Table 1.
Average precision for deployment vs. fine-tuning for n = 1, 5, 10, 15, and 22 training whole slide images (mean of 5 training repetitions). The highest average precision per cell class and per tumor indication is highlighted in bold. HNSCC: head and neck squamous cell carcinoma, NSCLC: non-small cell lung cancer, TNBC: triple-negative breast cancer, GC: gastric cancer.
| Tumor cells |
Non-specified cells |
CD3+ cells |
||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| HNSCC | NSCLC | TNBC | GC | HNSCC | NSCLC | TNBC | GC | HNSCC | NSCLC | TNBC | GC | |
| RetinaNet1 | 0.70 | 0.54 | 0.61 | 0.73 | 0.49 | 0.45 | 0.54 | 0.48 | 0.70 | 0.69 | 0.57 | 0.65 |
| RetinaNet1,T | 0.58 | 0.74 | 0.83 | 0.45 | 0.63 | 0.55 | 0.69 | 0.72 | 0.69 | |||
| RetinaNet5 | 0.78 | 0.61 | 0.64 | 0.80 | 0.62 | 0.50 | 0.61 | 0.59 | 0.70 | 0.67 | 0.58 | 0.67 |
| RetinaNet5,T | 0.62 | 0.76 | 0.83 | 0.55 | 0.66 | 0.63 | 0.69 | 0.73 | 0.70 | |||
| RetinaNet10 | 0.81 | 0.68 | 0.74 | 0.84 | 0.63 | 0.49 | 0.61 | 0.64 | 0.73 | 0.74 | 0.65 | 0.70 |
| RetinaNet10,T | 0.66 | 0.78 | 0.85 | 0.50 | 0.64 | 0.63 | 0.73 | 0.72 | 0.70 | |||
| RetinaNet15 | 0.81 | 0.69 | 0.77 | 0.83 | 0.64 | 0.52 | 0.66 | 0.66 | 0.73 | 0.70 | 0.61 | 0.68 |
| RetinaNet15,T | 0.68 | 0.75 | 0.84 | 0.51 | 0.65 | 0.65 | 0.73 | 0.71 | 0.72 | |||
| RetinaNet22 | 0.81 | 0.69 | 0.76 | 0.85 | 0.64 | 0.57 | 0.70 | 0.68 | 0.74 | 0.73 | 0.64 | 0.70 |
| RetinaNet22,T | 0.67 | 0.78 | 0.85 | 0.50 | 0.66 | 0.66 | 0.73 | 0.72 | 0.69 | |||
| Benchmark10,T | 0.67 | 0.78 | 0.85 | 0.54 | 0.68 | 0.69 | 0.73 | 0.72 | 0.71 | |||