroma. We
then test the algorithm on images from different tumor indications and
study the robustness of cell detection and classification under this domain
shift. Due to a performance drop across tumor indications,we employ trans-
fer learning to increase the algorithm’s robustness and recover perfor-
mance. Based on these experiments, we provide recommendations for the
development of robust algorithms for T-lymphocyte quantification on IHC
images, especially for applications where limited data is available or
domain shifts are introduced.

Material and methods

In the course of this study, a total of 92 procured, anonymized, commer-
cially acquired human tumor samples from 4 tumor indications were used:

(1.) 32 head and neck squamous cell carcinoma (HNSCC) samples;
(2.) 20 non-small cell lung cancer (NSCLC) samples;
(3.) 20 triple-negative breast cancer (TNBC) samples;
(4.) 20 gastric cancer (GC) samples.

The procured tissue samples were obtained from 3 providers (Asterand,
Cureline, and Tristar), which all guarantee institutional review board (IRB)
approval. Table A.1 provides a detailed slide-level overview of the samples
used, including a diagnosis and the tumor-node-metastasis (TNM)
2

staging,13 where available. All samples were fixed in formalin, embedded
in paraffin, and IHC stained for cluster of differentiation 3 (CD3, antibody
clone SP7). CD3 is a protein complex with a specificity for T-lymphocytes.
For each sample, the IHC staining underwent manual quality control to
guarantee uniform staining results and detect staining artifacts. The sam-
ples were digitized at a resolution of 0.23 μm/px (40× objective lens)
using the NanoZoomer 2.0-HT scanning system (Hamamatsu, Japan). All
samples were prepared and digitized at the same laboratory (Merck
Healthcare KGaA). For model development, 5 validation and 5 test slides
were randomly selected per tumor indication. A detailed slide-level split
can be obtained from Table A.1. On each WSI, a squared region of interest
(ROI) sized approximately 2 mm2 (∼2150 × 2150 pixels) was randomly
selected from regions containing both tumor and tumor stroma, as well as
CD3+ stained cells.We provide public access to all selected ROIs on Zenodo
(https://doi.org/10.5281/zenodo.7500843), licensed under a creative
commons attribution-non-commercial 4.0 international license.
Data annotation

In the selected ROIs, all CD3+ and tumor cells were annotated individ-
ually. All remaining stromal cells, not stained positive for CD3, were com-
bined into a third class, which we will refer to as “non-specified cells”.
These annotations were produced in a semi-automatic fashion using com-
mercially available image analysis software (HALO®, Indica Labs, USA).
This software uses manually selected cell prototypes to train an underlying
algorithm for the task of cell segmentation and phenotyping. To ensure a
high annotation quality, we optimized this algorithm for each selected
ROI individually. We exported the bounding box vertices and class label
of all detected cells as .csv file, which we then used as an annotation data-
base to train an algorithm for automatic cell detection and classification.
With this annotation pipeline, visualized in Fig. 1, a high number of cell
annotations could be generated in a comparably short time frame. Never-
theless, this semi-automatic pipeline might miss individual cells or
introduce false-positive annotations. Therefore, we compared the semi-
automatically created annotations to manual expert labeling on our test
set. For these manual annotations, we used a private instance of the online
annotation server EXACT.14 Using EXACT, 3 pathologists independently
annotated each of the 5 test ROIs per tumor indication for the 3 cell classes.
To limit annotation overhead, we asked the pathologists to label the ap-
proximate cell center with one-click annotations and defined the cell’s
bounding box using a width of 25 pixels (the radius of an average cell)
around the cell center. A cell should be identified through either the blue
counter stain of the nucleus or the cytoplasmic IHC staining of T-
lymphocytes. All annotations can be accessed on Zenodo (https://doi.
org/10.5281/zenodo.7500843).
Metrics for inter-annotator agreement

Previous studies have shown that many object-level tasks in pathology,
like mitotic figure detection15 or cell quantification on cytology samples,16

can be affected by a high level of inter-annotator variability, which can in-
fluence the performance of algorithms trained for these object-level tasks.15

To estimate the inter-annotator variability for the task of T-lymphocyte de-
tection, we evaluated the agreement of 3 pathologists on our 20 test ROIs.
For this, we have used adapted versions of Cohen’s kappa.17 For 2 raters
A and B, Cohen’s kappa is defined as:

κAB ¼ Po � Pe

1 � Pe
, (1)

where Po is the observed percent agreement, i.e. the proportion of cells for
which 2 pathologists assigned the same label, and Pe is the expected percent
agreement, i.e., the proportion of cells on which the pathologists agreed

https://doi.org/10.5281/zenodo.7500843
https://doi.org/10.5281/zenodo.7500843
https://doi.org/10.5281/zenodo.7500843


Fig. 1. Annotation and training pipeline. ROIs sized 2 mm2 are annotated using commercially available image analysis software.
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simply by chance. Given a 3-class problemwith class labels ci∈{1,2,3}, Po and
Pe can be computed from the confusion matrix as follows:

Rater B
c1 c2 c3 Σ

c1 n11 n12 n13 n1�
Rater A c2 n21 n22 n23 n2�

c3 n31 n32 n33 n3�
Σ n�1 n�2 n�3 N

ð2Þ

Po ¼ 1
N

X3
i¼1

nii

Pe ¼ 1
N2

X3
i¼1

ni� � n�i
ð3Þ

Landis and Koch have defined the following intervals,18 which can be
used to interpret kappa scores:

κ < 0 : poor agreement
0 < κ ≤ 0:2 : slight agreement

0:2 < κ ≤ 0:4 : fair agreement
0:4 < κ ≤ 0:6 : moderate agreement
0:6 < κ ≤ 0:8 : substantial agreement
0:8 < κ ≤ 1:0 : almost perfect agreement:

Previous work has shown that object detection tasks in histopathology
are prone to omission of cells.16,19 De Raadt et al presented 3 variants of
Cohen’s kappa for missing data: The Regular Category kappa, the Listwise
Deletion kappa, and Gwet’s kappa.20 The Regular Category kappa considers
missed cells a separate class and thereby extends a 3-class problem to a 4-
class problem, whilst keeping the computation of kappa unchanged. The
Listwise Deletion kappa maintains the definition as a 3-class problem and
limits the computation of kappa to cells that have been labeled by both
raters. Gwet’s kappa excludes cells that have only been labeled by 1 rater
from the observed percent agreement Po but includes them in the computa-
tion of the expected percent agreement Pe. With t, being the class of non-
labeled cells, the confusion matrix in Equation (2) can be extended to:
3

Rater B
c1 c2 c3 ct Σ

c1 n11 n12 n13 n1t n1�
Rater A c2 n21 n22 n23 n2t n2�

c3 n31 n32 n33 n3t n3�
ct nt1 nt2 nt3 ntt nt�
Σ n�1 n�2 n�3 n�t N

ð4Þ

The components of the 3 kappa variants are then calculated as follows:
Regular Category:

Po ¼ 1
N

X3
i¼1

nii

 !
þ ntt

 !

Pe ¼ 1
N2

X3
i¼1

ni� � n�i
 !

þ nt� � n�t
 ! ð5Þ

Listwise Deletion:

Po ¼ ∑3
i¼1nii

∑3
i¼1∑

3
j¼1nij

Pe ¼ ∑3
i¼1 ni�−nitð Þ n�i−ntið Þ

∑3
i¼1∑

3
j¼1nij

� �2 ð6Þ

Gwet:

Po ¼ ∑3
i¼1nii

∑3
i¼1∑

3
j¼1nij

Pe ¼ ∑3
i¼1ni� � n�i

N−nt�ð Þ � N−n�tð Þ

ð7Þ

Using these adapted versions of kappa, the 2 causes for inter-observer
variability - cell omission and label disagreement - can better be separated
and a pathologist consensus can better be defined.

Algorithm robustness experiments

Using the semi-automatically annotated images of our training dataset,
we trained a neural network for the task of cell detection and classification
into tumor, CD3+, and non-specified cells. For all our experiments we used
a customized RetinaNet21 architecture adapted for cell detection on



F. Wilm et al. Journal of Pathology Informatics 14 (2023) 100301
microscopic samples.16 This architecture is visualized in Fig. 1. RetinaNet is
composed of an encoding branch, for which we used a ResNet1822 back-
bone, and a feature pyramid network that combines features frommultiple
encoder levels. From the combined features, the network then infers object
bounding boxes and classifies the object within. We conducted 3 experi-
ments to evaluate the algorithm’s robustness under different influence fac-
tors. We first performed a WSI ablation study, where we included an
increasing number of images in the training subset for the algorithm and
evaluated the influence of this slide variability seen during training on
the predictive power of the algorithm on unseen test images. Afterward,
we compared the algorithmic performance on images from the same
image domain that themodel was trained on, i.e., the source domain, to un-
seen target domains. Finally, we used fine-tuning to bridge the domain gap
between source and target domain images. We will elaborate on these ex-
periments in the following 3 subsections.

WSI ablation study
For this experiment, we only used the HNSCC dataset of 32 WSIs. To

evaluate the algorithm robustness dependent on the number of slides
used for training, we conducted a WSI ablation study. For this, we trained
the RetinaNet with an increasing number (1–10, 15, 22) of WSIs and tested
the algorithm performance on our 5 test ROIs. The training slides were
hereby randomly selected from the pool of 22 training WSIs and each ex-
periment was repeated 5 times with a different random selection. For
each experiment, we used the same set of 5 validation WSIs to monitor
training, prevent overfitting, and guide the model selection process.
These validation slides were randomly selected from the complete dataset
at the beginning of the study. In the remainder of the text, we will refer
to the models of the WSI ablation study as RetinaNetn, with n indicating
the number of HNSCC WSIs used for training.

Deployment of source model on target domains
To evaluate themodel robustness across different tumor indications, we de-

ployed all models from the WSI ablation study on 5 test WSIs each of NSCLC,
TNBC, and GC without adaptations to this new domain. In the following, we
will refer to HNSCC as “source domain” and the remaining tumor indications
as “target domains”. For each target domain, we trained an additional bench-
mark model from scratch on 10 training and 5 validation WSIs to evaluate
whether the source-domain model can reach target-domain performance. In
the following, we will refer to these benchmarks as RetinaNetNSCLC,
RetinaNetTNBC, and RetinaNetGC. To compensate for statistical effects, we also
repeated the benchmark training 5 times and averaged the performance results.

Model fine-tuning on target domains
To overcome a potential domain shift between the different tumor indi-

cations, we evaluated how fine-tuning on a few target domain samples in-
fluences the model performance on the target domain. We further
investigated how the number of slides used to train the initial source
model influenced this fine-tuning. To maintain good performance on the
source domain, the fine-tuning dataset was composed of the n HNSCC
WSIs the model was initially trained on and 1 additional WSI of the respec-
tive target domain. This additional training WSI was chosen at random but
was kept the same for each of the fine-tuned models. The validation set,
used for model selection and hyperparameter optimization, was kept un-
changed as 5 HNSCC WSIs. In the remainder of the text, we will refer to
these fine-tuned models as RetinaNetn,T, where n indicates the number of
HNSCC WSIs initially used for training and T the tumor indication the
model was fine-tuned on.

Training hyperparameters

For all experiments, we trained the network on image patches sized
256 × 256 pixels at the original resolution of 0:23 μm

px, using a batch size

of 16. For each training epoch, we followed a random sampling strategy
to select 5000 patches from the training ROIs and 800 patches from the
4

validation ROIs. The models trained from scratch (ablation and benchmark
models) were initialized with ImageNet23 weights, which was proven to be
advantageous for microscopy data compared to random initialization.24,25

Furthermore, previous work has shown that networks fine-tuned on histo-
pathology data especially differ in their feature representation of deeper
layers whilst earlier layers show similar activation patterns to networks
trained on ImageNet.24 Therefore, similar to Tajbakhsh et al,26 we followed
a 2-staged fine-tuning scheme: During the first stage, we only trained the
prediction heads for 5 epochs while freezing the encoder and feature pyra-
mid pooling network weights. For this stage, we used a discriminative27

learning rate in an interval of [5 × 10−5, 5 × 10−4]. During the second
stage, we trained the whole network with a discriminative learning rate
in an interval of [5 × 10−5,10−4] for 50 epochs. The intervals for the dis-
criminative learning rate were estimated using the learning rate finder of
fastai.28 When fine-tuning the models on a target domain, we again froze
the encoder and feature pyramid pooling network weights and only trained
the prediction heads. For all models, the loss was computed as the sum of
the bounding box regression loss, calculated as smooth L1 loss, and the in-
stance classification loss using the focal loss function.21 To avoid
overfitting, model selection was guided by the highest performance on
the validation set, assessed by monitoring the mean average precision
(mAP) after each epoch.

Performance evaluation

After patch-wise model training, we applied the trained models to the
2mm2-sized test ROIs by extracting patcheswith a 128-pixel overlap and ap-
plying non-maximum suppression (NMS) to remove duplicate detections.
Afterward, detection results were evaluated against the annotations. We
used the following approach to automaticallyfind correspondences between
detected and annotated cells: From the set of annotationsA and the set of de-
tections D, a distance matrixMwas generated, with mij being the Euclidean
distance between element ai ∈ A and dj ∈ D. A unique pairwise assignment
with the lowest overall costwas computed using theHungarianAlgorithm.29

A pair-wise assignment was taken into consideration if the annotated cell
centroid and the centroid of a predicted bounding box were within 25 pixels
of each other, i.e., the radius of an average cell. Otherwise, the detectionwas
counted as false, and the annotation as missed. Using these cell correspon-
dences a confusion matrix could be generated, summarizing true-positive
(TP), false-positive (FP), and false-negative (FN) predictions. Given the ex-
ample of tumor cells, TP predictions were defined as all tumor cells detected
and classified as such. FN predictions were defined as all cells labeled as
tumor cells but predicted as another cell type or not detected at all. FP pre-
dictions included all cells detected and classified as tumor cells but labeled
as non-specified or CD3+ cells or not annotated at all.

Commonly, object detection algorithms are evaluated using the average
precision (AP). For each detection, the algorithm outputs a score in the
range of [0,1]. Thresholding these predictions with a detection threshold
σdet results in varying precision–recall pairs when evaluating the detections
against the ground-truth annotations. Using these precision–recall pairs,
the AP can be computed as the weighted sum of precisions, where each
precision value is weighted with the increase in recall between 2 σdet. If
σdet is chosen with a step size of 0.1, the AP can be computed from 11
precision–recall pairs according to:

AP ¼ ∑
10

k¼1
Recall k þ 1ð Þ � Recall kð Þð Þ ⋅ Precision kð Þ: (8)

Results

Inter-annotator agreement

Fig. 2 visualizes the 3 kappa variants for each unique pair of human
raters (hollow symbols) and each rater compared to the semi-automatic la-
bels generated with the image analysis software (filled symbols). These



Fig. 2.Kappa variants per tumor indication. Annotators A, B, and C are compared to each other (hollow symbols) and to semi-automatic annotations (filled symbols) using the
image analysis software (SW). The pathologist consensus is also compared to the software annotations (star).
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were computed from all annotations on the test ROIs. The large difference
between the Regular Category kappa and the other 2 kappa definitions in-
dicates that disagreement between raters was mostly caused by cells that
were missed by one of the raters. This especially influenced the agreement
of rater A and C, whose Regular Category kappa was the lowest across all
tumor indications. Rater B and the semi-automatic annotations were
more consistent, which is highlighted by a higher Regular Category kappa
for these 2 raters. These different annotation styles also become apparent
when comparing the total number of test annotations of all raters. Whilst
raters A and C annotated 23 188 and 22 170 cells, rater B and the software
provided 28 229 and 29 298 labels. The visualizations of the Listwise Dele-
tion and Gwet’s kappa show that the raters almost perfectly agreed on the
cells that they assigned a label for, regardless of the tumor indication. On
average, the agreement between the human raters was slightly higher
than to the semi-automatic annotations generated with the image analysis
software. This difference, however, can be consideredmarginal and still re-
sulted in substantial to almost perfect agreement.When taking into account
the limited availability of human experts and the laboriousness of single-
cell annotations (approx. 30min per ROI), these results support the validity
of semi-automatically generating training labels.
Fig. 3. Examples for consensus annotations (orange: tumor cells, green: CD3+ cells, b
squamous cell carcinoma, NSCLC: non-small cell lung cancer, TNBC: triple-negative bre

5

When defining a pathologist consensus, a strategy that takes the pos-
sibility of incomplete annotations into account has to be found. Under
the assumption that pathologists rarely hallucinate cells, we decided
to include all cells annotated by the 3 pathologists in the consensus.
When more than one pathologist labeled a given cell, the class label
was inferred using majority voting. In the case of a draw, i.e., a cell
was only annotated by 2 pathologists who assigned a different label,
the cell obtained a separate label, which we will refer to as “diverse”
in the following. For the complete set of 20 test ROIs, this affected
8.21±2.11 % (μ ± σ) cells. The consensus annotations were used to
evaluate model performance on the test ROIs. Cells labeled as diverse
were excluded from the evaluations.

Fig. 3 shows an exemplary test ROI for each tumor indication with the
original patch above and the consensus labels below. The examples visual-
ize two main sources of disagreement: The HNSCC sample in Fig. 3a con-
tains large cells that are located in the transition of tumor and tumor
stroma and can therefore be interpreted both as tumor and non-specified
cells. The TNBC sample in Fig. 3c shows lightly stained cells where differen-
tiation of non-specified and CD3+ cells might be difficult for the human
annotator.
lue: non-specified cells, purple: cells without agreement). HNSCC: head and neck
ast cancer, GC: gastric cancer.



Fig. 4. Average precision (AP) when deploying the models on test data from the source domain (HNSCC) and unseen target domains. The models were trained on field of
views from an increasing number of whole slide images. The error bars visualize the standard deviation of the 5 repetitions and the curve fits a logistic regression.
HNSCC: head and neck squamous cell carcinoma, NSCLC: non-small cell lung cancer, TNBC: triple-negative breast cancer, GC: gastric cancer.
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WSI ablation and model deployment on target domains

Fig. 4 plots the AP for detecting tumor cells (Fig. 4a), non-specified cells
(Fig. 4b), and CD3+ cells (Fig. 4c), when training the RetinaNet with an in-
creasing number of slides. The x-axis shows the number of ROIs used for
training and the average number of cells present on these ROIs. The bar
6

plots are centered on the mean performance of the 5 training repetitions
with the error bars indicating the standard deviation. The curve fits a logis-
tic regression of the AP scores. The tumor cell detection (Fig. 4a) generally
improvedwithmore training slides. The regression curves show that the AP
increased until about 9 WSIs and then reached a plateau where changes in
performance did not exceed the test variance. However, with a higher
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number of training slides, the model gained robustness, indicated by a
much lower variance of the 5 model repetitions for RetinaNet22. This in-
crease in performance and robustness could also be observed when
deploying the models to unseen tumor indications. However, the mean per-
formance and standard deviation highly varied across types. For GC, the
source-domain model showed a similar performance as compared to
HNSCC. For TNBC, the tumor cell AP was on average 10% lower for
RetinaNet1, which could be recovered to roughly 5% for RetinaNet22. For
NSCLC, RetinaNet1 performedworst with an APmore than 15% lower com-
pared to the source domain. This could be recovered to 10% for
RetinaNet22. Overall, RetinaNet22 showed an increased robustness for all
tumor indications with a considerably lowermodel variance across training
repetitions.

Compared to the tumor cell detection, the plot of the non-specified
cell detection (Fig. 4b) shows a smaller increase in performance with
more WSIs used for training. For HNSCC, TNBC, and GC, the cell detec-
tion shows similar AP scores across all models with a slightly lower ro-
bustness for TNBC, indicated by a higher variance across model
repetitions. Again, NSCLC shows the lowest AP values, indicating that
a differentiation of tumor and non-specified cells was more challenging
for this tumor indication.

The plot of the CD3+ cell detection performance in Fig. 4c does not
show a large increase in performance when training the algorithm with a
higher number of slides in the source domain. RetinaNet1 already scored
an AP of 0.70 on the source domain and AP scores in the range of 0.57
(TNBC)–0.69 (NSCLC) on the target domain. Looking at the average
number of cells used for training the model, however, considerably
fewer CD3+ cells were seen during training, compared to tumor and
non-specified cells. For RetinaNet22, the CD3+ classification performance
slightly increased to an average of 0.74 on the source domain and a range
of 0.64 (TNBC)–0.73 (NSCLC) on the target domains.

Fig. 5 compares the inter-annotator agreement to the agreement with
the detections of the RetinaNet22 models. For this, we performed inference
with an ensemble of all 5 trained models and used NMS to remove dupli-
cates. The visualization shows that the model reached human-level perfor-
mance for all tumor indications except for NSCLC.

Qualitative results

Fig. 6 visualizes the average detection performance of the RetinaNet22
models on exemplary test ROIs. The upper row shows the consensus anno-
tations and the lower row the network predictions. These visual results
Fig. 5. Kappa variants per tumor indication. Annotators A, B, and C are compared to e
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underline the strong cell detection performance with few false-positive or
false-negative detections. Regarding classification performance, the visual
examples show that the differentiation between tumor and non-specified
cells was especially difficult at tumor margins, where a majority of the mis-
classifications could be located.

The slide-level details in Table A.1 show a high diversity of histologic
subtypes within our dataset, especially for lung specimens. To evaluate
whether the difficulties in tumor/non-tumor cell differentiation were
subtype-specific, we assessed the NSCLC predictions in more detail. Fig. 7
visualizes 2 examples where the algorithm faced the most difficulties.
The example in Fig. 7a shows a sample where a high amount of cells in
the tumor stroma were falsely classified as tumor cells. These cells in the
tumor stroma feature an atypically broad cytoplasm that makes differentia-
tion from the larger tumor cells more difficult. Fig. 7b visualizes an adeno-
carcinoma sample, where a high amount of tumor cells located in the lower
left were falsely predicted as non-specified cells. This example generally
shows less dense tumor clusters than the examples in Fig. 6, which also
makes a visual differentiation of tumor and non-tumor cells difficult.
Overall, we observed that tumors with diffuse growth patterns were more
challenging for the algorithm. However, we did not observe distinct
subtype-specific differences in our dataset.

Model fine-tuning on target domains

Fig. 8 shows the improvement of AP when fine-tuning the models on 1
additional WSI from the respective target domain. Generally, fine-tuning
increased the tumor cell detection performance for all target domains, espe-
cially formodels trainedwith a lownumber ofWSIs in the source domain or
models with low robustness, indicated by a high variance across model rep-
etitions. Whilst fine-tuning improved the performance of most of the
models trained with fewer slides in the source domain, RetinaNet22 did
not clearly benefit from fine-tuning on the target domains, indicated by a
similar or even slightly worse AP.

Table 1 summarizes the mean AP for models trained with n = 1, 5, 10,
and 22WSIs in the source domain and of the fine-tunedmodels on their re-
spective target domain T. This representation again highlights the im-
proved detection performance when training the model with more WSIs
in the source domain but also the smaller benefit of fine-tuning for the
models initially trained with more source-domain slides. The highest AP
per cell class and per tumor indication (highlighted in bold) was either
scored by a model trained with a high number of HNSCC slides or by a
fine-tuned model. The last row of Table 1 summarizes the mean
ach other (hollow symbols) and to the detection results of RetinaNet22 (asterisks).



Fig. 7. Examples were the models faced difficulties to differentiate tumor and non-tumor cells (orange: tumor cells, green: CD3+ cells, blue: non-specified cells).

Fig. 6.Comparison of consensus annotations in upper row vs. network predictions in the bottom row (orange: tumor cells, green: CD3+ cells, blue: non-specified cells, purple:
cells without agreement). HNSCC: head and neck squamous cell carcinoma, NSCLC: non-small cell lung cancer, TNBC: triple-negative breast cancer, GC: gastric cancer.
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Fig. 8.Difference in average precision (AP) formodel deployment vs. fine-tuningwith 1 target domain image. The error bars visualize theminimum tomaximum range of the
performance difference. HNSCC: head and neck squamous cell carcinoma, NSCLC: non-small cell lung cancer, TNBC: triple-negative breast cancer, GC: gastric cancer.
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performance of the benchmark models trained from scratch on 10 anno-
tated WSIs of the target domains (mean of 5 repetitions). These benchmark
models provide a comparison of how good the performance could get if a
sufficiently high number of annotated samples were available in the target
domain. To limit additional annotation effort and based on the results of the
WSI ablation experiments, a selection of 10 target WSIs was used for train-
ing the benchmark models. The results show that the best-performing
models from the previous experiments reached the performance of the re-
spective benchmark models despite only being trained on the source
9

domain or only fine-tuned with 1 WSI in the target domain. Nevertheless,
the benchmark performance also highlights the differences in performance
for the 4 tumor indications, especially for the differentiation of tumor and
non-specified cells. Fig. 9 shows the average in-domain and cross-domain
performance of our benchmark models. This visualization highlights the
negligible impact of indication-specific domain shifts when training the
model with a sufficiently high number of source domain WSIs, indicated
by a similar classification performancewithin one column. However, the vi-
sualization also underlines the challenges posed by the NSCLC dataset as



Table 1
Average precision for deployment vs. fine-tuning for n= 1, 5, 10, 15, and 22 training whole slide images (mean of 5 training repetitions). The highest average precision per
cell class and per tumor indication is highlighted in bold. HNSCC: head and neck squamous cell carcinoma, NSCLC: non-small cell lung cancer, TNBC: triple-negative breast
cancer, GC: gastric cancer.

Tumor cells Non-specified cells CD3+ cells

HNSCC NSCLC TNBC GC HNSCC NSCLC TNBC GC HNSCC NSCLC TNBC GC

RetinaNet1 0.70 0.54 0.61 0.73 0.49 0.45 0.54 0.48 0.70 0.69 0.57 0.65
RetinaNet1,T 0.58 0.74 0.83 0.45 0.63 0.55 0.69 0.72 0.69
RetinaNet5 0.78 0.61 0.64 0.80 0.62 0.50 0.61 0.59 0.70 0.67 0.58 0.67
RetinaNet5,T 0.62 0.76 0.83 0.55 0.66 0.63 0.69 0.73 0.70
RetinaNet10 0.81 0.68 0.74 0.84 0.63 0.49 0.61 0.64 0.73 0.74 0.65 0.70
RetinaNet10,T 0.66 0.78 0.85 0.50 0.64 0.63 0.73 0.72 0.70
RetinaNet15 0.81 0.69 0.77 0.83 0.64 0.52 0.66 0.66 0.73 0.70 0.61 0.68
RetinaNet15,T 0.68 0.75 0.84 0.51 0.65 0.65 0.73 0.71 0.72
RetinaNet22 0.81 0.69 0.76 0.85 0.64 0.57 0.70 0.68 0.74 0.73 0.64 0.70
RetinaNet22,T 0.67 0.78 0.85 0.50 0.66 0.66 0.73 0.72 0.69
Benchmark10,T 0.67 0.78 0.85 0.54 0.68 0.69 0.73 0.72 0.71
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the NSCLC benchmark model scores a comparably low AP across all tumor
indications and cell types.

Discussion

The results of theWSI ablation study show that a higher number of WSIs
during model training overall helped to distinguish tumor from non-
specified cells as the AP continuously increased for both of these classes.
The CD3+ cell detection, however, benefited less from a higher number of
training images, indicating that the detection of the underlying IHC staining
is a much easier task for the network to learn than distinguishing cells from
each other based on their morphology. Nevertheless, also tumor and non-
specified cell detection reached a plateau in performance at around 9
WSIs. Thus, the marginal increase in performance does not necessarily jus-
tify the increased annotation time (approx. 30 min per ROI). The models
trainedwith a higher number of slides are likely tomeet a higher appearance
variability during training which increases model robustness indicated by a
lower performance range across repetitions. This effect could particularly be
observed for tumor cell classification for all tumor indications.

When deploying the models to unseen target domains (in our case, new
tumor indications), a general drop in performance could be observed. The
performance difference between the source and target domain was larger
for tumor cell classification than for the non-specified cells. This effect,
however, is to be expected as tumor cell morphology is assumed to be
more heterogeneous. The non-specified cells are likely composed of vascu-
lar cells, immune cells, cancer-associated fibroblasts, and mesenchymal
stem cells,30 which can be found in the tumor microenvironment of most
neoplasms independent of the tumor indication. Surprisingly, the CD3+

cell detection also showed large differences in performance across tumor
Fig. 9.Average performance of benchmarkmodels when being tested on all tumor indica
in row i and testing on the indication in column j. Diagonal elements indicate in-domain
HNSCC: head and neck squamous cell carcinoma, NSCLC: non-small cell lung cancer, T

10
indications even though T-lymphocytes should have a similar appearance
across tumors.When looking at the class distributions of the test slide anno-
tations, the TNBC slides showed a considerably lower ratio of CD3+ to non-
specified cells (0.16) than the other tumor indications (HNSCC: 0.62,
NSCLC: 0.45, and GC: 0.37). A single misclassification between these cell
types affects the performance metrics of slides with a lower ratio much
more severely than slides with a higher ratio. The positive correlation of
these ratios with the CD3+ classification performance indicates that statis-
tical effects cannot be ruled out. For the differences in tumor cell classifica-
tion, such a correlation of performance and tumor to non-specified cell ratio
could not be observed.

When fine-tuning themodels on 1WSI in the target domains, tumor cell
classification performance generally increased and the models became
more robust, indicated by a decrease in performance range. These effects
could be observed across all target domains and the mean absolute im-
provement was similar for all tumor indications (see Fig. 8). Overall, fine-
tuning could lift the tumor cell classification performance to the same
level as training from scratch on the target domains. However, compared
to the benchmark models, which were trained with 10 target WSIs, fine-
tuning only required the annotation of 1 additional target WSI. Overall,
fine-tuning especially benefited models which had been trained with a
small number of source-domain images, which can be seen in an increase
in performance and robustness. For models trained with a sufficient num-
ber of WSIs (>9), this effect was less significant. Nevertheless, fine-tuning
seldom impacted the performance negatively, andwhen it did, the decrease
in performance was negligible (see Fig. 8). Taking the low additional anno-
tation expense for fine-tuning the models into account, fine-tuning should
generally be considered when transferring a trained model from the source
to the target domain.
tions. Matrix entrymi,j is the average precision (AP) when training on the indication
performance, whereas off-diagonal elements represent cross-domain performance.

NBC: triple-negative breast cancer, GC: gastric cancer.
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In some cases, a fine-tuned model was even able to outperform the
benchmark model. A model pre-trained with 15 HNSCC WSIs and fine-
tuned with 1 target WSI has been presented with a larger variety of
cells than the benchmark model trained with 10 target WSIs which
could have resulted in this increased performance. Additionally, the per-
formance of the benchmark models significantly varied across tumor in-
dications, especially for the differentiation of tumor and non-specified
cells. For NSCLC, tumor cell classification was more difficult for the
model to learn than for the other tumor indications. This is likely linked
to the highly heterogeneous morphology of NSCLC compared to
the other tumor indications included in this work. Another possible
explanation for this inferiority could be the presence of (intra-)alveolar
macrophages, a cell type specific for lung tissue with highly
variable morphology. If present, these cells were annotated as “non-
specified” but their morphology can be closer to tumor cells than
to other cell types of the tumor stroma (e.g., fibroblasts and endothelial
cells).

When comparing the detection results to our human annotators, the
agreement was comparable to the inter-annotator agreement for almost
all tumor indications. The visual examples, however, highlighted chal-
lenges in differentiating tumor and non-specified cells, especially at
tumor margins. These regions, however, were also identified as causes for
disagreement among our human raters. To further improve themodel’s per-
formance, it could be trained with a more consistent ground truth, e.g., a
pathologist consensus or additional tumor-specific IHC staining to generate
a more reliable “gold-standard”. Alternatively, active learning could be im-
plemented to iteratively improve cell annotations whilst minimizing the ad-
ditional annotation overhead.

All experiments presented in this study were conducted on procured
samples. In a clinical setting, several additional influence factors have to
be considered that can potentially significantly influence algorithm ro-
bustness. For example, samples can strongly vary in quality, due to tis-
sue deterioration or staining artifacts. Furthermore, previous studies
have shown that algorithmic performance can also decrease on samples
from different pathology labs or digitized by different slide scanning
systems.10,31,32 We have added preliminary experiments on a small
qualitative dataset covering the most common artifacts and tissue mor-
phologies that can challenge the algorithm when deployed in clinical
practice. These experiments can be found in Appendix B. Overall, the se-
lected regions posed challenges to the algorithm, which can make a
complete WSI analysis more difficult. All of our experiments were con-
ducted on selected fields of interest and the algorithm was therefore
never exposed to artifacts or atypical tissue morphologies during train-
ing. By including these regions in the training dataset, predictions in
these areas could be improved, which could be considered for future
work. If the analysis of a complete WSI is of interest, the T-lymphocyte
detection algorithm could also be integrated into a more complex
image analysis pipeline, where common artifacts are first detected and
removed from further analysis, tumor areas are separated from tumor
necrosis using a tumor segmentation model, and the T-lymphocyte de-
tection thereby limited only to tumor regions. This cascaded image anal-
ysis would allow for the use of task-specific algorithms which are
expected to perform better at their designated task than a T-
lymphocyte algorithm developed to account for all morphological sub-
types and artifacts that can be encountered during WSI analysis.
11
Conclusion and outlook

The presented work has evaluated the robustness of a T-lymphocyte de-
tection algorithm under limited data availability and domain shifts intro-
duced by different tumor indications. By leveraging existing software
tools, we generated a high number of single-cell annotations in a compara-
bly short time frame, which have shown a high consistency with expert an-
notations. Furthermore, this semi-automatic annotation pipeline reduces
the occurrence of missed cell candidates, which would otherwise require
repeated screening of samples or consensus annotations. By using the
semi-automatic annotations to train a CNN for the given task, an algorithm
was created that is less dependent onmanual interaction, e.g., threshold op-
timization, and can better generalize across sample diversity and different
sources of domain shift. Overall, our experiments allow recommendations
for the development of T-lymphocyte detection models:

• We recommend using semi-automatic pipelines for collecting single-cell
annotation as they enable the generation of a high number of labels
with sufficient annotation quality in a comparatively short amount of
time. Still, care needs to be taken during this process to curate the semi-
automatic results.

• Few CD3+ cell annotations (∼500) are sufficient to train a robust model
to detect marker-positive cells.

• If the differentiation of tumor or non-specified cells is of interest, e.g., to
detect T-lymphocytes that infiltrate the tumor (TILs) or compute cell ra-
tios, a dataset composed of at least 5000 annotations per cell class (aver-
age number of annotations on 9 annotated WSIs; for details see Fig. 4)
provides a sufficiently high variety of cell morphologies for robust
model training.

• When deploying the model to an unseen target domain, we recommend
undertaking the annotation effort for at least 1 target slide which can be
used to fine-tune the algorithm.

• We recommend always making use of models trained for a similar task in
a related domain and employing transfer learning techniques to adapt
these models as our fine-tunedmodels performed on par with the models
trained from scratchwhilst requiring considerably fewer additional anno-
tations for training.

Future work could focus on alternative domain shifts introduced by dif-
ferent pathology labs, digitization methods, or even different IHC staining
agents. These domain shifts could also be approached by using transfer
learning or unsupervised methods for domain adaptation, e.g., self-
supervised learning or generative models.
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Appendix A. Dataset details
Table A.1

Detailed overviewof datasetwith dataset split used for algorithmdevelopment anddiagnosis according to pathology report. HNSCC: head andneck squamous cell carcinoma,
NSCLC: non-small cell lung cancer, TNBC: triple-negative breast cancer, GC: gastric cancer, TNM: tumor-node-metastasis staging.
ID
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T
T
T
T
T
T
T
T
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T
T
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T
T
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Dataset
 Diagnosis (according to pathology report)
12
TNM
 CD3+ cells
Train
 Valid
 Test
 [#]
 [%]
NSCC_01
 •
 Sqamous cell carcinoma
 III
 16
 0.02

NSCC_02
 •
 Sqamous cell carcinoma, larynx
 IIIA
 1010
 0.51

NSCC_03
 •
 Sqamous cell carcinoma, pharynx
 III
 54
 0.06

NSCC_04
 •
 Sqamous cell carcinoma
 III
 89
 0.07

NSCC_05
 •
 Sqamous cell carcinoma
 II
 227
 0.25

NSCC_06
 •
 Sqamous cell carcinoma, larynx
 III
 397
 0.23

NSCC_07
 •
 Sqamous cell carcinoma, pharynx
 III
 365
 0.22

NSCC_08
 •
 Sqamous cell carcinoma, pharynx
 IV
 60
 0.06

NSCC_09
 •
 Sqamous cell carcinoma, larynx
 III
 186
 0.12

NSCC_10
 •
 Sqamous cell carcinoma, larynx
 IIIB
 190
 0.11

NSCC_11
 •
 Sqamous cell carcinoma, larynx
 I
 392
 0.22

NSCC_12
 •
 Sqamous cell carcinoma, larynx
 IIIA
 397
 0.30

NSCC_13
 •
 Sqamous cell carcinoma, larynx
 II
 125
 0.12

NSCC_14
 •
 Sqamous cell carcinoma, larynx
 II
 563
 0.44

NSCC_15
 •
 Sqamous cell carcinoma, larynx
 II
 144
 0.12

NSCC_16
 •
 Sqamous cell carcinoma, tongue
 236
 0.19

NSCC_17
 •
 Sqamous cell carcinoma, tongue
 284
 0.16

NSCC_18
 •
 Sqamous cell carcinoma, oropharynx
 76
 0.05

NSCC_19
 •
 Sqamous cell carcinoma, larynx
 251
 0.18

NSCC_20
 •
 Sqamous cell carcinoma, glottis
 291
 0.14

NSCC_21
 •
 Sqamous cell carcinoma, epiglottis
 533
 0.22

NSCC_22
 •
 Sqamous cell carcinoma, larynx
 133
 0.10

NSCC_23
 •
 Sqamous cell carcinoma, larynx
 III
 151
 0.11

NSCC_24
 •
 Sqamous cell carcinoma, tongue
 IIIB
 91
 0.09

NSCC_25
 •
 Sqamous cell carcinoma, larynx
 217
 0.11

NSCC_26
 •
 Sqamous cell carcinoma, larynx
 149
 0.14

NSCC_27
 •
 Sqamous cell carcinoma, larynx
 497
 0.27

NSCC_28
 •
 Sqamous cell carcinoma
 IV
 246
 0.25

NSCC_29
 •
 Sqamous cell carcinoma, larynx
 I
 156
 0.09

NSCC_30
 •
 Sqamous cell carcinoma, larynx
 II
 529
 0.29

NSCC_31
 •
 Sqamous cell carcinoma, glottis
 581
 0.29

NSCC_32
 •
 Sqamous cell carcinoma, larynx
 392
 0.28

SCLC_01
 •
 Squamous cell carcinoma, invasive
 IV
 26
 0.02

SCLC_02
 •
 Adenocarcinoma, invasive
 IV
 341
 0.25

SCLC_03
 •
 Squamous cell carcinoma, invasive
 IV
 132
 0.14

SCLC_04
 •
 Squamous cell carcinoma, invasive
 IIIB
 160
 0.07

SCLC_05
 •
 Squamous cell carcinoma, invasive
 IIIB
 197
 0.10

SCLC_06
 •
 Squamous cell carcinoma, invasive
 IIIA
 302
 0.17

SCLC_07
 •
 Squamous cell carcinoma, invasive
 IV
 96
 0.10

SCLC_08
 •
 Squamous cell carcinoma, invasive
 IV
 200
 0.15

SCLC_09
 •
 Squamous cell carcinoma
 IIA
 184
 0.14

SCLC_10
 •
 Adenocarcinoma, micropapillary
 IIIA
 54
 0.04

SCLC_11
 •
 Squamous cell carcinoma, invasive
 IIIC
 275
 0.24

SCLC_12
 •
 Squamous cell carcinoma, invasive
 IIIB
 169
 0.06

SCLC_13
 •
 Squamous cell carcinoma, invasive
 IV
 181
 0.13

SCLC_14
 •
 Squamous cell carcinoma, invasive
 IIIB
 77
 0.11

SCLC_15
 •
 Adenocarcinoma
 IIIA
 168
 0.09

SCLC_16
 •
 Adenocarcinoma, solid predominant
 IIIB
 870
 0.38

SCLC_17
 •
 Adenocarcinoma, acinar predominant
 IIIB
 180
 0.17

SCLC_18
 •
 Squamous cell carcinoma, invasive
 IIIB
 106
 0.06

SCLC_19
 •
 Squamous cell carcinoma, invasive
 IIIB
 457
 0.29

SCLC_20
 •
 Squamous cell carcinoma
 IIB
 133
 0.13

NBC_01
 •
 Invasive carcinoma
 IIIA
 177
 0.10

NBC_02
 •
 Invasive carcinoma
 IIIB
 521
 0.32

NBC_03
 •
 Invasive carcinoma
 IIIA
 172
 0.10

NBC_04
 •
 Invasive carcinoma
 IIIA
 191
 0.20

NBC_05
 •
 Invasive carcinoma
 IIIA
 97
 0.09

NBC_06
 •
 Invasive carcinoma
 IIIA
 145
 0.07

NBC_07
 •
 Invasive carcinoma
 IIIA
 324
 0.33

NBC_08
 •
 Invasive carcinoma
 IIIB
 37
 0.03

NBC_09
 •
 Invasive carcinoma
 IIIA
 149
 0.15

NBC_10
 •
 Invasive carcinoma
 IIIA
 258
 0.17

NBC_11
 •
 Invasive carcinoma
 IIIA
 734
 0.40

NBC_12
 •
 Invasive carcinoma
 IIIB
 155
 0.10

NBC_13
 •
 Invasive carcinoma
 IIIB
 384
 0.30

NBC_14
 •
 Invasive carcinoma
 IIIB
 638
 0.40

NBC_15
 •
 Invasive carcinoma
 IIIA
 276
 0.19

NBC_16
 •
 Invasive carcinoma
 IIIA
 126
 0.11

NBC_17
 •
 Invasive carcinoma
 IIIA
 61
 0.04
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able A.1 (continued)
ID
T
T
T
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

Dataset
 Diagnosis (according to pathology report)
13
TNM
 CD3+ cells
Train
 Valid
 Test
 [#]
 [%]
NBC_18
 •
 Invasive carcinoma
 IIIA
 293
 0.17

NBC_19
 •
 Invasive carcinoma
 IIIA
 383
 0.21

NBC_20
 •
 Invasive carcinoma
 IIIA
 115
 0.10

C_01
 •
 Adenocarcinoma, intestinal-diffuse
 IIB
 241
 0.21

C_02
 •
 Adenocarcinoma, intestinal-solid
 IIIB
 155
 0.18

C_03
 •
 Adenocarcinoma, intestinal-solid
 IIIA
 261
 0.27

C_04
 •
 Adenocarcinoma, intestinal
 IIIA
 86
 0.10

C_05
 •
 Adenocarcinoma, intestinal
 IIB
 226
 0.18

C_06
 •
 Adenocarcinoma, intestinal
 IIA
 113
 0.11

C_07
 •
 Adenocarcinoma, intestinal
 190
 0.13

C_08
 •
 Adenocarcinoma, intestinal
 64
 0.04

C_09
 •
 Adenocarcinoma, intestinal
 319
 0.17

C_10
 •
 Adenocarcinoma, solid
 184
 0.15

C_11
 •
 Adenocarcinoma, intestinal-solid
 IIIA
 187
 0.18

C_12
 •
 Adenocarcinoma, diffuse
 IIIB
 254
 0.22

C_13
 •
 Adenocarcinoma, intestinal-mucinous
 IIA
 247
 0.17

C_14
 •
 Adenocarcinoma, intestinal-solid
 IIA
 81
 0.07

C_15
 •
 Adenocarcinoma, intestinal-solid
 I
 476
 0.34

C_16
 •
 Adenocarcinoma, intestinal
 IIIC
 26
 0.03

C_17
 •
 Adenocarcinoma, intestinal-solid
 IIIB
 68
 0.06

C_18
 •
 Adenocarcinoma, intestinal
 IIIA
 219
 0.16

C_19
 •
 Adenocarcinoma, intestinal
 IIB
 107
 0.08

C_20
 •
 Adenocarcinoma, intestinal
 IIB
 125
 0.10
G
Appendix B. Tissue and staining artifacts

The presented workflow has been developed and tested on pre-selected ROIs. These were deliberately placed in areas without tissue or staining artifacts.
When deploying the algorithm to a complete WSI, these regions can be challenging and introduce false-positive or false-negative detections. We have con-
ducted preliminary experiments to test the algorithm on these challenging regions and highlight potential weaknesses. Our additional qualitative test set
covered 4 common artifacts and morphologies, visualized in Fig. B.1: a staining artifact (Fig. B.1a), a tissue fold (Fig. B.1b), a region with dense clusters
of lymphocytes (Fig. B.1c), and a necrotic area (Fig. B.1d). Each of these regions poses its own challenge to the algorithm, often resulting in a high number
of false-positive cell detections, e.g., the staining artifact, the tissue fold, and the necrotic region. The dense T-lymphocyte cluster resulted in a lot of correct
cell detections but the intense staining produced a light background coloration in some regions, which lead to some false predictions of CD3+ cells. Further-
more, dense cell clusters challenge automatic T-lymphocyte detection as strongly overlapping bounding boxes could potentially be removed during NMS.
However, the detection results in Fig. B.1c look promising even for dense cell clusters, with fewmissed cells. For even denser cell clusters, the NMS threshold
could be adapted to be less sensitive, however, at the cost of possible duplicate detections. Fig. B.1e shows a CD3-stained head and neck sample that we
obtained from a different laboratory. This sample was also digitized with a different scanning system (Aperio GT 450, Leica, Germany), producing WSIs
with considerably lower contrast than the Hamamatsu system used for the original dataset of this study. The detection results show that most of the
CD3+ cells were identified correctly but some tumor cells were mistaken as non-specified cells. Furthermore, some cells (CD3+ as well as tumor cells)
were not detected at all by the algorithm. When comparing the sample in Fig. B.1e to the samples of the original dataset, the staining intensity appears sig-
nificantly brighter. This low-contrast appearance likely resulted from a different staining protocol with a lower concentration of staining agent and a lower
contrast of the Aperio GT 450 scanner used to digitize the sample. The intensity of the hematoxylin counter-stain might be too low compared to the learned
representations and therefore be mistaken as background. Overall, the example shows that the algorithm could in principle be transferred to samples from
different labs but fine-tuning techniques would be advisable to overcome the inter-lab domain shift.



Fig. B.1. Detection results for common tissue and staining artifacts and morphologically challenging regions (orange: tumor cells, green: CD3+ cells, blue: non-specified
cells).
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Fig. B.1 (continued).

F. Wilm et al. Journal of Pathology Informatics 14 (2023) 100301
References

1. Klauschen F, Müller K-R, Binder A, et al. Scoring of tumor-infiltrating lymphocytes: from
visual estimation to machine learning. Semin Cancer Biol. Elsevier; 2018. p. 151–157.

2. Ramos-Vara J. Technical aspects of immunohistochemistry. Vet Pathol 2005;42(4):405–
426.

3. Priego-Torres BM, Lobato-Delgado B, Atienza-Cuevas L, Sanchez-Morillo D. Deep learn-
ing-based instance segmentation for the precise automated quantification of digital
breast cancer immunohistochemistry images. Expert Syst Appl 2022;193:116471.

4. Garcia E, Hermoza R, Castanon CB, Cano L, CastilloM, Castanneda C. Automatic lympho-
cyte detection on gastric cancer IHC images using deep learning. Proc IEEE Int Symp
Comput Based Med Syst. IEEE; 2017. p. 200–204.

5. Chen T, Chefd’hotel C. Deep learning based automatic immune cell detection for immu-
nohistochemistry images. Mach Learn Med Imaging. Springer; 2014. p. 17–24.

6. Fassler DJ, Abousamra S, Gupta R, et al. Deep learning-based image analysis methods for
brightfield-acquired multiplex immunohistochemistry images. Diagn Pathol 2020;15(1):
1-11.

7. Evangeline IK, Precious JG, Pazhanivel N, Kirubha SA. Automatic detection and counting
of lymphocytes from immunohistochemistry cancer images using deep learning. J Med
Biol Eng 2020;40(5):735–747.

8. van Rijthoven M, Swiderska-Chadaj Z, Seeliger K, van der Laak J, Ciompi F. You only
look on lymphocytes once. Medical Imaging with Deep Learning; 2018.

9. Swiderska-Chadaj Z, Pinckaers H, van Rijthoven M, et al. Learning to detect lymphocytes
in immunohistochemistry with deep learning. Med Image Anal 2019;58, 101547.

10. Stacke K, Eilertsen G, Unger J, Lundström C. Measuring domain shift for deep learning in
histopathology. IEEE J Biomed Health Inform 2020;25(2):325–336.

11. Wilm F, Marzahl C, Breininger K, Aubreville M. Domain adversarial retinanet as a refer-
ence algorithm for the mitosis domain generalization challenge. Biomedical Image
15
Registration, Domain Generalisation and Out-of-Distribution Analysis: MICCAI 2021
Challenges. Springer; 2022. p. 5-13.

12. Aubreville M, Bertram CA, Donovan TA, Marzahl C, Maier A, Klopfleisch R. A completely
annotated whole slide image dataset of canine breast cancer to aid human breast cancer
research. Sci Data 2020;7(417):1-10.

13. Sobin LH, Gospodarowicz MK, Wittekind C. TNM Classification of Malignant Tumours.
John Wiley & Sons. 2011.

14. Marzahl C, Aubreville M, Bertram CA, et al. EXACT: a collaboration toolset for algorithm-
aided annotation of images with annotation version control. Sci Rep 2021;11(1):1-11.

15. Wilm F, Bertram CA, Marzahl C, et al. Influence of inter-annotator variability on auto-
matic mitotic figure assessment. Bildverarb Med. Springer; 2021. p. 241–246.

16. Marzahl C, Aubreville M, Bertram CA, et al. Deep learning-based quantification of pulmo-
nary hemosiderophages in cytology slides. Sci Rep 2020;10(1):1-10.

17. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas 1960;20(1):
37–46.

18. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Bio-
metrics 1977:159–174.

19. Li J, Yang S, Huang X, et al. Signet ring cell detection with a semi-supervised learning
framework. Inf Process Med Imaging. Springer; 2019. p. 842–854.

20. De Raadt A, Warrens MJ, Bosker RJ, Kiers HA. Kappa coefficients for missing data. Educ
Psychol Meas 2019;79(3):558–576.

21. Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. Proc
IEEE Int Conf Comput Vis; 2017. p. 2980–2988.

22. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE
Comput Soc Conf Comput Vis Pattern Recognit; 2016. p. 770–778.

23. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int
J Comput Vis 2015;115(3):211–252.

24. Kensert A, Harrison PJ, Spjuth O. Transfer learning with deep convolutional neural net-
works for classifying cellular morphological changes. SLAS Discov 2019;24(4):466–475.

http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0005
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0005
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0010
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0010
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0015
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0015
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0015
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0020
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0020
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0020
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0025
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0025
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0030
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0030
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0030
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0035
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0035
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0035
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0040
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0040
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0045
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0045
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0050
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0050
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0055
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0055
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0055
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0055
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0060
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0060
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0060
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0065
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0065
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0070
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0070
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0075
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0075
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0080
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0080
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0085
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0085
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0090
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0090
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0095
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0095
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0100
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0100
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0105
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0105
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0110
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0110
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0115
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0115
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0120
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0120


F. Wilm et al. Journal of Pathology Informatics 14 (2023) 100301
25. Ciga O, Xu T, Martel AL. Self supervised contrastive learning for digital histopathology.
Mach Learn Appl 2022;7, 100198.

26. Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical
image analysis: full training or fine tuning? IEEE Trans Med Imaging 2016;35(5):1299–
1312.

27. Howard J, Ruder S. Universal language model fine-tuning for text classification, arXiv
preprint. arXiv:1801.06146 2018.

28. Howard J, Gugger S. Fastai: A layered API for deep learning. Information 2020;11(2):
108.
16
29. Kuhn HW. The Hungarian method for the assignment problem. Naval Res Logist Quart
1955;2(1–2):83–97.

30. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):
646–674.

31. Lafarge MW, Pluim JP, Eppenhof KA, Veta M. Learning domain-invariant representations
of histological images. Front Med 2019;6:162.

32. Aubreville M, Bertram C, Veta M, et al. Quantifying the scanner-induced domain gap in
mitosis detection. Medical Imaging with Deep Learning; 2021.

http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0125
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0125
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0130
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0130
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0130
https://arxiv.org/abs/1801.06146
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0140
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0140
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0145
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0145
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0150
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0150
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0155
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0155
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0160
http://refhub.elsevier.com/S2153-3539(23)00115-3/rf0160

	Pan-�tumor T-�lymphocyte detection using deep neural networks: Recommendations for transfer learning in immunohistochemistry
	Introduction
	Material and methods
	Data annotation
	Metrics for inter-annotator agreement
	Algorithm robustness experiments
	WSI ablation study
	Deployment of source model on target domains
	Model fine-tuning on target domains

	Training hyperparameters
	Performance evaluation

	Results
	Inter-annotator agreement
	WSI ablation and model deployment on target domains
	Qualitative results
	Model fine-tuning on target domains

	Discussion
	Conclusion and outlook
	Acknowledgments
	Appendix A. Dataset details
	Appendix B. Tissue and staining artifacts
	References




