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Significance

The recent publication of predicted 
structures of the entire human 
proteome was a landmark 
achievement. Combining 
automatic pipelines and manual 
curation, we identified 47,576 
globular domains from predicted 
structures of the human proteome 
and determined their evolutionary 
relationships to known domains.  
A quarter of these domains lacked 
structural data before the release 
of these predictions. Investigation 
into these domains and the 
thousands of disease-causing 
single amino acid variations within 
them is expected to reveal insights 
into protein function and disease 
mechanisms, as illustrated by 
examples discussed here. Finally, 
comparison with automatically 
classified domains from multiple 
model organisms revealed 
differences associated with the 
unique physiology of humans, 
such as expansion in cytokines 
and depletion of odor-sensing 
domains.
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Recent advances in protein structure prediction have generated accurate structures of 
previously uncharacterized human proteins. Identifying domains in these predicted 
structures and classifying them into an evolutionary hierarchy can reveal biological 
insights. Here, we describe the detection and classification of domains from the 
human proteome. Our classification indicates that only 62% of residues are located 
in globular domains. We further classify these globular domains and observe that 
the majority (65%) can be classified among known folds by sequence, with a smaller 
fraction (33%) requiring structural data to refine the domain boundaries and/or to 
support their homology. A relatively small number (966 domains) cannot be confi-
dently assigned using our automatic pipelines, thus demanding manual inspection. 
We classify 47,576 domains, of which only 23% have been included in experimental 
structures. A portion (6.3%) of these classified globular domains lack sequence-based 
annotation in InterPro. A quarter (23%) have not been structurally modeled by 
homology, and they contain 2,540 known disease-causing single amino acid vari-
ations whose pathogenesis can now be inferred using AF models. A comparison of 
classified domains from a series of model organisms revealed expansions of several 
immune response-related domains in humans and a depletion of olfactory receptors. 
Finally, we use this classification to expand well-known protein families of biological 
significance. These classifications are presented on the ECOD website (http://prodata.
swmed.edu/ecod/index_human.php).

protein structure | domain classification | structural prediction | bioinformatics

Protein function stems from structure, which is determined by sequence. We use sequence, 
structure, and functional similarity to detect homology between proteins, identify their 
domains, and infer function (1). Domains represent the structural, functional, and evo-
lutionary units of proteins. Their definitions are collected in both structure-based domain 
classifications, such as in Evolutionary Classification of protein Domains (ECOD) (2–4), 
SCOP (5), and CATH (6), and sequence-based domain classifications, such as Pfam (7–9) 
and CDD (10). In the past, structure-based domain classifications have been limited to 
a small fraction of the protein universe with experimentally determined structures. 
However, studies suggested that nearly all possible folds have been represented by domains 
in the experimental structures (11–13).

Our classification, the Evolutionary Classification of protein Domains (ECOD), differs 
principally from other structure-based classifications in its hierarchy, which favors homol-
ogy over topology (2), and in the degree of automation, which facilitates high-throughput 
classification. We have demonstrated that ECOD’s approach is suitable for the large-scale 
classification of experimental structures (SI Appendix, Fig. S1) (14). ECOD’s top level is 
architecture, a broad category based on the content and arrangement of secondary struc-
tures. Beneath it lies the level of possible homology (X-groups), approximately analogous 
to the fold level of SCOP (5). Domains sharing homology deduced from sequence and 
profile similarity or revealing structural similarity coupled with functional evidence are 
grouped into H-groups (homology groups). Domains in the same H-group are partitioned 
into topology groups (T-groups) if conformational switching or fold change between them 
has led to substantial structural differences. Proteins with confident evolutionary relation-
ships (i.e., common ancestry) will be grouped in the same H-group, while significant 
structural changes between homologous proteins are permitted (2, 15). The finest classi-
fication level in ECOD is the family, or F-group, where closely related domains that are 
expected to have similar functions are grouped.

The recent Critical Assessment of techniques in Structure Prediction (CASP14) showcased 
a breakthrough in structure prediction (16, 17). AlphaFold (AF), developed by DeepMind, 
demonstrated its ability to predict three-dimensional structures of proteins from their 
sequences with accuracy approaching that of experimental methods (16, 18, 19). After the 
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publication of AF, a flood of predicted structures was released to 
the public in the AlphaFold protein structure Database (AFDB) 
(20), including a complete set of predictions for the human pro-
teome. These predictions significantly increased the structurally 
characterized fraction of the human proteome (21). However, 
these AF models are heterogeneous in compactness and prediction 
confidence (22), illustrating the need to identify domains from 
the confident regions of these models.

Here, we present our classification of domains from human 
proteins in the AFDB, using ECOD as the reference. We integrate 
our established pipeline for classifying domains from experimental 
structures with additional tools we developed to specifically 
address the nonglobular nature of AF models rich in flexible or 
helical interdomain linkers. These automatic pipelines are expected 
to detect ~99% of domains from AF models, and they can confi-
dently assign 98% of these domains to the existing ECOD hier-
archy, leaving 2%, which require manual curation. Consequently, 
we identified 47,576 domains from 20,296 human protein mod-
els, including 2,994 domains not previously annotated in the 
InterPro database (23, 24) and 10,994 domains whose 3D struc-
tures cannot be modeled by homology. The classification of these 
domains allowed us to populate ECOD homologous groups of 
crucial biological relevance (such as G-protein coupled receptors) 
and to view disease-causing single amino acid variations (SAVs) 
in previously unrecognized domains. Finally, a crosscomparison 
of domains classified from multiple eukaryotic model organisms 
reveals the expansion and depletion of protein families, enabling 
the specific adaptation of humans during evolution(25).

Results and Discussion

Domain Classification of the Human Proteome by Sequence and 
Structure. We classified domains in the 20,296 AF models of the 
human proteome based on their homology to ECOD domains 
using two pipelines (Fig. 1A). The first is our established pipeline 
to classify domains from experimental structures. This pipeline is 
primarily based on sequence similarities detected by BLAST (26) 
and HHsuite (27) against ECOD domains and previously classified 
PDB chains (2, 28). This pipeline identified at least one putative 
domain for 16,868 of the 20,296 AF models; it predicted a total 
of 40,473 domains, which we call “sequence domains.” 28,393 of 
these sequence domains were assigned by BLAST, and 12,080 were 
assigned by HHsuite. 10,968 domains showed ≥99% sequence 
identity to ECOD domains, suggesting that their structures had 
been determined experimentally and classified into ECOD.

•  These sequence domains only consist of 5.4 million (M)  
residues, around 51% of the 10.5M residues in the input mod-
els. AF models can be less globular and contain more repetitive 
regions and flexible loops than experimentally determined struc-
tures (22). Although manual inspection of residues outside our 
sequence domains revealed many disordered regions and simple 
helical structures (e.g., linkers and coiled coils) (SI Appendix, 
Fig. S2), it was unclear how many domains were missed due to 
the lack of confident similarity in sequences or sequence profiles 
to ECOD domains. We developed a dedicated tool, Domain 
Parser for AlphaFold Models (DPAM), which is described  
in a separate paper (29). The DPAM recognizes globular 
domains from AF models based on a) interresidue distances, 
b) predicted aligned errors (PAE) between residues, and candi-
date homologous ECOD domains found by c) HHsuite and 
d) Dali (30).

Based on our previous benchmark, DPAM was able to distin-
guish globular domains from domain linkers and recognize 98.8% 

of domains from AF models. The DPAM pipeline identified 57,298 
domains. 11,937 of these domains were excluded because they 
appear to be simple structure motifs like single helices or helical 
hairpins (Methods). The remaining 45,361 domains are referred to 
as “DPAM domains.” To assign DPAM domains to the ECOD 
hierarchy, we developed an automatic domain assigner to evaluate 
the probability for a reference ECOD domain to be from the same 
T-group as a query domain based on sequence and structure simi-
larities (see Methods). This domain assigner can confidently classify 
most domains (44,403 out of 45,361) to ECOD based on the 
top-ranking ECOD reference by DPAM probabilities. The remain-
ing 966 domains (2%) require manual curation.

The domains annotated by both pipelines were integrated to 
generate a final set of 47,576 domains. 31,046 of these domains 
were consistently predicted by both pipelines or assigned only by 
the sequence-based pipeline, i.e., they could have been correctly 
delineated and assigned merely by sequences. Another set of 8,966 
domains (principally sequence) could have been correctly detected 
by sequences, but structures were needed to refine the boundaries 
of these domains. The remainder (6,598 domains) required both 
sequence and structural evidence to define domain boundaries 
and/or to assign them to the ECOD hierarchy (Fig. 1B). We 

Fig. 1. Overview of our domain classification pipeline and results. (A) Our 
pipeline to classify domains in AF models of human proteins. (B) The number 
of domains classified using different types of evidence. (C) The most enriched 
ECOD H-groups among human proteome compared to representative ECOD 
domains (filtered by 99% identity) from experimental structures. The most 
enriched H-group, KRAB domains (red), come from KRAB-C2H2 zinc fingers 
(orange, yellow, green, and blue) that are abundant in humans, and one such 
example is shown on the right.

http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
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previously observed that DPAM domains frequently have more 
accurate boundaries than those of homology-based domain pre-
dictions (29), presumably because structural data were directly 
used in their definition. Additionally, the DPAM probability 
demonstrated superior performance (by receiver operating char-
acteristic curves) in assigning domains to the ECOD hierarchy 
than HHsuite probability (SI Appendix, Fig. S9). Therefore, in 
cases where sequence domains overlap with DPAM domains but 
show significantly different boundaries, we chose to use the 
DPAM assignments in the final dataset.

The inclusion of AF models significantly expands the available 
structural data in ECOD. We compared the human domains against 
previously classified domains from experimental structures in 
ECOD. The distribution of these domains among ECOD H-groups 
was compared against the ECOD representative domains filtered at 
99% identity. The top 10 most enriched H-groups are shown in 
Fig. 1C, and the most prominent case is the Kruppel-associated box 
(KRAB) domains (ECOD H-group id:556.1). KRAB domains are 
found in KRAB-C2H2 zinc-fingers that underwent an expansion 
in tetrapods (31). Only a single KRAB domain (PDB: 1V65) has 
been structurally characterized by NMR (32), and it is not well 
ordered without the presence of binding partners. Due to the lack 
of rigid structure on its own, KRAB domains were largely not 
detected by the DPAM pipeline but they can be confidently recog-
nized by the sequence-based pipeline. The AF human models 
increase the number of KRAB domains classified in ECOD to 240. 
Similarly, the “Jelly-roll domain in ADAMTS13” H-group (ECOD 
id:10.21) was previously represented by a single ECOD domain 
(PDB: 3GHN). Subsequently, 26 human homologs of this domain 
were classified. The “fragilysin-3 prodomain” H-group (ECOD id: 
3338.1) is represented by a single bacterial protein possibly trans-
ferred from eukaryotes to prokaryotes (33). Twenty human domains 
expanded this H-group.

Classification of AF models into ECOD allowed us to gain 
functional insights about proteins using structural and evolution-
ary data, as we illustrate below. Additionally, comparative analysis 
of AF models and experimental structures classified into the same 
homologous group will facilitate future critical analysis of AF 
models. Despite the overall high quality of AF models, we did 
observe potential errors in AF models through our manual analysis 
and comparison to homologous experimental structures. Several 
such examples are included in the supplemental materials 
(SI Appendix, Figs. S3 and S4).

AF Models Reveal Previously Unclassified ECOD Domains in 
Human Proteins and Provide Structural Context for Disease-
Causing SAVs. To seek biological insights revealed by AF models, 
we analyzed the domains we detected in humans against several 
databases. First, we utilized the InterPro database, a collection 
of sequence domains annotated from different resources, such 
as Pfam. A majority (93.7%) of our defined domains belong to 
known sequence domains, but a small fraction (6.3%, Dataset S1) 
was not previously annotated by sequence (Fig. 2A). Focusing on 
these domains in future studies might reveal unique insights about 
protein function. For example, phosphodiesterase 2 (PDE2A2), 
a protein that responds to the second messengers cAMP and 
cGMP, is known to contain two GAF domains and a catalytic 
PDEaseI domain (Fig. 2B). The first GAF acts as a dimerization 
domain, whereas the second binds cAMP and cGMP. The model 
of PDE2A2 reveals another domain at the N terminus that has 
not been structurally characterized and is bordered by disordered 
regions. This domain was recognized by DPAM and assigned as 
another GAF domain. The function of this GAF-like domain 
remains to be explored experimentally.

Second, we analyzed homology-based models of human pro-
teins in the SWISS-MODEL repository (updated in 2022). 
Almost a quarter of human domains we classified (10,994) were 
not modeled by homology, and we refer to them as de novo 
domains. These de novo domains contain 1.29M residues and are 
linked to 2,540 known disease-causing SAVs, according to UniProt 
(Fig. 2C). These pathogenic SAVs are concentrated in 786 (7%) 
de novo domains (Dataset S2), and the single-domain protein, 
glucose-6-phosphatase catalytic subunit 1 (UNP: P35575), con-
tains the largest number of disease-causing SAVs, which are asso-
ciated with the glycogen storage disease 1A (34). We further 
computed the number of associated SAVs mapping to de novo 
domains for each genetic disorder (Dataset S3). The de novo 
domains from AF models remarkably expanded the available struc-
tural information to offer possible molecular mechanisms for a 
number of diseases, such as nephrotic syndrome 1, Leber congen-
ital amaurosis 1, and macular corneal dystrophy.

We manually studied human ECOD domains that are not 
annotated by InterPro, not modeled by SWISS-MODEL, but 
with pathogenic SAVs, and several interesting examples are dis-
cussed below. The positions of these SAVs in the AF models may 
suggest their roles in disease, especially in the context of the func-
tions of evolutionarily related domains. SAVs in the core of a 
domain might affect structural stability or disturb enzymic sites; 
SAVs in the interfaces between domains may affect crucial inter-
domain interactions; surface-exposed SAVs may disrupt a protein’s 
interaction with other molecules, affecting its subcellular locali-
zation and function.

Ribitol-5-phosphate xylosyltransferase 1 (RXYLT1) functions 
in phosphorylated O-mannosyl trisaccharide biosynthesis. 
Pathogenic SAVs in RXYLT1 are implicated in severe cobblestone 
lissencephaly (35) and muscular dystrophies (36). While RXYLT1 
does not have a homology-based model in SWISS-MODEL repos-
itory, the AF model confidently predicts two domains following 
the N-terminal TMH and disordered region. DPAM assigns both 
RXYLT1 domains as UDP-glycosyltransferase homologs based on 
their structural similarity. Related UDP-glycosyltransferases 
include duplicated domains, with the N-terminal domain binding 
ATP and the C-terminal domain coordinating oligosaccharide 
substrate at the domain interface (Fig. 2D). The RXYLT1 fold has 
diverged significantly from the closest structure, but all the three 
pathogenic SAVs map to the N-terminal domain near the putative 
active site (Fig. 2E), supporting the hypothesis that loss of phos-
phorylated O-mannosyl trisaccharide activity leads to disease.

The coiled-coil and C2 domain-containing protein 2A 
(CC2D2A) plays a critical role in cilia formation. The CC2D2A 
AF model includes two domains with known pathogenic SAVs in 
addition to the known C-terminal C2 domain: a transglutami-
nase-like (TGL) cysteine proteinase domain (37) and a dynein 
light chain (DLC) domain. The evolutionary roots of the TGLs 
suggest a relationship with dynein ATPases (37), and the coexist-
ence of TGL and DCL domains in CC2D2A provides additional 
support for this relationship. C2, TGL, and DLC domains con-
fidently interact with each other according to the PAEs of the 
model. Pathogenic SAVs in CC2D2A that cause Meckel syndrome 
type 6 or Joubert syndrome type 9 map to all the three domains 
(Fig. 2F). Several of these SAVs are at the domain interface, while 
others cluster at the surface. The C2 domain is thought to localize 
the protein to membranes (37). Thus, the surface cluster of dis-
ease-causing SAVs might contribute to membrane localization. 
The TGL domain includes pathogenic SAVs surrounding an active 
site lacking catalytic residues, suggesting that the fold has evolved 
to bind substrates without modifying them. Alteration of this 
binding activity by SAVs probably leads to disease.

http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
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The ceramide kinase-like (CERKL) protein is associated with 
an autosomal recessive form of retinitis pigmentosa. As a ceramide 
kinase homolog, CERKL does not modify ceramide, and its sub-
strate is currently unknown. While homology models exist in 
SWISS-MODEL for the C-terminal catalytic domain, the CERKL 
structure model by AF confidently positions (according to PAE) 
an N-terminal PH domain to interact with the catalytic CERKL 
domain with a class I glutamine amidotransferase-like fold 
(Fig. 2G). One disease-causing SAV is at the interface between 
the PH and catalytic domains, suggesting that this domain inter-
action is vital for function. Many PH domains bind phosphati-
dylinositol, including the N-terminal domain in the related 
enzymes sphingosine kinase II and ceramide kinase (38), suggest-
ing that the PH domain localizes CERKL to the membrane where 
it modifies substrate. The positions of pathogenic SAVs suggest 
that altered domain positioning or membrane localization leads 
to disease.

Comparison of Domains Classified in Different Model 
Organisms. We classified domains in a series of model organisms, 
including Caenorhabditis elegans (worms, Cel), Drosophila 
melanogaster (flies, Dme), Danio rerio (fishes, Dre), Mus musculus 
(mice, Mmu), and Pan paniscus (chimpanzees, Ppa) using the 
DPAM pipeline. We compared the DPAM domains from human 
proteins against these model organisms and identified ECOD 
T-groups where human domains are significantly overrepresented 
or underrepresented. T-groups where human domains show 

significant changes relative to at least three other model organisms 
are shown in Fig. 3A. These domains tend to function in the 
communication between an organism and its environment, and 
a number of these changes might be associated with the unique 
features of humans and mammals. Most of these overrepresented 
and underrepresented T-groups in human could be revealed 
without AF models, because majority of these domains can be 
classified through sequence-based approaches.

Humans are depleted of periplasmic binding protein-like I, a 
group of domains found in glutamate receptors (Fig. 3B) (39). 
These receptors are responsible for gustatory and olfactory sensing, 
and humans were known to have experienced loss in odor and 
taste sensing during evolution (40), especially compared to 
rodents. In contrast, compared to lower Eukaryotes, mammals 
experienced an expansion in multiple ECOD T-groups involved 
in immune responses (Fig. 3C), including chemokine (IL8), 
cytokines, major histocompatibility complex (MHC) proteins, 
defensins, and uteroglobins. Genes involved in host defenses are 
frequently subject to rapid evolution (41). The expansion of genes 
in these homologous groups and subsequent functional divergence 
could be a mechanism for gaining immunity against pathogens.

The UniProt reference human proteome contains multiple 
retroviral domains (labeled by magenta dots in Fig. 3A) that are 
missing in other species. Many of these domains belong to the 
endogenous retrovirus group K member gag polyproteins 
(HERVK), which are known to display human-specific integra-
tions and amplifications (42, 43). Several of these retroviral genes 

Fig. 2. Insights about human proteins revealed by AF models and ECOD classification. (A) Fraction of unique domains outside annotated domains in the InterPro 
database. (B) Protein PDeaseI (UNP: O00408) contains three domains according to Pfam (Upper), but the AF model (Bottom Left) reveals 4 ECOD domains: 1 
PDease (red) and 3 GAF domains (cyan, green, and orange). The extra domain is homologous to a known GAF domain (Bottom Right). (C) The number of domains 
that cannot be modeled by homology based on the SWISS-MODEL repository and the number of residues and known pathogenic SAVs in these domains.  
(D) Representative UDP-glycosyltransferase (PDB: 6GNE) has duplicated domains (green and cyan) that bind ATP (red stick) and oligosaccharide (blue stick) at 
the interface. (E) Pathogenic SAVs (magenta sphere) in RXYLT1 N-terminal domain (cyan) line the active site of the assigned UDP-glycosyltransferase fold. (F) 
CC2D2A model places a known N-terminal C2 domain (yellow) with disease-causing SAVs (red spheres) in between a TGL-like fold (green) with disease-causing 
SAVs (Magenta spheres) and a C-terminal DLT-like fold with pathogenic SAVs (orange spheres). (G) CERKL active site (black spheres) at the interface of the known 
catalytic class I glutamine amidotransferase-like fold (cyan) and NAD kinase beta-sandwich domain-like fold (yellow). An N-terminal PH domain (green) includes 
disease-causing SAVs (magenta spheres), with one on the interface with the catalytic domain. In (D–G), experimentally determined domains and domains that can 
be modeled by homology were placed in blue and red circles, respectively; other domains were structures predicted by AF with no experimentally determined 
structure in the PDB nor homology models in SWISS-MODEL.
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have been shown to be able to produce viral particles and infect 
humans today (44, 45). More details about these retroviral pro-
teins encoded in the human genomes are in supplemental mate-
rial. Other eukaryotic genomes in our comparison also contain 
many genes or pseudogenes likely originated from retroviruses 
(46), but they are frequently removed from the annotated protein 
set due to the lack of evidence for their transcription and 
translation.

Identification of Distant GPCR-Like Folds in the Human 
Proteome. G-protein coupled receptors (GPCRs) are one of 
the most populated superfamilies in the human genome, with 
their members being targeted by over one-third of marketed 
drugs (47, 48). Human GPCRs are distributed among six main 
classes (A, B1, B2, C, F, and T) based on their phylogenetic and 
functional characteristics (49). The GPCR fold adopts a seven-
transmembrane helix bundle that meanders with an up-and-down 
topology (Fig.  4A). GPCRs bind an extracellular ligand in the 
center of the bundle, which causes a conformational change that 
transmits a signal to the cytoplasm. A similar seven-transmembrane 
meandering topology is exhibited by members of a large and 
diverse superfamily of putative membrane-bound hydrolases called 
CREST (Fig. 4B) (50). The CREST superfamily binds substrates 
in a similar mode as the GPCRs. Based on this common active site 
and similar topology, ECOD classifies the GPCRs and CREST 
hydrolases as homologs.

In our classification, we found 893 human proteins with 
GPCR-like domains (Dataset S4): Most of them could be detected 
by sequence, but 35 required support from structural data.  
A subset of these GPCR-like domains, especially those lacking 
substantial sequence similarity to classic GPCRs, were placed in 
a structure-based tree of different GPCR classes and CREST 
enzymes (Fig. 4C). The tree highlights the relationship between 
the main classes of classic GPCRs [24]. The class C GPCR struc-
tures, which include an extracellular β-hairpin insertion to the 
core 7-TMH fold, represent the most divergent structure class 
among the classic GPCRs. The class C glutamate receptor-like 
family is thought to be among the phylogenetically oldest of the 
classic GPCRs. The glutamate-binding activity expanded greatly 
to other functions (pheromone-, taste-, and calcium-sensing) dur-
ing vertebrate evolution (51).

The CREST superfamily (50) structures (Fig. 4C, cyan) are 
distinct from the classic GPCRs in the structure tree. Several AF 
models of human proteins are grouped with CREST-like hydro-
lases. Among these, TMEM187 lacks the typical zinc-coordinating 
residues found in CREST hydrolases. However, its sequence and 
structure similarity to a known CREST family member, alkaline 
ceramidase 3 (ACER3), suggests that it might bind a similar lipid 
substrate but does not hydrolyze it using zinc. The human protein 
Myomaker (MYMK) is not known to be an enzyme. However, it 
controls mammalian myoblast fusion by mediating cell membrane 
lipid mixing (52, 53) and was previously identified as a CREST 

Fig.  3. Significant changes in the number of domains in ECOD T-groups among different model organisms. (A) Overrepresentation (green cells) and 
underrepresentation (red cells) of ECOD T-groups in human proteins compared to other species. The names of the T-groups are on the left, and the numbers 
in the table are F

Hsa
∕F

others
 , where F

Hsa
 is the fraction of human domains in this T-group and F

others
 is the fraction for another species as labeled on the top. When 

a species lacks domains of a T-group, we used a pseudo count of 0.5, i.e., F
others

= 0.5∕Total , and Total is the total number of domains in a species. T-groups 
illustrated in panels (B) and (C) are in red and green boxes, respectively. Magenta dots on the left label domains originated from retroviruses. (B) A representative 
structure for the periplasmic binding domains from glutamate receptors. (C) Representative structures for domains involved in immune responses.

http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
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superfamily member (50). Interestingly, the MYMK-predicted 
structure includes several zinc-coordinating residues near the 
active site and might mediate the hydrolysis of membrane lipids.

Other GPCR-like AF models are distributed throughout the 
tree. Some of these include a short helix following the GPCR-like 
fold that might mediate interaction with cytoplasmic G-protein 
subunits. For example, the TMEM87A (Fig. 4D) and the PPRT 
(Fig. 4E) folds include a poorly modeled C-terminal helix. 
Additionally, the PPRT proteins possess long disordered segments 
in their termini. Several AF models are in long branches that ques-
tion their classification as GPCR homologs. The long branch Yhhn 
structures have a flipped helix (Fig. 4F, marked by *) and require 
expert curation for their classification as questionable homologs 
(X-group) or as homologs with an alternate topology (T-group). 
The longest branch represents SLC51A (Fig. 4G) and TMEM184C, 
which adopt similar structures. These models have longer helices 
and a flattened helical meander with respect to the GPCR-like 
folds, suggesting that they should be classified with questionable 
homology (X-group). SLC51A is a component of the Ost-alpha/
Ost-beta complex that transports bile from intestinal enterocytes 
into blood (54). The similarity between TMEM184C and SLC51A 
might suggest a similar transport function for TMEM184C.

Previously Unclassified ATP-Grasp/Protein Kinase Domains in AF 
Models. Our classification revealed previously undiscovered ATP-
Grasp/protein kinase domains in three human proteins: C12orf29 
(pfam: DUF5565), CLUH, and FAM91A1. Both C12orf29 
and FAM91A1 adopt an ATP-grasp topology, whereas CLUH 
adopts a protein kinase-like topology. The closest homolog of 
C12orf29 with experimentally solved structures is an RNA ligase 
from Naegleria gruberi (PDB: 6VTB) (55). The ATP-Grasp/kinase 
domain in C12orf29 was supported by both structure similarity 
(Dali Z-score: 8.2) and sequence similarity (HHsuite probability: 
0.97, Fig. 5A). C12orf29 possesses key catalytic residues found in 
RNA ligases and thus could be an active enzyme. The substrate of 
C12orf29 remains to be elucidated.

Previously unclassified ATP-Grasp/kinase domains in CLUH 
and FAM91A were only found by structural similarity (Dali) 
and not by sequence-based searches (HHsuite). CLUH is a 
multidomain protein functioning in mitochondrial fusion (56) 
and is widely distributed in eukaryotes. The ATP-Grasp/kinase 
domain (residues: 354 to 716, Fig. 5B) is located in the middle 
of CLUH, sandwiched by the N-terminal CLU_N domain and 
GSKIP domain and the C-terminal eIF3_p135 domain and 
ARM repeats. The closest known structure to the CLUH 

Fig. 4. Classification of GPCR-like folds. All folds are colored in a rainbow from TMH1 (blue) to TMH7 (purple) and labeled below. (A) Representative classic 
GPCR fold of Beta1 adrenergic receptor (class A, PDB: 7BU7) shown with a bound agonist (black spheres) that depicts the ligand binding site and a cytoplasmic 
helix that interacts with the heterotrimeric G-protein complex (magenta). (B) Representative CREST family enzyme alkaline ceramidase (ACER3, PDB: 6YXH) is 
shown with a catalytic zinc (gray sphere) and active site residues (black stick). (C) The structure tree for GPCR classification is colored and labeled by experimental 
structures for GPCR classes (A–C and F), CREST (cyan), and WLS (purple). Models are black, with a GPCR Taste receptor model indicated (T*), or gray (Yhhn family). 
(D) TMEM87A and (E) PRRT4 have a C-terminal helix (magenta). (F) The TMH4 (yellow) and TMH5 (orange) are flipped in TMEM86A (marked by **), and (G) SLC51A 
has a flattened meander of helices.

Fig. 5. ATP-Grasp/protein kinase domains. (A) C12orf29 (Left) and its close structural homolog RNA ligase (right, PDB: 6VTB). (B) CLUH (Left) and its close structural 
homolog HopBF1 kinase (Right, PDB: 6PWD). (C) FAM91A1 (Left) and its close structural homolog RimK (Right, PDB: 4IWX). Dali Z-score and HHpred probability 
scores are shown for the pairs.
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ATP-Grasp/kinase domain is a bacterial HopBF1 kinase (PDB: 
6PWD) (57). However, the key catalytic residues in the CLUH 
ATP-Grasp/kinase domain are changed, suggesting the loss of 
kinase activity. FAM91A1 forms a complex with WDR11 and 
C17orf75 that functions in vesicle transport (58). The previ-
ously unclassified ATP-Grasp/kinase domain is at the C termi-
nus of FAM91A1. Its N-terminal region has a couple of HTH 
domains and a minimal Rossman-fold domain. The closest 
known structure of the FAM91A1 ATP-Grasp/kinase domain 
(Fig. 5C) is Escherichia coli RimK (PDB: 4IWX) (59), an 
enzyme catalyzing the posttranslational addition of multiple 
glutamate residues to ribosomal protein S6. Compared to active 
enzymes in the same family (60), the FAM91A1 ATP-Grasp/
kinase domain does not possess critical catalytic residues, sug-
gesting the loss of enzymatic activity. The high sequence diver-
gence in CLUH and FAM91A1 ATP-Grasp/kinase domains 
possibly explains why sequence-based methods did not detect 
them.

Altered catalytic residues in protein kinases, as observed in 
CLUH, often lead to a presumption of the family being pseudoki-
nases. However, such pseudokinases may accommodate different 
ATP-binding orientations, exhibit catalytic site migration, and 
thus function as atypical protein kinases. Identification of atypical 
kinase families and elucidation of their activities has revealed 
diverse catalytic activities, such as RNA capping in SARS-CoV-2 
(61), AMPylation by SelO (62), and glutamylation by the 
Legionella effector SidJ (63). Similar functional diversity may be 
revealed after identification of new families.

Conclusion

We developed tools to classify AF models into the ECOD hierar-
chy. Using these tools and manual curation, we detected and clas-
sified domains from AF models of the entire human proteome. 
On the one hand, this work serves as a prototype to expand ECOD 
to include the avalanche of predicted structures and to cover the 
entire protein universe eventually. On the other hand, our classi-
fication, presented on the ECOD website, will help the scientific 
community to utilize valuable structural data and gain functional 
insights about proteins. Comparison of classified domains from 
human proteins against other model organisms revealed the expan-
sion and depletion of protein families during evolution. 
Additionally, our classification revealed domains not found by 
previous annotation efforts and structures that might explain the 
mechanisms of various diseases. Finally, our classification identified 
additional members from protein families of biological signifi-
cance, such as GPCRs and protein kinases. Experimental charac-
terization of these proteins might lead to the discovery of unique 
functions.

Materials and methods

Domain Classification Using Our Established Sequence-Based Pipeline. 
We downloaded 23,391 models of human proteins from AFDB on July 1, 2021 
(http://alphafold.ebi.ac.uk). Since long proteins were modeled in multiple over-
lapping segments, these models cover 20,504 human proteins, and we focused 
on the 20,296 proteins represented by single models. We sequentially used 
BLAST+ (e-value < 0.00005, hit coverage > 70%) against ECOD domains (v283), 
HHsuite (v3, probability > 90%, hit coverage > 70%) against ECOD F70 (from 
by HHsuite developers), and HHsuite against PDB70 (from https://wwwuser.
gwdg.de/~compbiol/data/hhsuite/) to search homologs for each human protein. 
Homologous PDB entries (probability > 90%) were split into domains according 
to our previous ECOD classification. A domain was considered a valid homolog 
if the alignment covered > 70% of its residues. These homologs were used as a 

reference to split and assign domains in a query protein to the ECOD hierarchy. 
Where available, domain boundaries were optimized using structural domains 
identified by PDP by three principles. First, a PDP domain that significantly over-
laps (> 70% bidirectional overlap between a PDP and sequence domain) with 
a sequence domain can shift the sequence domain’s boundaries. Second, short 
linkers between domains will be divided between these domains by assigning 
each residue to the domain with which it forms the most sidechain contacts. Third, 
we prefer to place domain boundaries between secondary structure elements. 
This pipeline is similar in form to the sequence-based classifier for experimental 
structures previously used in ECOD (1).

Domain Classification Using Our Pipeline Developed for AF Models. Using 
a set of 18,759 AF models whose close homologs (sequence identity ≥ 95%) 
had been classified into ECOD as a benchmark, we have developed a Domain 
Parser for AF Models (DPAM) described in detail elsewhere (29). Briefly, DPAM 
first identified and excluded disordered regions or domain linkers, showing high 
PAE relative to other regions. DPAM then computed several interresidue meas-
urements, including interresidue distance, PAE, and whether the two residues 
appear in the same HHsuite and Dali hit. These measures were converted to 
probabilities for two residues to be in the same domain based on regression 
analyses on the benchmark set. Finally, these probabilities were used to cluster 
5-residue segments in an AF model into domains.

We developed a neural network (NN) to assign DPAM domains to the ECOD 
hierarchy using the DPAM benchmark set. This NN evaluates whether a candidate 
reference ECOD domain found by HHsuite or Dali belongs to the same ECOD 
T-group as the query domain. For each hit ECOD domain and a query DPAM 
domain, we computed the following parameters to evaluate their sequence 
similarity:

(1) Hprob: the HHsuite probability;
(2) Hcov: the coverage of the HHsuite alignment over the hit ECOD domain;
(3)  Hrank: the rank of this ECOD hit’s H-group among all the H-groups detected 

by HHsuite.
To evaluate structural similarity, we first performed all-against-all Dali compari-

sons between ECOD domains in the same H-group, namely, internal comparisons. 
The following scores were used:

(4) Dzscore: Dali Z-score;
(5) Dsum: a summary score of aligned positions in the hit by Dali, where each 

position’s score was calculated as the fraction of internal comparisons where this 
position was aligned;

(6)  Drank: the rank of this ECOD hit’s H-group among all the H-groups detected 
by Dali;

(7) Dztile: the quantile of Dzscore among internal comparisons for this hit.
(8) Dstile: the quantile of Dsum among internal comparisons for this hit.
Finally, we evaluated the consistency between HHsuite and Dali using two 

parameters:
(9)  Cshift: the average shift in the index of aligned residue in the hit for the 

same query residue between HHsuite and Dali;
(10)  Ccov: the fraction of residues in a hit domain that both HHsuite and 

Dali aligned.
In addition, we added the length of the domain, the number of alpha helices, 

and the number of beta strands in the domain as extra features. Each feature 
was rescaled to be between 0 and 1 using min-max normalization, and missing 
features were represented as “−1.” An NN (SI Appendix, Figs. S5 and S6) com-
bined the above 13 features with three dense layers of 64 (activation: ReLU), 
16 (activation: ReLU), and 2 (activation: softmax) neurons, respectively. The NN 
has 1,970 parameters in total. The output of the last dense layer (a vector with 
two values) represents 1) the probability for a query domain to be in the same 
T-group as a reference ECOD domain and 2) the probability for a query to be in a 
different T-group from reference. We trained this NN using the DPAM benchmark 
with 6,242,581 query-hit pairs for 60 epochs by minimizing the categorical cross 
entropy. We added regularization of the parameters with L2 norm (coefficient: 
0.0002) and used a learning rate of 0.00001 and Adam optimizer.

Fourfold crossvalidation (SI Appendix, Fig. S7) was performed to train and 
test the model, and the loss for the training and testing set was very similar, 
suggesting the lack of overtraining. The NN outputs the probability for a hit 
domain to be in the same ECOD T-group as the query domain, which we dub 
the “DPAM probability” (SI Appendix, Fig. S8). DPAM probability was used to 

http://alphafold.ebi.ac.uk
https://wwwuser.gwdg.de/~compbiol/data/hhsuite/
https://wwwuser.gwdg.de/~compbiol/data/hhsuite/
http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214069120#supplementary-materials
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rank the ECOD hits for a query domain from high to low. The domain with the 
highest probability was used as a reference to assign the query domain to the 
ECOD hierarchy. We evaluated the application of DPAM probability to assign a 
query domain and found that it outperforms HHsuite probability or Dali Z-score 
(SI Appendix, Fig. S9).

Application of Domain Classification Pipelines and Filtering of the 
Results. The DPAM pipeline was used to classify the proteome of humans 
and the five other model organisms in Fig. 3. For the automatic classification 
of these proteomes, we used a DPAM probability cutoff of >0.9 to assign 
domains. The number of proteins and domains is summarized in Dataset S5; 
these domains are collected in the supplementary dataset associated with this 
publication, in a Zenodo repository (25), and will be monitored and updated on 
the ECOD website. Both our sequence-based pipeline and DPAM pipeline were 
used to classify human proteins. Looser cutoffs were used to assign a human 
protein by an ECOD reference: 1) DPAM probability above 0.8 or 2) DPAM 
probability above 0.5, but the query protein contains domains from the same 
H-group with a probability above 0.8. Cases assigned using the lower cutoffs 
were inspected manually. Domains assigned by both pipelines were combined. 
The sequence-based pipeline revealed 2,215 domains that were missed by the 
DPAM pipelines: These domains tend to be small and lack secondary structure 
elements, such as zinc fingers and KRAB domains. We added them to the final 
set of human domains.

Manual curation revealed two problems with the DPAM pipeline. First, 
domains that are not globular, i.e., elongated domains or those with secondary 
structure elements that loosely interact with the rest of the domains, may be 
split into several domains (SI Appendix, Fig. S10). Second, the pipeline may con-
sider some simple structural motifs, like single bend helices, helical hairpins, or 
beta hairpins, as domains. To alleviate these problems, we merged neighboring 
partial domains assigned to the same T-group, removed single helices from the 
confidently assigned (DPAM probability > 0.8) domains, and discarded domains 
with less than four secondary structure elements if its DPAM probabilities to all 
ECOD domains were lower than 0.8. The last criterion was used because these 
domains with simple topologies, without confident sequence homology, cannot 
be assigned confidently even with careful manual curation.

Analysis of Classified Domains. Information from InterPro, SWISS-MODEL, and 
UniProt was used to analyze the classified human domains. InterPro annotated 
every human protein based on an extensive collection of domain and protein fam-
ily databases, and we used these annotations to identify unique human domains. 
The SWISS-MODEL repository provided homology-based models for every human 

protein. We mapped the human protein sequences to these models (sequence 
identity > 95%) and identified domains that did not have structures from SWISS-
MODEL. Genetic variants collected in the UniProt database were downloaded and 
filtered to include only the missense SAVs annotated as “Pathogenic” or “Likely 
pathogenic” and linked to specific diseases. The distribution of these SAVs among 
human domains was analyzed.

We selected experimentally determined structure representatives from 
ECOD for each class of GPCRs (A: 7BU7, 6FKC, 7EO4; B1: 6WPW; B2: 7D77; 
C: 7EB2, 7M3G, 7MTS; F:6OT0, 7EVW), choosing those defined as in the 
active state by the GPCRdb (49). GPCR class T did not have an experimentally 
determined structure; thus, the AF models for the human taste receptors were 
used. CREST superfamily enzymes (6YXH and 3WXV) and WLS (7KC4) were 
selected from ECOD. All-against-all structure comparisons between these known 
structures and the identified models (Q86UW1, Q9NVA4, Q5FWE3, C9JH25, 
Q96FM1, Q14656, A6NI61, Q8N661, Q8N2M4, Q86W33, Q8NBN3, Q9P2C4, 
AND P59544) were performed using DaliLite (64). Pairwise (ZAB) and self (ZAA, 
ZBB) Z-scores were transformed into distances using the following equation: 
-ln[ZAB/(minimum of ZAA, ZBB)]. The structure-based tree was produced using the 
FITCH program (with global optimization) of the Phylip package (65). Branch 
lengths generated by these Dali distance measures should be interpreted with 
care. The distance between domains represents structural similarity rather than 
evolutionary distance.

Data, Materials, and Software Availability. Domain classification data have 
been deposited in Zenodo (10.5281/zenodo.6998803) (66). The DPAM pipeline 
is open-source and its repository is maintained at GitHub (https://github.com/
CongLabCode/DPAM) (67).
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