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BACKGROUND Current risk scores that are solely based on clinical
factors have shown modest predictive ability for understanding of
factors associated with gaps in real-world prescription of oral anti-
coagulation (OAC) in patients with atrial fibrillation (AF).

OBJECTIVE In this study, we sought to identify the role of social
and geographic determinants, beyond clinical factors associated
with variation in OAC prescriptions using a large national registry
of ambulatory patients with AF.

METHODS Between January 2017 and June 2018, we identified pa-
tients with AF from the American College of Cardiology PINNACLE
(Practice Innovation and Clinical Excellence) Registry. We examined
associations between patient and site-of-care factors and prescrip-
tion of OAC across U.S. counties. Several machine learning (ML)
methods were used to identify factors associated with OAC prescrip-
tion.

RESULTS Among 864,339 patients with AF, 586,560 (68%) were
prescribed OAC. County OAC prescription rates ranged from 26.8%
to 93%, with higher OAC use in the Western United States. Super-
1Drs Azizi and Ward are first co-authors. 2Drs Dash and Rodriguez are last co-auth
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vised ML analysis in predicting likelihood of OAC prescriptions
and identified a rank order of patient features associated with
OAC prescription. In the ML models, in addition to clinical factors,
medication use (aspirin, antihypertensives, antiarrhythmic agents,
lipid modifying agents), and age, household income, clinic size, and
U.S. region were among the most important predictors of an OAC
prescription.

CONCLUSION In a contemporary, national cohort of patients with
AF underuse of OAC remains high, with notable geographic varia-
tion. Our results demonstrated the role of several important demo-
graphic and socioeconomic factors in underutilization of OAC in
patients with AF.
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Introduction
Oral anticoagulation (OAC) reduces the risk of stroke and
systemic embolism in patients with atrial fibrillation (AF).
Yet, use of OAC in patients with AF has historically been
suboptimal.1,2 Previous analyses involving the American
College of Cardiology (ACC) PINNACLE (Practice
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KEY FINDINGS

- This study complements prior work by leveraging ma-
chine learning methods to identify important patient-
level predictors of oral anticoagulation prescription
care gaps.

- Supervised machine learning analyses outperformed
the CHA2DS2-VASc (congestive heart failure, hyper-
tension, age �75 years, diabetes mellitus, prior stroke
or transient ischemic attack or thromboembolism,
vascular disease, age 65–74 years, sex category) score
at predicting oral anticoagulation use and identified a
rank order of associated patient’s sociodemographic
features beyond clinical factors.

- Significant geographic variation in oral anticoagula-
tion use was observed between counties, with highest
rates among patients dwelling in suburban settings and
in the Western United States.

- Social determinants of health including household in-
come and clinic size were among highest-ranking fea-
tures associated with oral anticoagulation prescription.

- The results from this precision population health study
should be translated into actionable values for clini-
cians and care teams to close critical gaps in medical
care.
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Innovation and Clinical Excellence) Registry from 2008 to
2014 have documented OAC prescription rates ranging
between 45% and 61%.1,2 Factors contributing to the
observed care gaps are numerous and include those at the
patient, clinician, and health system levels.

The CHA2DS2-VASc score (congestive heart failure, hy-
pertension, age �75 years, diabetes mellitus, prior stroke or
transient ischemic attack or thromboembolism, vascular dis-
ease, age 65–74 years, sex category) has been extensively
validated to estimate the risk for the development of stroke
based on specific demographic and clinical risk factors and
is used to inform treatment decisions about OAC.3 This clin-
ical risk score along with other similar scores have shown
modest predicting ability to predict outcomes. One explana-
tion of the modest predictive performance of these scores
may be that these scores only include clinical factors and
do not consider sociodemographic and geographical varia-
tions that are known to be important predictors of cardiovas-
cular outcomes and anticoagulation use.4,5 The 2019
American Heart Association/ACC/Heart Rhythm Society
guidelines recommend OAC for all AF patients based on a
qualifying CHA2DS2-VASc score.6 Preference is given to
direct oral anticoagulants (DOACs) in most patients with
AF6–8 due to their ease of administration and therapeutic
advantages compared with vitamin K antagonists.9–13 The
current OAC practice patterns for AF patients remain
incompletely characterized, with substantial opportunity to
better understand geographic, clinical, and socioeconomic
determinants of guideline-directed OAC use.

Machine learning (ML) is a branch of artificial intelli-
gence that leverages data analysis to identify relationships be-
tween variables directly from the data. ML encompasses
supervised (eg, predicting an outcome) and unsupervised
(eg, clustering) methods, which can be used to process com-
plex, high-volume datasets. Such techniques may comple-
ment traditional statistical approaches by identifying
nonintuitive features or combined patient and site-of-care
variables (signatures) to gain insight into patterns and predic-
tors of OAC prescription among patients with AF.

Using the PINNACLE Registry, we sought to describe
role of social determinants of health and geographic differ-
ences in contemporary OAC prescription practices among
patients with AF. We further leveraged a clinical intelligence
data platform using ML algorithms to identify predictors of
OAC care gaps.
Methods
Data source
We analyzed data from the PINNACLE Registry, which
includes 829 practices throughout the United States. De-
tails related to this registry, along with available data ele-
ments (eg, patient demographics, comorbidities, vital signs,
medications, laboratory values, and recent hospitalizations)
have been previously described.1,14,15 Waiver of written
informed consent and authorization for this study was
granted by Chesapeake Research Review Incorporated
due to the use of de-identified, retrospective data.

Clinical intelligence engine
For this study, we leveraged CLINT, an analytic engine from
the ACC’s innovation collaborator, HealthPals Inc (Mill-
brae, CA). CLINT has a comprehensive array of codified
ACC cardiometabolic guidelines that map best practices to
individual patient data, allowing for efficient identification
of care gaps. Available fields in the PINNACLE Registry
(now operated by Veradigm and comprising w360 struc-
tured data elements per patient encounter) were integrated
into CLINT and used to derive a CHA2DS2-VASc score
for each patient. The CHA2DS2-VASc score was used to
identify care gaps, defined as the percentage of patients
who have a Class I indication for OAC according to the
2019 American Heart Association/ACC/Heart Rhythm So-
ciety Atrial Fibrillation guideline update.6 These evidence-
based care gaps were then aggregated into an interactive
population dashboard. We also used CLINT to efficiently
perform cohort selection and train and evaluate ML models
on the PINNACLE data.

Study population
The study population consisted of patients enrolled in the
PINNACLE Registry from January 2017 to June 2018.
Eligible patients included those with a diagnosis of
nonvalvular (or “unspecified”) AF at any encounter within
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the 18-month survey period and a recorded sex, which is
necessary for calculating the CHA2DS2-VASc score.
Outcome
The primary outcome was OAC prescription, defined as the
presence of at least 1 anticoagulant (apixaban, dabigatran,
edoxaban, rivaroxaban, or warfarin) in the most recent 3
months of each patient’s record. Prescription rates were
calculated by dividing the number of patients prescribed
OAC by the total number of OAC-eligible patients with
AF. To identify geographic gaps in guideline adherence,
we grouped patients with AF into counties based on their
clinic’s street address. Prescription rates were then calculated
for each U.S. county. To ensure sufficient data quality, rates
were only calculated for counties with at least 40 patients in
the study.
Patient characteristics
Variables were extracted from the PINNACLE registry. For
each patient, information was collected from the quarter (3
months) during which the patient’s most recent outpatient
encounter occurred. In addition to demographic variables,
variables representing preselected cardiometabolic comor-
bidities (dyslipidemia, chronic kidney disease, chronic liver
disease, thyroid disease, hemodialysis, prior kidney trans-
plantation, sleep apnea, and stable and unstable angina) and
medications prescribed (antihypertensives, antiarrhythmic
agents, lipid-modifying therapies, aspirin, antiplatelets other
than aspirin [clopidogrel, prasugrel, vorapaxar, ticagrelor],
and blood glucose regulation agents) were created by search-
ing for any mention of each within the 3-month period. Lab-
oratory variables (international normalized ratio [INR],
glomerular filtration rate, lipid levels) were also collected;
if a patient had multiple values from the same lab test in
the 3-month period, the values were averaged. Vital signs
(heart rate, blood pressure, weight) and insurance informa-
tion (commercial, Medicaid, Medicare, or other) were
included. Clinic information included U.S. census region
(South/Midwest/Northeast/West), urbanicity (urban/subur-
ban/rural), and number of patients seen by the clinic. The
mean household income was determined using data from
the 2016 U.S. Census and the zip code in which the patient’s
clinic was located. The CHA2DS2-VASc score was calcu-
lated based on PINNACLE data fields as previously
described.16 Variables were used at the patient level to deter-
mine associations and develop models and were aggregated
at the county level to explore geographic trends.
ML analysis
ML analyses were completed in Python 3.6 using the Scikit-
learn package, version 0.21.2 (Python Software Foundation,
Wilmington, DE). In order to identify the most important
drivers of guideline-adherent OAC prescriptions, several
ML binary classifiers, including logistic regression,
LASSO-penalized logistic regression, random forests, and
extreme gradient boosting (XGBoost),17,18 were trained on
variables derived from the PINNACLE dataset. These classi-
fiers were chosen for their ability to effectively incorporate
many variables into the models. The tree-based ML
classifiers (random forests and XGBoost) aggregate the pre-
dictions of many independent decision trees. This allows
these models to capture complex variable interactions while
simultaneously minimizing variance.

As a baseline comparison, we analyzed the ability of the
CHA2DS2-VASc score to directly predict which patients
would receive an OAC prescription.1 To compare directly
with the CHA2DS2-VASc score, we trained the 4MLmodels
to predict OAC prescription using only the variables
comprising the CHA2DS2-VASc score: sex, age, heart fail-
ure, hypertension, diabetes, peripheral artery disease, periph-
eral vascular disease, prior myocardial infarction, coronary
artery bypass grafting surgery, percutaneous coronary inter-
vention, ischemic stroke, and transient ischemic attack.

As ML models (particularly tree-based models) are able to
effectively use a large number of variables that can be corre-
latedwith each other,we next included awide range of clinical,
demographic, and geographic variables in “enhanced” variants
of the ML models. In addition to the CHA2DS2-VASc vari-
ables, clinic information (region, urbanicity, number of pa-
tients), demographic factors (race/ethnicity, mean household
income), medical comorbidities, medications prescribed, vital
signs, laboratory data, and insurance information were used to
train and evaluate the enhanced ML classifiers. For variables
with continuous values, missing fields were imputed using
the median value of that variable across the dataset.

Data were split into training (80%) and testing (20%) sets.
Within the training set, 5-fold cross-validation was used to
tune hyperparameters, such as regularization parameters,
maximum tree depth, and number of trees. Hyperparameters
were tuned to control the models’ complexities and prevent
overfitting. Models were compared based on the area under
the receiver-operating characteristic curve (AUROC), also
known as the C-statistic. Once the best hyperparameters
were selected for each ML classifier, models with these hy-
perparameters were retrained on the entire training set. The
final AUROCs, model accuracy, precision, recall, and area
under the precision-recall curve of both regular and
“enhanced” ML models, as well as the CHA2DS2-VASc
score, were reported on the testing set.

We also assessed the feature importance of the model with
the highest testing set AUROC in order to understand how
much weight the model places on each of the expanded set
of covariates in determining OAC prescription probability.
This analysis was only performed on the testing set. Tradi-
tionally, feature importance for random forests is reported us-
ing the decrease in the Gini impurity in the training process,
but this has a number of shortcomings,19 particularly in the
presence of correlated variables and variables of mixed types
(binary/categorical/continuous). As such, we ranked vari-
ables using permutation importance,20 a method that
randomly permutes values in columns of the test data and
measures decrease in performance. Notably, while the per-
mutation importance represents the overall magnitude of



Figure 1 Cohort diagram. Flow chart detailing the inclusion and exclusion criteria used for identifying this study population from the PINNACLE (Practice
Innovation and Clinical Excellence) dataset. AF 5 atrial fibrillation.
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influence for each feature on the OAC prescription rate, the
polarity of influence of any given feature (eg, CHA2DS2-
VASc score) may be a combination of positive and negative
statistical associations that may depend on the numerical
value of the feature itself or other variable inputs. To offer
insight into the polarity of variable influence, we plot OAC
rates against the most important variables (Supplemental
Figure 1).
Data availability
We declare that the data supporting the findings of this study
are available within the article and its Supplemental informa-
tion files.

The raw data that support the findings of this study are also
available from National Cardiovascular Data Registry
PINNACLE Registry, but restrictions apply to the availabil-
ity of these data, which were used under license for the cur-
rent study, and so they are not publicly available. Data are,
however, available from the authors upon reasonable request
and with permission of the ACC.

The linked data used in this analysis were deidentified, so
the study was exempt from the requirement for review board
approval and . The research reported in this article adhered to
Helsinki Declaration guidelines for human research.
Results
Descriptive patterns in OAC prescription
Between January 1, 2017, and June 30, 2018, there were
864,339 patients with AF in the registry (Figure 1). Table 1
shows patient-level characteristics for the study population
by OAC use. A total of 586,554 (68%) received OAC, of
which, 69% (n 5 401,953) were prescribed a DOAC. Most
of the AF patients (85% [n 5 734,288]) met contemporary
Class I indications for an OAC prescription; approximately
70% of these patients (n 5 520,909) were prescribed OAC.

Patients who were prescribed OAC were more likely to
reside in the Western United States and in suburban counties,
be visited in greater clinic size, be non-Hispanic White, be
older, have greater household income, and be insured
through Medicare.

Moreover, these patients were more likely to have greater
body mass index; have a history of hypertension, heart fail-
ure, stroke, diabetes, chronic kidney disease, or sleep apnea;
and be treated with antihypertensive, antiarrhythmic, lipid-
modifying, or blood glucose–regulating medications.

Several continuous variables including weight were not
available for over 50% of patients, for which imputation
methods were employed as described previously; complete-
ness information for continuous variables is available in
Supplemental Table 1. OAC prescription rates increased
with an increasing CHA2DS2-VASc score from 0 to 4, with a
slight decrease among those with CHA2DS2-VASc
scores .4 (Supplemental Figure 1).

Geographic patterns of OAC use
Figure 2 displays the geographic patterns of OAC prescrip-
tion rates by county. Wide variation was observed, with
county-level OAC prescription rates ranging from 26.8% to
93.2%. The counties with the lowest OAC prescription rates
(,60% OAC coverage) tended to be in urban areas and were
more common in Iowa, Florida, Louisiana, Texas, and



Table 1 Characteristics of AF patients

Total (N 5 864,339)
OAC Prescription
(n 5 586,554)

No OAC Prescription
(n 5 277,785) P Value

Mean household income (!$1,000) 69.43 6 13.15 69.50 6 13.12 69.28 6 13.21 ,.001
Age, y 73.54 6 11.43 74.48 6 10.38 71.57 6 13.15 ,.001
Male 490,102 (57) 332,949 (57) 157,153 (57) .096
Weight, kg 88.47 6 24.38 89.52 6 24.68 86.23 6 23.56 ,.001
CHA2DS2-VASc score 3.60 6 1.71 3.74 6 1.64 3.30 6 1.81 ,.001
Eligible for OAC* 734,288 (85) 520,909 (89) 213,379 (77) ,.001
Race/ethnicity
Hispanic 25,532 (3) 16,834 (2.9) 8698 (3.1) ,.001
Non-Hispanic White 572,814 (66) 393,402 (67) 179,412 (65)
Non-Hispanic Black 37,833 (4.4) 24,671 (4.2) 13,162 (4.7)
Other 13,268 (1.5) 8864 (1.5) 4404 (1.6)
Missing 214,892 (25) 142,783 (24) 72,109 (26)
Clinic location
West 161,060 (19) 111,685 (19) 49,375 (18) ,.001
Northeast 182,001 (21) 124,672 (21) 57,329 (21)
Midwest 131,658 (15) 89,046 (15) 42,612 (15)
South 436,030 (50) 292,118 (50) 143,912 (52)
Urban 182,659 (21) 123,413 (21) 59,246 (21)
Suburban 136,431 (16) 96,446 (16) 39,985 (14)
Rural 32,420 (3.8) 22,109 (3.8) 10,311 (3.7)
Size of clinic (number of patients) 19,705.51 6 16,583.81 19,994.35 6 16,805.25 19,095.63 6 16,089.24 ,.001
Insurance type
Private 500,882 (58) 340,187 (58) 160,695 (58) ,.001
Medicaid 54,517 (6.3) 35,652 (6.1) 18,865 (6.8)
Medicare 526,572 (61) 375,615 (64) 150,957 (54)
State 7839 (0.91) 5155 (0.88) 2684 (0.97)
Other 35,070 (4.1) 24,250 (4.1) 10,820 (3.9)
None 3225 (0.37) 2147 (0.37) 1078 (0.39)
Clinic and lab values
Heart rate, beats/min 72.20 6 13.51 72.60 6 13.72 71.41 6 13.03 ,.001
Systolic BP, mm Hg 127.97 6 17.20 127.77 6 17.12 128.40 6 17.37 ,.001
Diastolic BP, mm Hg 73.57 6 10.40 73.45 6 10.34 73.82 6 10.52 ,.001
Total cholesterol, mg/dL 158.82 6 40.99 156.63 6 39.95 163.63 6 42.81 ,.001
HDL cholesterol, mg/dL 50.13 6 16.81 49.78 6 16.61 50.90 6 17.22 ,.001
LDL cholesterol, mg/dL 86.83 6 34.65 85.40 6 34.03 90.00 6 35.77 ,.001
Triglyceride, mg/dL 125.49 6 70.64 125.13 6 69.96 126.27 6 72.10 .008
INR 2.14 6 2.10 2.23 6 1.97 1.75 6 2.54 ,.001
GFR, mL/min/1.73 m2 63.67 6 22.96 62.74 6 22.16 66.11 6 24.76 ,.001
LVEF, % 54.98 6 12.94 54.34 6 13.18 56.48 6 12.23 ,.001
Comorbidities
Hypertension 664,713 (77) 463,872 (79) 200,841 (72) ,.001
Dyslipidemia 517,586 (60) 360,239 (61) 157,347 (57) ,.001
Heart failure 238,781 (28) 177,488 (30) 61,293 (22) ,.001
Stable angina 87,749 (10) 56,458 (9.6) 31,291 (11) ,.001
Unstable angina 26,105 (3) 15,994 (2.7) 10,111 (3.6) ,.001
Transient ischemic attack 56,425 (6.5) 40,649 (6.9) 15,776 (5.7) ,.001
Ischemic stroke 67,588 (7.8) 48,479 (8.3) 19,109 (6.9) ,.001
Coronary artery disease 375,678 (43) 257,035 (44) 118,643 (43) ,.001
Myocardial infarction 55,161 (6.4) 35,313 (6) 19,848 (7.1) ,.001
Peripheral artery disease 99,234 (11) 68,325 (12) 30,909 (11) ,.001
Peripheral vascular disease 74,430 (8.6) 51,771 (8.8) 22,659 (8.2) ,.001
Coronary artery bypass grafting 63,543 (7.4) 40,949 (7) 22,594 (8.1) ,.001
Percutaneous coronary intervention 76,282 (8.8) 49,994 (8.5) 26,288 (9.5) ,.001
Type 2 diabetes 217,996 (25) 157,247 (27) 60,749 (22) ,.001
Chronic kidney disease 89,262 (10) 63,272 (11) 25,990 (9.4) ,.001
Chronic liver disease 90,557 (10) 63,957 (11) 26,600 (9.6) ,.001
Hemodialysis 2370 (0.27) 1,492 (0.25) 878 (0.32) ,.001
Kidney transplant 590 (0.068) 404 (0.069) 186 (0.067) .783
Hyperthyroidism 8024 (0.93) 5511 (0.94) 2513 (0.9) .117
Hypothyroidism 55,172 (6.4) 37,933 (6.5) 17,239 (6.2) ,.001
Sleep apnea 82,975 (9.6) 60,563 (10) 22,412 (8.1) ,.001
Medications
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Table 1 (Continued )

Total (N 5 864,339)
OAC Prescription
(n 5 586,554)

No OAC Prescription
(n 5 277,785) P Value

Antiplatelets 487,204 (56) 291,608 (50) 195,596 (70) ,.001
Antiplatelets (without aspirin) 105,056 (12) 64,248 (11) 40,808 (15) ,.001
Antiarrhythmic agents 327,998 (38) 253,181 (43) 74,817 (27) ,.001
Lipid-modifying agents 533,753 (62) 390,012 (66) 143,741 (52) ,.001
Blood glucose regulation agents 167,735 (19) 126,588 (22) 41,147 (15) ,.001
Antihypertensives 775,798 (90) 553,571 (94) 222,227 (80) ,.001
Aspirin 464,821 (54) 276,320 (47) 188,501 (68) ,.001
Prasugrel 6409 (0.74) 4232 (0.72) 2177 (0.78) .002
Ticagrelor 7104 (0.82) 4249 (0.72) 2855 (1) ,.001
Clopidogrel 97,316 (11) 59,874 (10) 37,442 (13) ,.001
Vorapaxar 78 (0.009) 34 (0.0058) 44 (0.016) ,.001
Anticoagulants
Warfarin 232,538 (27) 232,538 (40) — ,.001
Apixaban 232,720 (27) 232,720 (40) — ,.001
Dabigatran 54,136 (6.3) 54,136 (9.2) — ,.001
Rivaroxaban 147,594 (17) 147,594 (25) — ,.001
Edoxaban 4291 (0.5) 4291 (0.73) — ,.001
DOACs 401,953 (47) 401,953 (69) — ,.001

Values are mean 6 SD or n (%). Patients were stratified by whether they received an OAC prescription.
AF5 atrial fibrillation; BP5 blood pressure; CHA2DS2-VASc5 congestive heart failure, hypertension, age�75 years, diabetes mellitus, prior stroke or tran-

sient ischemic attack or thromboembolism, vascular disease, age 65–74 years, sex category; DOAC5 direct oral anticoagulant; GFR5 glomerular filtration rate;
HDL5 high-density lipoprotein; INR5 international normalized ratio; LDL5 low-density lipoprotein; LVEF5 left ventricular ejection fraction; OAC5 oral anti-
coagulation.
*Class I indication for OAC was determined by whether a patient had an elevated CHA2DS2-VASc score as specified by contemporary guidelines (CHA2DS2-VASc
score �2 for men, �3 for women).4
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Virginia. In contrast, nearly all counties in Arizona, Okla-
homa, Connecticut, Vermont, and Maine had OAC prescrip-
tion rates above 60%. Patient characteristics by each quartile
of OAC prescription rates are further detailed in
Supplemental Table 2.
ML insights: Determinants of OAC prescription
The enhanced XGBoost model performed best in its ability to
identify whether patients did or did not receive OAC with a
test AUROC of 0.811 (95% confidence interval 0.809–
0.813). This significantly surpassed the predictive perfor-
mance of the CHA2DS2-VASc score (AUROC 0.571, 95%
confidence interval 0.569–0.574) (Figure 3). Every enhanced
ML model outperformed all versions of the ML models,
which only relied on the CHA2DS2-VASc variables
(Table 2). Figure 4 shows features in order of permutation
importance within the enhanced XGBoost model. The most
predictive patient features include (1) use of aspirin, antihy-
pertensives, antiarrhythmic agents, lipid-modifying agents,
or antiplatelets; (2) age; (3) mean household income; (4)
INR values; (5) clinic size; (6) patient weight; and (7) U.S.
region. Beyond age, variables included in the CHA2DS2-
VASc score had low importance in the enhanced random for-
est model (ranking 12th, 21st, 24th, 25th, 30th, and lower).
Supplemental Figure 1 displays the different positive and
negative associations of each feature in more detail.
Discussion
In a contemporary cohort of U.S. patients with AF, 68%were
treated with OAC. Of the remaining third of AF patients not
on OAC, most met a Class I indication for OAC use by
contemporary guidelines. Significant geographic variation
in OAC use was observed between counties, with highest
rates among patients dwelling in suburban settings and in
the Western United States. Supervised ML analyses outper-
formed the CHA2DS2-VASc score at predicting OAC use
and identified a rank order of associated patient’s sociodemo-
graphic features beyond clinical factors. The strongest asso-
ciations were the use of aspirin, antihypertensives,
antiarrhythmic agents, lipid-modifying agents, and INR
values, as well as the features of age, mean household in-
come, clinic size, patient weight, and geographic region.
Our results are largely consistent with prior findings of dis-
parities in OAC prescription by patient characteristics, site
of care, and geographic region. One such analysis21 found
that, compared with those prescribed OAC, patients with
AF prescribed aspirin as their sole antithrombotic therapy
were more often located in the South and West, in nonurban
settings, and in practices with larger patient volumes.

While other studies have demonstrated an association be-
tween greater burden of clinical comorbidities22 and lower
likelihood of OAC,22 sleep apnea has been associated with
increased OAC use.23 Our analysis revealed that the largest
contributions to the predictive model of OAC use were pre-
scriptions related to other comorbid conditions, including hy-
pertension, congestive heart failure, diabetes, and stroke.
Similar to other analyses,23 we also found that use of aspirin
and other forms of antiplatelet therapy was associated with
lower rates of OAC prescriptions.24 This is possibly due to
the increased risk of bleeding in these patients. OAC use
was greater in patients who were on antiarrhythmic agents,



Figure 2 Oral anticoagulation (OAC) prescription rates by county. OAC prescription rates are shown at a population level, split into 4 quartiles. Prescription
rates are defined as [atrial fibrillation patients with OAC prescriptions] / [atrial fibrillation patients]. The circle size denotes the number of PINNACLE (Practice
Innovation and Clinical Excellence) patients treated within that area. The OAC prescription rates are shown by color, with red/orange areas indicating worse rates
and green areas indicating better rates. A histogram is also shown, indicating how many counties fall in each bin of OAC adherence.
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which may be explained by the increased recurrence and
severity of AF in patients on antiarrhythmic therapy.

Our results also demonstrated geographical variation in
OAC prescription, in which the counties with the lowest
OAC prescription rates (,60% OAC coverage) tended to
be in urban areas and were more common in Iowa, Florida,
Louisiana, Texas, and Virginia. In contrast, nearly all
counties in Arizona, Oklahoma, Connecticut, Vermont,
and Maine had OAC prescription rates above 60%. Similar
results were obtained in the study by Hernandez and col-
leagues,5 who reported large geographical variations in
use of OAC for stroke prevention in patients with AF. In
this study, the Midwest and Northwest had a higher likeli-
hood of OAC initiation compared with the South, which
had the lowest likelihood of OAC use and a higher risk of
stroke.

One important finding of our analysis was the role of so-
cial determinants of health, including household income



Figure 3 Receiver-operating characteristic (ROC) curves for identifying oral anticoagulation (OAC) prescription: machine learning (ML) vs CHA2DS2-VASc
(congestive heart failure, hypertension, age �75 years, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, vascular disease, age
65–74 years, sex category) score. ROC curves for (1) the CHA2DS2-VASc score, (2) 4 ML models (XGBoost, random forest, logistic regression, LASSO regres-
sion) using only covariates considered in the CHA2DS2-VASc score, and (3) 4 “enhanced” ML models that were trained on additional clinical comorbidities,
medication usage, vital signs, laboratory data, insurance information, and socio- and geodemographic variables. Metrics were calculated on held-out test data.
AUROC 5 area under the receiver operating characteristic curve; CI 5 confidence interval.
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and clinic size in OAC prescription and adherence. Cost of
medication and follow-up of OAC can influence the prescrip-
tion rates.25,26 Unequal access to OAC in socioeconomically
Table 2 Summary of model performances for predicting oral anticoagul

Regular model: CHA

Accuracy AUROC P

XGBOOST Test set 0.69 0.62 0
Cross-validation 0.70 0.64 0

Logistic regression Test set 0.69 0.60 0
Cross-validation 0.69 0.60 0

Random forest Test set 0.68 0.59 0
Cross-validation 0.75 0.78 0

LASSO-penalized logistic regression Test set 0.69 0.60 0
Cross-validation 0.69 0.60 0

AUROC5 area under the receiver-operating characteristic curve; CHA2DS2-VASc
prior stroke or transient ischemic attack or thromboembolism, vascular disease, age
precision-recall curve.
disadvantaged patients and different geographical areas have
been shown in previous studies.26 In a study by Llorca and
colleagues,25 those living in more socioeconomically
ation prescription in training (5-fold cross-validation) and test sets

2DS2-VASc components
Enhanced ML model: CHA2DS2-VASc
components 1 new features

RAUC Precision Recall Accuracy AUROC PRAUC Precision Recall

.76 0.70 0.96 0.77 0.81 0.89 0.79 0.89

.77 0.70 0.95 0.78 0.83 0.90 0.80 0.89

.73 0.70 0.96 0.73 0.75 0.86 0.77 0.87

.73 0.70 0.96 0.74 0.76 0.86 0.76 0.88

.73 0.68 0.99 0.76 0.79 0.85 0.79 0.88

.88 0.76 0.93 0.99 0.99 0.85 0.99 0.99

.73 0.70 0.96 0.74 0.76 0.88 0.76 0.89

.73 0.70 0.96 0.74 0.76 0.99 0.76 0.89

5 congestive heart failure, hypertension, age�75 years, diabetes mellitus,
65–74 years, sex category; ML5 machine learning; PRAUC5 area under the
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deprived and rural areas had lower OAC prescription rates.
Moreover, previous studies by Essien and colleagues27,28

showed lower initiation of OAC for Black patients and lower
DOAC use for Black and Hispanic patients. This was also
evident in our descriptive results; however, these did not
emerge as high-ranking features in our ML models, which
may be due to the low sample sizes of these populations in
our database. Therefore, there is a need to condition prescrip-
tion patterns by sociodemographic factors besides clinical
risk factors.

In the absence of other prediction models to estimate OAC
use, we utilized the CHA2DS2-VASc score. Even though the
CHA2DS2-VASc score was initially designed to predict
thromboembolic risk, prior work has demonstrated increased
odds of OAC prescribing with increasing CHA2DS2-VASc
score.1 As such, we hypothesized that it would be modestly
predictive of OAC use. We instead found that the perfor-
mance of CHA2DS2-VASc score was only slightly above
chance. Furthermore, the enhancedMLmodels (which incor-
porated additional social, geographic, and clinical variables)
significantly outperformed the ML models that were limited
to risk factors in the CHA2DS2-VASc score. This finding
suggests that a range of social and clinical determinants of
health likely underlie much of the observed variation in
OAC guideline adherence.24

Our study extends and complements prior work by
leveraging ML methods to identify important patient-level
predictors of OAC prescriptions. Exploring the variables
selected by ML adds unique insights beyond what traditional
regression analysis provides. In real-world datasets, a number
of variables may be unavailable for large numbers of patients.
When these variables are present, they display markedly
nonlinear, and even nonmonotonic trends. Additive models
such as the CHA2DS2-VASc score, which assume equal
weights for all risk factors, are unable to fully capture these
associations. Furthermore, the rank order of a given feature’s
influence on OAC prescribing, considering all other possible
permutations of other concomitant features, would not be un-
covered by less sophisticated models. While traditional
multivariate approaches, such as Bayesian hierarchical linear
models, are adept at identifying independent associations be-
tween a given patient feature and an outcome,ML enables the
integration of potentially hundreds of different features, with
varying levels of missingness, to determine the collective as-
sociations with clinical outcomes. These observations on an
established, longitudinal patient registry demonstrate that
ML offers unique additive value—and should continue to
be leveraged—to identify nonlinear associations between pa-
tient features and clinical management practices.
Figure 4 Predictive importance of individual clinical features on the likelihood o
learning model, XGBoost, was used to determine the rank order of features asso
measured using the permutation importance metric. With the fully trained model,
learned by the machine learning model, and the decrease in model performance
runs, and the standard deviation of those runs (black error bars) is shown for each
BP 5 blood pressure; GFR 5 glomerular filtration rate; INR 5 international norm
Clinical implications
It is important to translate these findings into actionable value
for clinicians and care teams to close critical gaps in medical
care. One proposed approach is to utilize an analytics plat-
form to apply guideline-driven insights, both longitudinally
and in real time, for every patient record within a health
system at once. In the case of OAC use in eligible AF pa-
tients, this precision population health engine may alert
care teams to focus their attention on specific patient cohorts
with confirmed care gaps for OAC, or, upon patient cohorts
who are at the highest risk of developing an OAC care gap,
as may be the case with the predictive model presented here.

This patient-centered novel approach will provide an ac-
curate tool for clinical decision making not only by incorpo-
rating clinical factors considered in the previous risk scores,
but also by including social determinants of health and
geographical variations for risk profiling of patients with AF.
Limitations
Our results should be interpreted in the context of several lim-
itations. Because our data included patients enrolled predom-
inantly within outpatient cardiology practices, OAC
prescribing patterns may not be generalized to noncardiology
practices. Incomplete or missing data may also have
impacted our findings. For example, if a feature was not re-
ported in the electronic health record for a patient (eg, a his-
tory of stroke), it was interpreted in this analysis as the
absence of stroke in the calculation of that patient’s
CHA2DS2-VASc score. Patients had differing numbers of re-
corded encounters in the data, which led to differing levels of
data completeness. Because this is a voluntary registry, sites
that participate in the PINNACLE Registry may not be na-
tionally representative, and some regions are not well repre-
sented. It is likely that the noted sociodemographic disparities
may be greater in other non–registry-participating sites. Un-
like a randomized controlled trial, the inference of causation
is not possible due to the many uncontrolled factors not re-
corded.1 There are other confounding factors related to
underprescription of OAC including utilization of left atrial
appendage occlusion devices, which were not captured in
our study. Moreover, increased risk of bleeding is an impor-
tant factor associated with lower prescription rates. Future
studies assessing this risk using related clinical risk scores
(HAS-BLED [hypertension, abnormal renal or liver function,
stroke, bleeding, labile international normalized ratio,
elderly, drugs or alcohol]) are warranted. As this study was
based on data in 2017 to 2018, there may be lower-than-
expected DOAC use or higher-than-expected acetylsalicylic
f being prescribed an oral anticoagulation. The highest-performing machine
ciated with oral anticoagulation prescriptions. This feature importance was
independent variables were randomly shuffled, removing the relationships
was assessed. The average decrease in performance across 5 independent
variable. AUROC 5 area under the receiver operating characteristic curve;
alized ratio; LVEF 5 left ventricular ejection fraction.
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acid use for a CHA2DS2-VASc 5 1 population, given that
this would be based on the 2014 guidelines. Future work
will explore the specific determinants of DOAC usage vs
warfarin usage in the OAC groups, as current guidelines
recommend DOACs for most AF patients. Future investiga-
tions will also aim to transform these insights into a popula-
tion health–focused strategy to better target evidence-based
interventions that promote closure of gaps in care.
Conclusions
In a contemporary national cohort of patients with AF, almost
a third of patients with AF failed to receive OAC, with signif-
icant geographic practice variations. Specific, ML-derived
predictors of OAC prescription were identified and offer
complementary information to traditional analytic methods.
Our results demonstrated the role of several important demo-
graphic and socioeconomic factors in underutilization of
OAC in patients with AF. Therefore, by combining large,
representative real-world datasets with ML techniques, fea-
tures beyond clinical factors contributing to OAC
underuse may be identified to inform targets for quality
improvement.
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